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Although previous studies have implicated a diverse set of brain
regions in reward-related decision making, it is not yet known
which of these regions contain information that directly reflects a
decision. Here, we measured brain activity using functional MRl in
a group of subjects while they performed a simple reward-based
decision-making task: probabilistic reversal-learning. We recorded
brain activity from nine distinct regions of interest previously
implicated in decision making and separated out local spatially
distributed signals in each region from global differences in signal.
Using a multivariate analysis approach, we determined the extent
to which global and local signals could be used to decode subjects’
subsequent behavioral choice, based on their brain activity on the
preceding trial. We found that subjects’ decisions could be decoded
to a high level of accuracy on the basis of both local and global
signals even before they were required to make a choice, and even
before they knew which physical action would be required. Fur-
thermore, the combined signals from three specific brain areas
(anterior cingulate cortex, medial prefrontal cortex, and ventral
striatum) were found to provide all of the information sufficient to
decode subjects’ decisions out of all of the regions we studied.
These findings implicate a specific network of regions in encoding
information relevant to subsequent behavioral choice.

anterior cingulate cortex | distributed encoding | prefrontal cortex

D ecision making is a neural process that intervenes between
the processing of a stimulus input and the generation of an
appropriate motor output. Motor responses are often performed
to obtain reward, and the obligation of a decision-making
mechanism is to ensure that appropriate responses are selected
to maximize available reward. Although the neural systems
involved in this process have been the subject of much recent
research, studies have yet to isolate the specific neural circuits
responsible for this decision process. Neural signals have been
found that relate to but do not directly reflect this process, such
as those pertaining to the expected value or utility of the
available actions (1, 2), responses signaling errors in those
predictions (3), encoding the value of outcomes received (4), and
responses related to monitoring or evaluation of a previously
executed action (5-7). Such signals have been found in diverse
regions throughout the brain, including anterior cingulate cortex
(ACC), medial prefrontal cortex (mPFC), orbitofrontal cortex,
dorsolateral prefrontal cortex (DLPFC), amygdala, and stria-
tum. Although complex behavioral decisions are likely to depend
on information computed in a widely distributed network, it is
not yet known where among this network of brain regions neural
activity directly reflects the subsequent behavioral decision as to
which action to select.

To determine the brain regions where neural activity is directly
related to a final behavioral decision, we applied multivariate
decoding techniques to our functional MRI (fMRI) data. This
approach combines the temporal and spatial resolution of event-
related fTMRI with statistical learning techniques to decode on
a trial by trial basis subjects’ behavior or subjective states directly
from their neural activity. Up to now, this technique has been
used in visual perception, to decode perceptual states and/or
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perceptual decisions from fMRI signals recorded mainly (al-
though not exclusively) in visual cortical areas (8-12). These
previous studies have used locally distributed variations in
activity to decode visual percepts, under situations where the
global mean signals in a given region may show no significant
differences between conditions. In the present case, many of our
target regions of interest have been found to show global signal
changes related to behavioral choice, that is, large spatially
extended cluster areas of activation have previously been re-
ported in these areas in previous fMRI studies (13, 14). Here, in
addition to testing for global signals, we also tested for the
presence of locally distributed signals relevant to behavioral
decision making in each of our areas of interest. For this, we
separated out global and local signals within each region and
explored the separate contributions of signals at these two
different spatial scales. We then extend this technique to the
multiregion level to determine the contribution of interactions
between brain areas in reward-related decision making.

To address this, subjects performed a probabilistic reversal
task (4, 15) while being scanned with fMRI. On each trial,
subjects are presented with two fractal stimuli and asked to select
one (Fig. 14), with the objective of accumulating as much money
as possible. After making a choice, subjects receive either a
monetary gain or a monetary loss. However, one choice is
“correct” in that choosing that stimulus leads to a greater
probability of winning money and hence to an accumulating
monetary gain, whereas the other choice is “incorrect” in that
choosing that stimulus leads to a greater probability of losing
money and hence to an accumulating monetary loss. After a
time, the contingencies reverse so that what was the correct
choice becomes the incorrect choice and vice versa. To choose
optimally, subjects need to work out which stimulus is correct
and continue to choose that stimulus until they determine that
the contingencies have reversed, in which case they should switch
their choice of stimulus. The goal of our study is to decode
subjects’ behavioral choices on a subsequent trial on the basis of
neural activity on the preceding trial.

