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SUMMARY

Different transcription factors have been shown to control the transition of naive T cells into T

helper 1 (Th1)/Th2 subsets. The T-cell-speci®c transcription factor GATA-3 is known to be

selectively expressed in murine developing Th2 cells and to exert a positive action on Th2-speci®c

cytokine production. Investigating GATA-3 gene regulation in human T cells we have found that

naive T cells highly express GATA-3, and during early T2 or T1 polarization, respectively, they

either maintain or quickly down-regulate expression. In developing T2 cells, as well as in committed

Th2 cell lines and clones, we found a positive correlation among GATA-3, interleukin (IL)-5 and

IL-4 gene expression kinetics, supporting the positive action of GATA-3 on Th2-speci®c cytokine

production. A possible relationship between GATA-3 gene expression and the down-regulation of

the IL-12 receptor (b2-chain; IL-12Rb2) gene was evident only in the early phases of T2 polarization

(within 24 hr), and not demonstrated at later times. During T-cell commitment the presence of IL-4

in the culture was essential to maintain or enhance GATA-3 transcription, while IL-12 was not

necessary for full repression of GATA-3. Finally, we showed selective GATA-3 up-regulation in

human Th2 cell lines and clones and the maintainance of a low basal level of GATA-3 expression in

Th1 cells upon activation.

INTRODUCTION

As they develop, T cells can become `polarized' and restricted

to producing either T1 or T2 patterns of cytokines.1 T-cell

subsets were ®rst described for helper T cells, which bear the

cell-surface marker CD4.2,3 Two mutually exclusive patterns of

cytokine gene expression were observed:3±5 T helper 1 (Th1)

cells secrete interleukin (IL)-2, interferon-c (IFN-c) and

tumour necrosis factor-b (TNF-b), which promote cellular

immune responses against intracellular pathogens and viruses

and are clinically associated with in¯ammation and auto-

immune diseases; Th2 cells produce IL-4, IL-5, IL-6, IL10 and

IL-13, which promote humoral immunity and are characteristic

of allergic responses and asthma.6±9 Subsequently, functionally

polarized responses were also shown in CD8 cytotoxic T cells

(Tc1/Tc2).10,11 In general, activated CD8+ T cells exhibit a Tc1

cytokine pro®le but they can express a Tc2 pro®le in some

pathological conditions.12

Both Th1 and Th2 cells derive from a common naive

precursor cell whose differentiation pathway is determined by a

number of factors, including cytokines, dose and form of

antigens, antigen-presenting cells, costimulators and the

genetic background of the responding host.6,9,13 Indeed, the

most effective inducer of differentiation is the cytokine

environment present during priming of the precursor cells:

IL-12, produced by activated macrophages and dendritic

cells14±16 and IL-4, whose initial source is elusive, play a

dominant role in driving the development of Th1 and Th2 cells,

respectively.17±19 Both cytokines promote the growth±differ-

entiation of their subset and inhibit the growth±differentiation

of the opposing subset; when both cytokines are present in the

same culture the IL-4 effect is predominant such that Th2 cells

develop in the presence of IL-12.18,20

Numerous studies have focused on identifying of speci®c

transcription factors that control the transition of naive T cells

to Th1±Th2 subsets.21,22 GATA-3, a zinc ®nger protein that

belongs to the GATA family of transcription factors23 was

shown to be selectively expressed in murine Th2, but not Th1

cells.24,25 GATA-3 was initially cloned as a T cell-speci®c

transcription factor that can bind to the T-cell receptor (TCR)

a and d genes.26,27 Subsequently, it was found to be critical in
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regulating the expression of several T-cell-speci®c genes in