An important feature of this task is that its probabilistic nature
precludes subjects from inferring which stimulus is correct on the
basis of the outcome received on the previous trial alone,
because both correct and incorrect stimulus choices are associ-
ated with rewarding and punishing feedback. Rather, subjects
need to take into account the history of outcomes received to
make decisions about what choices to make in future. Further-
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Fig. 1. Task outline and classifier construction. (A) Reversal task setup.
Subjects chose one of two fractals, which on each trial were randomly placed
to the left or right of the fixation cross. The chosen stimulus is illuminated until
2 s after the trial onset. After a further 1 s, a reward (winning 25 cents) or
punishment (losing 25 cents) is delivered for 1s, with the total money earned
displayed at the top. The screen is then cleared, and a central fixation cross is
presented for 8 s before the next trial begins. One stimulus is designated the
correct stimulus, in that choosing that stimulus leads to a monetary reward on
70% of occasions and a monetary loss 30% of the time. The other stimulus is
"“incorrect,” in that choosing that stimulus leads to a reward 40% of the time
and a punishment 60% of the time. After subjects choose the correct stimulus
on four consecutive occasions, the contingencies reverse with a probability of
0.25 on each successive trial. Subjects have to infer that the reversal took place
and switch their choice, at which point the process is repeated. The last three
scansin a trial are used by our classifier to decode whether subjects will switch
their choice or not in the next trial. A canonical BOLD response elicited at the
time of reward receipt is shown (in green) to illustrate the time points in the
trial at which the hemodynamic response is sampled for decoding purposes. A
new trial was triggered every 12 s to ensure adequate separation of hemo-
dynamic signals related to choices on consecutive trials. The average of three
scans between the outcome of reward and the time of choice in the next trial
was used for decoding subjects’ behavioral choice in the next trial. These three
time points will not only contain activity from the decision itself (activity
taking place after the receipt of feedback, but before the next trial) but also
activity from the reward/punishment received in the current trial and activity
consequent to the choice made in the current trial. (B) The multivariate region
classifier used in this study is divided in two parts. The first extracts a repre-
sentative signal from each region of interest (Left) by averaging the brain
voxels within a region weighted by the voxels’ discriminability of the switch vs.
stay conditions. To avoid overfitting the fMRI data, we did not take into
consideration the correlations between voxels within a region of interest (Eq.
3). The second part of the classifier (Right) adds up the signal from each region,
weighted by the region’s importance in classifying the subject’s decision (Eq.
2). Weights are calculated by using a multivariate classifier that uses each
region’s decoding strength, and correlations between regions, to maximize
the accuracy of the classifier in decoding whether subjects are going to switch
or stay (see Discriminative Analysis).

more, the two stimuli are presented at random on the left or right
of the screen. Thus, on the previous trial, subjects do not know
in advance which of two possible motor responses are needed to
implement a particular decision until such time as the next trial
is triggered. Consequently, our fMRI signal cannot be driven
merely by trivial (i.e., non-decision-related) neural activity per-
taining to preparation of a specific motor response (choose left
vs. choose right) because such signals are not present before the
stimuli are shown. Therefore, the only signals in the brain
relevant to decoding choice are those pertaining to the subjects’
abstract decision of whether to maintain their current choice of
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stimulus or switch their choice to the alternative stimulus, or else
to those pertaining to the consequences of that decision (e.g., to
implement a switch in response set).

Nine regions of interest were specified a priori (see Materials
and Methods), based on previous literature implicating these
regions in reward-related decision making. These include the
medial and lateral orbitofrontal cortex and adjacent mPFC.
These regions have been shown to encode expected reward
values, as well as the reward value of outcomes (4, 16, 17).
Moreover, signals in these regions have been found to relate to
behavioral choice, whereby activity increases in mPFC on trials
when subjects maintain their current choices on subsequent trials
compared with when they switch (14).

Another region that we hypothesized might contain signals
relevant to behavioral choice is the ACC. This area is engaged
when subjects switch their choice of stimulus on reversal learning
tasks (13, 14), suggesting that signals there relate to behavioral
choice. A general role for this region in monitoring action-
outcome associations has recently been proposed (18). The
region has also been argued to mediate action selection under
situations involving conflict between competing responses (7)
and action selection between responses with different reward
contingencies (19). ACC has also been suggested to play a role
in monitoring errors in behavioral responding or even in decod-
ing when these errors might occur (20). What all of these
accounts of anterior cingulate function have in common is that
they posit an intervening role for this area between the process-
ing of a stimulus input and the generation of an appropriate
behavioral response, even though such accounts differ as to
precisely how this region contributes at this intermediate stage.
On these grounds, we hypothesized that neural signals in ACC
would be relevant for decoding subsequent behavioral choices.

Other regions we deemed relevant to decision making include
the insular cortex, which has been shown to respond during
uncertainty in action choice, as well as under situations involving
risk or ambiguity (21-23). Kuhnen and Knutson (24) showed that
neural activity in this region on a previous trial correlated with
whether subjects will make a risk-seeking or risk-averse choice
in a risky decision-making paradigm. We also include in our
regions of interest ventral striatum, where activity is linked to
errors in prediction of future reward, and dorsal striatum, which
is argued to mediate stimulus-response learning and goal-
directed action selection (25-28). Another region we included is
the amygdala, which has been implicated in learning of stimulus-
reward or stimulus-punisher associations (29-31).

We analyzed the contribution each region of interest gives to
the decoding of choice behavior in two ways. In the first, we study
each region individually and compare their discriminative power
for decoding behavioral choice. This is done by separating fMRI
signals in each region into spatially local and spatially global
signals, thus disambiguating results that correspond to classic
fMRI approaches (global signals), with results that can only be
obtained by using multivariate fMRI decoding techniques (local
signals). In the second approach, we make use of neural re-
sponses in all of our nine regions of interest to decode behavioral
decisions by using a multivariate analysis that optimally com-
bines information from the different brain regions (Fig. 1B). This
method enables us to obtain better decoding accuracy than by
using each region separately and to explore the relative contri-
butions of each of these different areas to the final behavioral
choice.

Results

Local vs. Global Signals Related to Behavioral Choice in Regions of
Interest. To address the contribution of global vs. local signals in
the encoding of behavioral choice, we separated the original
fMRI data into global signals with a spatial scale bigger than 8
mm and local signals with a spatial scale smaller than 8 mm (see
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Fig. 2. Global and local fMRI signals related to behavioral choice. (A) Here,
we show fMRI signals related to behavioral choice, i.e., whether subjects will
switch or maintain (stay) their choices on a subsequent trial. Voxel t-scores for
the discriminability between switch and stay trials is shown for two individual
subjects with data in its original form (Left) and then decomposed into a
globalspatial component (with spatial scale >8 mm; Center) and a local spatial
component (spatial scale <8 mm; Right). The ACCregion of interest is outlined
in white for reference. Red and yellow indicate increased responses on switch
compared with stay trials, whereas blue colors indicate stronger responses on
stay compared with switch trials (also see Sl Fig. 10). (B) Results from a group
random effects analysis across subjects conducted separately for the original
unsmoothed data, global data, and local data. Whereas global signals survive
at the random effects level (consistent with classical fMRI analyses), local
spatial signals do notsurvive at the group random effects level. Random effect
t-scores are shown with a threshold set at P < 0.2 for visualization.

Materials and Methods). Fig. 24 shows the statistical significance
of each voxel when discriminating between switch vs. stay
decisions in two subjects. Local signals (Fig. 24 Right) defined
this way do not survive classical fMRI analysis (Fig. 2B) and can
only be studied by using signal analysis techniques sensitive to
spatially distributed signals. We evaluated the degree to which
each individual region of interest could decode subjects’ subse-
quent choices when using either global or local signals (Fig. 34).
Each subject underwent four separate fMRI sessions (70 trials
each) during which they performed the decision-making task.
Four classifiers were trained and tested for each subject by using
four-fold cross validation, where each classifier is trained by
using three of the sessions (210 trials) and then tested on the
session that is left out (70 trials). Decoding accuracy derived
from global and local signals was comparable within each region
of interest, suggesting that local and global signals strongly
covary in each of the regions studied. There was a trend toward
a greater contribution of local signals compared with global
signals in overall decoding accuracy in ACC, although this did
not reach statistical significance (at P < 0.08).