addition to TCR and Th2 cytokine genes.28±30 Furthermore,

GATA-3 was found to be essential for normal embryonic

development as well as for the generation of the T-cell

lineage.31,32 While a GATA-3-positive action on Th2-speci®c

cytokine gene expression has been demonstrated,24,25,33,34 less

is known about how GATA-3 expression is regulated. It was

shown that IL-4 can induce early expression of GATA-3 in a

Stat-6-dependent manner and that IL-12 can inhibit GATA-3

expression in a Stat-4-dependent manner.35 Subsequently, it

was found that GATA-3 can exert a Stat-6-independent

autoactivation creating a feedback pathway stabilizing Th2

commitment.36

Up to date, little is known about GATA-3 gene expression

and regulation in human peripheral T-cell subsets. The only

indirect evidence that GATA-3 is expressed by human Th2 cells

derives from studies of human asthma, where Th2 cells are

known to play a critical role.37±39 Human GATA-3 mRNA

was shown to be signi®cantly increased in asthmatic patients40

as well as in patients with allergic rhinitis,41 and so poses this

transcription factor as a potential therapeutic target for the

treatment of asthma and allergy.41±43 For the ®rst time this

study analyses the expression kinetics of GATA-3 during early

human T-cell differentiation towards the T1 or T2 pathways

as well as in committed Th cells, and its correlation with

cytokine±receptor gene expression.

MATERIALS AND METHODS

Media and reagents

Medium RPMI-1640 supplemented with 2 mM L-glutamine, 1%

non-essential amino acids, 1% pyruvate, 50 mg/ml kanamycin

(Gibco BRL, Gaithersburg, MD), 5r10x5 2-mercaptoehtanol

(Sigma Chemical Co, St. Louis, MO), and 5% human serum

(EuroClone Ltd, Wetherby, West York, UK) was used

throughout. Human recombinant IL-2 and IL-4 were produced

in our laboratory by polymerase chain reaction (PCR) cloning

and expression in the myeloma expression system.44

Cells, T-cell lines and clones

Blood samples were obtained from healthy volunteers and

peripheral blood mononuclear cells (PBMC) were separated by

Ficoll-HyPaque (Amersham Pharmacia-Biotech AB, Uppsala,

Sweden) density gradient centrifugation. Cord blood T

lymphocytes were sorted using anti-CD3 conjugated magnetic

microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany)

following the manufacturer's instructions. The kinetics analysis

was performed on CD3+ cells stimulated with phytohaemag-

glutinin (PHA; 1 mg/ml; Gibco BRL) and 20 U/ml rIL-2 in

complete RPMI-1640 supplemented with 5% human serum

(EuroClone) under T1- ((2 ng/ml human rIL12; R&D Systems,

Inc., Minneapolis, MN) plus 200 ng/ml neutralizing mono-

clonal antibody (mAb) to human IL-4 (PharMingen, San

Diego, CA)), or T2-polarizing conditions (200 U/ml human

rIL-4 plus 2.5 mg/ml neutralizing mAb to human IL-12 (R&D

Systems)) or in the absence of exogenous cytokines (PHA-line).

After 1 day of polarization aliquots of the cells were washed,

plated in opposing culture conditions and harvested after a

further 24 and 48 hr.

Cell lines were generated from sorted CD4+ naive T cells,

by stimulating the cells with PHA (1 mg/ml; Gibco), irradiated

allogeneic PBMC (3000 rad from a 137Cs source) and rIL2

(40 U/ml) under Th1- or Th2-polarizing conditions. The

cultures were weekly restimulated in the same polarizing

conditions and analysed after a further 10 days. T-cell blasts

were cloned by limiting dilution and maintained by periodic

restimulation with PHA, irradiated allogeneic PBMC and rIL-

2 as previously described.45

In some experiments the cells were activated for 4 hr with

10x7
M phorbol 12-myristate 13-acetate (PMA) plus 1 mg/ml

ionomycin (Sigma; PI-activation), in others they were activated

with anti-CD3 mAb (TR66; immunoglobulin G1, IgG1)-

coated plates (5 mg/ml) and harvested at the indicated time

points.

Cytokine detection at the single cell level

T cells were stimulated with 10x7
M PMA plus 1 mg/ml

ionomycin (Sigma) for 4 hr. Brefeldin A (10 mg/ml, Sigma)

was added during the last 2 hr. Cells were ®xed with 2%

paraformaldehyde, permeabilized with phosphate-buffered

saline containing fetal calf serum (FCS 1%) and saponin

(0.5%) and stained with ¯uoroscein isothiocyanate (FITC)-

labelled anti-IFN-c (IgG1), PE-labelled anti-IL-4 (IgG2b)

(Becton Dickinson, Mountain View, CA), FITC-labelled

anti-IL-5 (IgG2a), and PE-labelled anti-IL-10 (IgG1; Bio-

Source International, Camarillo, CA)

Fluorescence-activated cell sorting (FACS) analysis

Indirect double-staining was performed using anti-human-

CD3 (OKT3, IgG2a), anti-human-CD4 (6D10, IgG1), anti-

CD45RA (IgG1; Southern Biotechnology Associates, Birming-

ham, AL) and anti-CD45RO (IgG2a; Southern Biotechnology

Associates) mAbs. Secondary antibodies were PE-labelled goat

anti-mouse IgG2a and FITC-labelled goat anti-mouse IgG1

(Southern Biotechnology Associates). The stained cells were

analysed by ¯ow-cytometry on a FACScalibur (Becton

Dickinson) with the CELLQUEST software.

RNA extraction, reverse transcription (RT)±PCR and

oligotyping

Total RNA was extracted from T cells using TRIZOL (Gibco)

following the manufacturer's instructions. First-strand cDNA

was synthesized using oligo d(T) and Moloney murine

leukaemia virus (MMLV)±RT (Promega Corp., Madison,

WI) in 100 ml ®nal volume. Serial dilutions of template cDNAs

were subjected to low cycle-PCR using b-actin-speci®c primers

b-actin 5k, ACACTGTGCCCATCTACGAGGGG; b-actin 3k,
ATGATGGAGTTGAAGGTAGTTTCGTGGAT. Amount

of normalized templates were used in subsequent gene-speci®c

PCR reactions. PCR cycles were always kept in the linear

portion of the ampli®cation curve. Speci®c primers were

as follows: GATA-3 forward, TGTCTGCAGCCAGGA-

GAGC; GATA-3 reverse, ATGCATCAAACAACTG-

TGGCCA; IFN-c forward, TGTTACTGCCAGGACCCAT;

IFN-c reverse, GCGTTGGACATTCAAGTCAG; IL-12Rb2

forward, AACATCACAGGACACACCTCCT; IL-12Rb2

reverse, CCTTGCAGACAAAATTCCCTCTC; IL-4 for-

ward, ACAAGTGCGATATCACCTTAC; IL-4 reverse,

CAACGTACTCTGGTTGGCT; IL-5 forward, GTGAAA-

GAGACCTTGGCACTG; IL-5 reverse, GGCAAAGTGT-

CAGTATGCCTG.
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GATA-3 PCR products were alkali-blotted onto Hybond-

N+ membrane (Amersham, Arlington Heights, IL). Filters

were prehybridized in BLOTTO solution (6r sodium saline

citrate (SSC), 1% milk, 5 mM ethylenediamine tetra-acetic acid

(EDTA), 0.1% sodium dodecyl sulphate (SDS)) at 42u for 3 hr

and hybridized overnight at 42u with the 32P-labelled forward

oligonucleotide.