Decoding Accuracy of Each Individual Region. When combining both
local and global signals and evaluating decoding accuracy for
each region alone, we find that each region can decode better
than chance whether a subject is going to switch or not (Fig. 3B),
with the highest accuracies being obtained by ACC (64%),
anterior insula (62%), and DLPFC (60%). To address whether
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Fig.3. lllustration of the decoding accuracy for subjects’ subsequent behav-

ioral choices for each individual region and combination across regions. (A)
Plot of average accuracies across subjects shown separately for local and
global spatial scales. Both spatial scales contain information that can be used
to decode subjects’ subsequent behavioral choice, in all of our regions of
interest. Notably, decoding accuracies are comparable at the local and global
scales within each region. (B) Plot of average across accuracy across subjects for
each region individually combining both local and global signals. (C) Results of
the hierarchical multiregion classifier analysis, averaged across subjects. An
ordering of regions was performed by starting with a classifier that only
contains the individual region with best overall accuracy (ACC; leftmost
column), and iteratively adding to this classifier the regions whose inclusion
increases the accuracy of the classifier the most (or decreases the least). Thus,
the second column shows the accuracy of a classifier containing ACC and
ventral striatum, the third column the accuracy of a classifier containing ACC,
ventral striatum, and mPFC, and so forth. The combination of the three
regions that provide the best decoding accuracy are highlighted in gray.
Addition of a fourth region (dorsal striatum) does not significantly increase
decoding accuracy. All error bars indicate standard errors of the mean. (D)
Decoding accuracy for the three region classifier shown separately for each
individual subject (also see SI Table 1).

the difference in decoding accuracy across regions is merely a
product of intrinsic differences in MR signal to noise in these
areas, we examined the signal-to-noise ratio in each region by
analyzing responses elicited by the main effect of receiving an
outcome compared with rest. All regions had comparable signal-
to-noise ratio to the main effect of outcome receipt [supporting
information (SI) Fig. 4], suggesting that accuracy differences are
unlikely to be accounted for by variations in intrinsic noise levels
between regions.

Combined Accuracy Across Multiple Regions. Next, we aimed to
determine whether a combination of specific brain regions would
provide better decoding accuracy than when just considering one
region alone. For this, we built regional classifiers using a
multivariate approach that takes into account interactions be-
tween multiple regions of interest when decoding decisions (see
Fig. 1B). This approach optimally combines both local and global
signals from each region of interest. To determine which subset
of regions to include in our classifier, we performed a hierar-
chical analysis whereby we started with the most accurate
individual region and then iteratively built multiregion classifiers
by adding one region at a time. At each step in this iterative
process, we added the region that increased the multiregion
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classifier’s accuracy the most (out of the remaining regions). Fig.
3C shows the results of this process. We found that out of our
nine regions of interest, a classifier with only three of these areas
(ACC, mPFC, and ventral striatum) achieved an overall decod-
ing accuracy of 67 = 2%, a significantly better decoding accuracy
of subject’s choice than that provided by each region alone (for
example, compared with ACC at P < 0.01). Accuracy increase
when adding regions is not only due to the signals related to
behavioral choice in each region but also depends on the degree
of statistical independence of noise across regions (SI Fig. 5).
Fig. 3D shows the average accuracy for each individual subject
when using our region-based classifier. Receiver operating char-
acteristic curves representing the average classifier accuracy
across a range of response thresholds are shown in SI Fig. 6 (see
also SI Table 2).

Insula and DLPFC, which on their own have high decoding
accuracy, were not selected in our hierarchical classifier, sug-
gesting that signals from these regions are better accounted for
by the other included regions. To account for the possibility that
another combination of regions could substitute equally well for
the regions included in the hierarchical classifier, we ran an
additional analysis whereby we tested the classification accuracy
of every possible combination of three regions (SI Fig. 7). Even
in this case, we still found that the specific combination of
regions identified from the hierarchical analysis were highest in
decoding accuracy compared with all other possible combina-
tions, supporting the conclusion that the specific regions we
identified are sufficient for decoding decisions up to the overall
decoding accuracy obtained in our study.