RESULTS

Kinetics of human GATA-3 and cytokine±receptor gene

expression during early T1 and T2 differentiation

We puri®ed human neonatal T lymphocytes by sorting cord

blood cells with anti-CD3 mAb-conjugated magnetic beads;

the cells obtained were >99% CD3+ and they showed a naive

phenotype (>97% CD45RA+, not shown). GATA-3 and

cytokine±receptor gene expression kinetics were analysed by

semiquantitative RT±PCR in these naive T cells stimulated

under T1 and T2 polarizing conditions (IL-12 and anti-IL-

4 mAb for T1; IL-4 and anti-IL-12 mAb for T2) (Fig. 1). To

allow comparison between mRNAs transcribed at different

time points, serial dilutions of template cDNAs were subjected

to low-cycle PCR using b-actin-speci®c primers. This pilot

experiment allowed us to normalize the templates to be used in

subsequent gene-speci®c PCR reactions (not shown). PCR

cycles were always kept in the linear portion of the

ampli®cation curve.

Naive T cells transcribed GATA-3 ef®ciently and this high

expression level was maintained during T2 polarizing condi-

tions with a slight increase at 24 hr. During T1 commitment, a

drastic GATA-3 down-regulation was observed as early as

after 12 hr of polarization. At 24 hr GATA-3 mRNA

remained very low and returned to basal levels at 48 hr. As

control, we cultured sorted naive T cells in the absence of

exogenous cytokines (PHA-line). GATA-3 gene transcription

in these cells appeared to be similar to the T1 line, with a rapid

decrease at 12 hr and a trend to restore basal GATA-3

transcription levels at the following time points.

After 24 hr of polarization, part of the cells were washed

and plated in opposing stimulation conditions (IL-12 and anti-

IL-4 mAb for T2 cells; IL4 and anti-IL-12 mAb for T1 cells).

GATA-3 mRNA expression was then analysed after a further

24 and 48 hr of culturing. Inversion of the polarizing

conditions caused a strong GATA-3 transcription in the

`T1-reverted' cells, comparable to that found in T2 cells; in the

`T2-reverted' cells GATA-3 transcription was not lost.

We next analysed the expression kinetics of T2-(IL-4 and

IL-5) and T1-(IFN-c and IL-12Rb2) speci®c cytokine±receptor

genes. Transcription of these four genes was undetectable in

sorted naive T cells. In T2-polarized cells, the kinetics of IL-4

and IL-5 mRNA expression correlated with that of GATA-3,

peaking at 24 hr. IFN-c gene expression could not be observed,

while an IL-12Rb2-speci®c signal was evidenced at 72 hr.

Inversion of polarizing conditions at 24 hr of T2 commitment

induced a clear increase of IL-12Rb2 and IFN-c gene

expression. T1 polarizing cells showed strong IL-12Rb2 and

IFN-c gene expression already after 12 hr of culture and

transcription of both genes was maintained at every time point,

peaking at 48 hr. T1 `reverted' cells showed slightly diminished

IFN-c and IL-12Rb2 transcription levels and they expressed

both IL-4 and IL-5 mRNAs. Surprisingly, the IL-4 expression

level was higher compared to that in T2-polarized cells.

Basal expression of human GATA-3 in resting, committed Th

cell lines and its differential regulation in activated cells

To examine transcription of GATA-3 gene in human

committed Th cells, we generated Th1 and Th2 cell lines from

CD4+ naive cells by three-round stimulation under polarizing

conditions. Purity of the cell lines was assessed by analysing IL-

4 and IFN-c production at the single cell level by intracellular

staining (Fig. 2a). Resting (at least 20 days after the last

stimulation) and PI-activated cells were harvested and

transcription of the ®ve speci®c genes tested by RT±PCR

(Fig. 2b).

Both Th1 and Th2 resting cell lines showed a basal level of

GATA-3 gene expression. When we activated the lines, Th2

cells up-regulated GATA-3 expression as well as the speci®c

cytokine genes IL-4 and IL-5, while Th1 cells maintained the

same basal levels of GATA-3 expression and up-regulated

IFN-c mRNA. IL-12Rb2 gene was highly transcribed by both

resting and activated Th1 cells, but unexpectedly it was also

expressed by Th2 cells following activation. To test whether the
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Figure 1. Kinetics of gene expression during early human T1/T2

commitment. Cord blood derived, human naive T cells were cultured in

T2 and T1 polarizing conditions (IL-4 and anti-IL-12 mAb for T2 cells;