It should be noted that the approach we use here whereby
signals are combined across regions proved significantly better at
decoding behavioral decision making than alternative decoding
techniques that do not employ this multiregion approach (SI Fig.
8). However, when in the hierarchical analysis we added more
than four regions, the combined classifier’s accuracy gradually
decreased again (Fig. 3C), perhaps because of over-fitting of the
training data.

Decisions per Se or Detection of Rewarding vs. Punishing Outcomes?
A key question is whether the decoding accuracy of our regional
classifier is derived by detecting activity elicited by the decision
process and its consequences or merely reflects detection of the
sensory and affective consequences of receiving a rewarding or
punishing outcome on the preceding trial. To test this, we
restricted input to the classifier to only those trials on which
subjects received a punishing outcome. Even in this instance, the
classifier was able to decode subjects’ decisions to switch or stay
on the subsequent trial with 57 = 1% accuracy, significantly
better than chance (at P < 1078, across-subjects mean accuracy).
This finding suggests that our classifier is using information
relating to the behavioral decision itself and is not merely
discriminating between rewarding or punishing outcomes on the
immediately preceding trial. Additional analyses in support of
this conclusion are detailed in SI Methods.

Discussion

The results of this study demonstrate that it is possible to decode,
with a high degree of accuracy, reward-related decisions or the
consequence of those decisions (in terms of initiating a change
in response choice) in human subjects on the basis of neural
activity measured with fMRI before the specific physical action
involved is either planned or executed. Theoretical accounts of
goal-directed behavior differ in the degree to which decisions are
suggested to be linked to the specific action needed to carry them
out. According to one stimulus-driven view, decisions are com-
puted abstractly in terms of the specific stimulus or goal the
subject would like to attain (32, 33). In the case of the proba-
bilistic reversal task used here, this comes down to a choice
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between which of two different fractal stimuli to select. An
alternative approach is to propose that decisions are computed
by choosing between the set of available physical actions that are
required to attain a particular goal. Here, we measure neural
responses on a preceding trial before subjects are presented with
the explicit choice between two possible actions, and before
subjects know which specific action they will need to select to
implement that decision. The fact that these decisions can be
decoded before subjects are aware of the specific action that
needs to be performed to realize them (choose left or right
button) suggests that decision signals can be encoded in the brain
at an abstract level, independently of the actual physical action
with which they are ultimately linked (32). We should note,
however, that our decoding technique, which is based on activity
elicited at the time of receipt of the outcome on the preceding
trial, is likely to be picking up both the decision itself and the
consequence of the decision. In other words, once a decision to
switch is computed, a change in stimulus-response mapping is
going to be initiated, and the activity being detected in our
analysis may also reflect this additional process.

Our findings have important implications not only for under-
standing what types of decisions are computed but also when
these decisions are computed. In the context of the reversal task,
it is possible for a decision to be computed at any point in time
between receipt of the outcome on the previous trial and
implementation of the behavioral choice on the next. By using
multivariate fMRI techniques, we have been able to show that
subsequent decisions (or the consequences of those decisions)
can be decoded on the basis of signals present on the preceding
trials (after outcomes are received). This suggests that the
decision to switch or maintain current response set may be
initiated as soon as the information needed to compute the
decision is available, rather than being implemented only when
required on the subsequent trial.

In this study, we also separated fMRI signals with a global
spatial encoding from those with a local spatial encoding and
evaluated the information each contained for decoding behav-
ioral choice within each of our regions of interest. Global signals,
as we define them here, are relatively uniform spatially extended
clusters of activation within a given area (with a spatial scale of
>8 mm). Typically, these spatially smoothed signals are those
reported in conventional fMRI analyses, because they are es-
pecially likely to survive at the group level. However, recently it
has been shown that information about task processes can be
obtained from considering local spatially distributed variations
in voxel activity (9, 10). In the present case, we defined spatially
local signals as those with a spatial scale of <8 mm. In this study,
we showed that within each region of interest, local signals do
convey important information regarding behavioral choice over
and above that conveyed by the global signals. However, we did
not find strong evidence for a dissociation between regions in the
degree to which they were involved in encoding local and global
signals, except for a trend in ACC toward a greater role for this
region in encoding local as opposed to global signals. These
results suggests that at least in the context of the present reversal
learning task, the presence of global and local information
relevant to behavioral decision making strongly covaries within
areas. This is in contrast to results observed in the visual system,
where in some instances local signals convey information per-
taining to visual perception even when global signals do not.
Local fMRI signals in visual cortex have been argued to relate
to the columnar organization in this area of the brain. It should
be noted, however, that much less is known about the degree to
which columnar organization exists outside of visual cortical
areas, and hence, the underlying neural architecture that con-
tributes to local fMRI signals in other areas of the brain such as
the prefrontal cortex remains to be understood.
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We also used a multivariate analysis technique whereby the
degree to which neural signals in multiple brain regions con-
tribute to the decision process are evaluated simultaneously. This
approach has allowed us to efficiently recruit signals from
diverse brain regions to arrive at a better decoding accuracy for
subjects’ behavioral choice than would follow from considering
activity in any one region alone. As a consequence, our findings
suggest that reward-related decision processes might be better
understood as a product of computations performed across a
distributed network of brain regions, rather than being the
purview of any one single brain area.

Nevertheless, our results do suggest that some regions are
more important than others. When we compared the decoding
accuracy of classifiers incorporating information from all of our
regions of interest to the accuracy of classifiers using information
derived from different subsets of regions, we found that activity
in a specific subset of our regions of interest accounted for the
maximum accuracy of our classifier; namely, the ACC, mPFC,
and ventral striatum. Each of these regions has been identified
previously as playing a role in decision making and behavioral
choice on the basis of prior fMRI studies using traditional
statistical analysis techniques (13, 14, 27). Out of these, one
region in particular stood out as contributing the most: dorsal
ACC. This region has previously implicated in diverse cognitive
functions, including response conflict and error detection (7, 20).
However, a recent theoretical account has proposed a more
general role for this region in guiding action selection for reward
(13, 18, 19). Although not incompatible with response-conflict
or error-detection theories, our results are especially consistent
with this latter hypothesis, suggesting that this region is playing
a key role in implementing the behavioral decision itself.

Some of the regions featured in this study, such as DLPFC,
may contribute to task or cognitive-set switching more generally
(34-36) and are unlikely to be uniquely involved in reward-
related decision making. However, it is notable that DLPFC was
ultimately not selected in our combined classifier. Instead, the
regions that were selected have previously been specifically
implicated in reward-related learning and/or in implementing
changes in behavior as a consequence of such learning and not
in cognitive set-shifting per se (13, 14).

The present study demonstrates that it is possible to decode,
on a single-trial basis, abstract reward-related decisions in hu-
man subjects, in essence, by reading their decision before the
action is executed. Our findings are consistent with the proposal
that decision making is best thought of as an emergent property
of interactions between a distributed network of brain areas
rather than being computed in any one single brain region. Of
all of the regions we studied, we found that a subset of three
regions seemed to contain information that was sufficient to
decode behavioral decision making: ACC, mPFC, and ventral
striatum. Future studies are needed to determine whether these
regions contain information specifically required for probabilis-
tic reversal learning or whether other types of reward-related
decisions can also be decoded on the basis of information
contained in these areas.

Materials and Methods

Subjects. Eight healthy right-handed normal subjects participated
in this study (four female, mean age 27.6 * 5.6 years). The
subjects were preassessed to exclude those with a prior history
of neurological or psychiatric illness. All subjects gave informed
consent, and the study was approved by the Institute Review
Board at the California Institute of Technology. Subjects were
paid according to their performance in the task. Before scan-
ning, subjects were trained on three different versions of the
probabilistic reversal task, as in Hampton et al. (17), as described
in SI Methods.

Hampton and O’Doherty

Data Acquisition and Preprocessing. The functional imaging was
conducted by using a Siemens 3.0-T Trio MRI scanner to acquire
gradient echo T2* weighted echo-planar images with blood
oxygenation level-dependent (BOLD) contrast. To optimize
functional sensitivity in orbitofrontal cortex, we used a tilted
acquisition in an oblique orientation of 30° to the anterior—
posterior commissure line. Four sessions of 450 volumes each
(4 X 15 min) were collected in an interleaved-ascending manner.
The imaging parameters were as follows: echo time, 30 ms;
field-of-view, 192 mm; in-plane resolution and slice thickness, 3
mm; TR, 2 s. Whole-brain high-resolution T1-weighted struc-
tural scans (1 X 1 X 1 mm) were acquired from each subject and
co-registered with their mean echo-planar image. Image analysis
was performed by using SPM2 (Wellcome Department of Im-
aging Neuroscience, Institute of Neurology, London, U.K.). To
correct for subject motion, the images were realigned to the first
volume, spatially normalized to a standard T2* template with a
resampled voxel size of 3 mm. Trials were 12 s long and were time
locked to the start of the fMRI echo-planar scan sequence. This
was done to ensure that the scans from the previous trial used
to decode the subject’s decision in the next trial would not be
contaminated with BOLD activity arising from the choice itself
on the subsequent trial. A running high-pass filter (the mean
BOLD activity in the last 36 volumes, or 72 s, was subtracted
from the activity of the current volume) was also applied to the
data. This was used instead of the usual high-pass filtering (37)
so that BOLD activity in a volume would not be contaminated
with activity from the choice itself in subsequent volumes. In the
scanner, visual input was provided with Restech (Resonance
Technologies, Northridge, CA) goggles, and subjects used a
button box to choose a stimulus.

Global and Local Spatial Signals. To dissociate global and local
signals relevant to behavioral choice, we used the following
procedure. (i) The activity in each voxel was scaled such that the
variance of the BOLD activity over all trials in a session was
equalized across all voxels. (ii) The fMRI data were spatially
smoothed by using a Gaussian kernel with a full width at half
maximum of 8 mm, to capture global changes in signal. (iii) fMRI
data containing only locally distributed spatial signals were then
extracted by subtracting the smoothed fMRI data (obtained in
ii), from the non-spatially smoothed fMRI data (obtained in 7).
This procedure adopts the assumption that BOLD activity is a
function of the underlying neuronal activity that is identical
across neighboring voxels, except for a scaling constant. Fur-
thermore, i estimates and eliminates the scaling differences
across voxels, but errors in the estimation of this scaling could
lead to an incomplete dissociation between local and global
signals. The procedure also assumes that if local encodings exist,
they will have the same scaling characteristics across all brain
regions.

Region-of-Interest Specification. Nine regions of interest were
specified based on previous literature implicating these regions
in reward-related decision making, and delineated by anatomical
landmarks (SI Fig. 9). Regions of interest were specified by using
a series of spheres centered at specified (x, y, z) Montreal
Neurological Institute coordinates and with specified radii in
millimeters (see SI Table 3 for complete specification).

Discriminative Analysis. To optimally classify whether subjects will
switch or stay in a given trial, the fMRI voxel activity x (see Fig.
1A) is assigned to the action a; for which the posterior probability
p(aix) = p(x|a;)p(a;)/p(x) is maximal. Here, p(x|a;) is the distri-
bution of voxel activities given action a;. Assuming that the fMRI
activity x follows a multivariate normal distribution with the
same covariance matrix X, given either action, the posterior
probability whether to choose the switch action is
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where Xy, and Xy are the training sample means of the fMRI
activity for the switch and stay actions, respectively, and S is the
pooled covariance matrix estimated from the training sample.
This can be simplified to p(asw|x) = 1/(1 + ¢7¥), where

y =wlx — 6,

wi= (X — Xg)" SN [2]

Here, 0 is a threshold variable that groups all constants. Given
the brain voxel activity x in a single trial, choosing the action with
maximal posterior is equivalent to choosing the action for which
y > 0.

The classifier was built in two steps (see Fig. 1B). In the first, nine
regions of interest were specified (SI Fig. 9), and a unique signal
from each region was obtained by adding up the activities of all
voxels in that region, weighted by the voxels” discriminability:
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where o7 is the pooled voxel variance of voxel i. This approach
assumes that the noise is independent across voxels, a procedure
used to avoid overfitting the classifier to the fMRI data. The
second step utilizes the coalesced regional activities as input to
a full Gaussian discriminative classifier (Eq. 2), where weights
are assigned to each region.

Decoding accuracy is measured as the percentage of correctly
decoded behavioral choices. That is, the mean between correctly
decoded switch actions (number of correctly decoded switches
divided by the total number of switch actions) and correctly
decoded stay actions (number of correctly decoded stays divided
by the total number of stay actions). This measure takes into
account the fact that the number of times a subject switches or
stays can be different across sessions.
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