IL-12 and anti-IL-4 mAb for T1 cells), and GATA-3, IL-4, IL-5, IFN-c

and IL-12Rb2 gene expression was analysed by RT±PCR at different

time points (12, 24, 48, 72 hr). After 24 hr of polarization, part of the

polarizing cells were washed, plated in the opposite culture conditions

(IL-12 and anti-IL-4 mAb for T2 cells; IL-4 and anti-IL-12 mAb for T1

cells), and analysed after further 24 and 48 hr. As control, we plated

naive T cells in the absence of exogenous cytokines (PHA-line). The

different templates were normalized through b-actin RT±PCR experi-

ments using serially diluted cDNAs. In the lower part of the ®gure the

b-actin RT±PCR (30 cycles) with the normalized templates is shown.
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IL-12Rb2 mRNA could correspond to functional IL-12R

expressed on the surface of Th2 cells, IL-12 responsiveness

was evaluated by culturing Th2 cells in the presence of 25 ng/ml

IL-12 for 6 and 19 hr. IL-12-induced IFN-c production was

assessed by intracellular staining (Fig. 3). Following IL-12

treatment, we found a two-fold increase in the percentage of

cells coproducing IFN-c and IL-4 (from 15% before IL-12

treatment to 31% after IL-12 addition), suggesting the presence

of an IL-12-responsive population within the line. Interest-

ingly, we noticed that the percentages of both IL-4 producing

(Th2-polarized cells, 50%) and IFN-c producing (contaminat-

ing cells, 7%) cells inside the line did not change following IL-12

treatment. The increase of IFN-c and IL-4 coproducing cells,

instead, corresponded to a decrease of the IFN-c±/IL-4± cell

population.

Preferential expression and selective GATA-3 up-regulation in

human Th2 clones

Th1 and Th2 clones were derived by limiting dilution from

human CD4+ Th1/Th2 polarized cell lines. Seven days after

stimulation with IL-2 and irradiated feeder cells, cytokine

production (IL-4, IFN-c, IL-10, IL-5) was checked by

intracellular staining while the GATA-3 and cytokine±receptor

gene expression were examined by RT±PCR in parallel. To

better display the differential GATA-3 expression, few PCR

cycles were done and the products blotted and hybridized

with a GATA-3-speci®c, internal oligonucleotide (PCR-

oligotyping).

The two representative clones shown in Fig. 4 presented a

highly speci®c cytokine production at the single cell level

(Fig. 4a) and the molecular analysis (Fig. 4b) evidenced a

strong GATA-3 transcription in the Th2 clone (N5.7) which

corresponded to high IL-4 and IL-5 mRNA levels. On the

contrary, very low GATA-3 expression was detectable in the

Th1 clone (N1.20). Th1 cells highly transcribed IFN-c and

IL-12Rb2 genes, while IL-4 and IL-5 gene expression was

not evident.

Next, we analysed the kinetics of GATA-3 gene expression

following anti-CD3 activation (Fig. 5). The weak basal GATA-

3 transcription level found in the resting Th1 clone (C21.9.4)

was maintained during the whole time-course; the resting Th2
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in medium without IL-2, for 6 and 19 hr. During the last 4 hr of incubation, the cells were PI-stimulated and cytokine production
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Figure 2. Expression of GATA-3 gene in human committed Th1 and Th2 cell lines. Human CD4+ naive T cells were polarized by
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cytokine±receptor gene transcription was tested by RT±PCR. b-actin PCR (30 cycles) is shown as a control of the relative amount of

cDNA loaded in the different lanes.
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cells (C22.5.4) presented a higher GATA-3 gene expression and

its transcription increased following activation with a peak at

6 hr, which corresponded to the IL-4 and IL-5 kinetics (not

shown). The strong GATA-3 up-regulation in the Th2 clone

and the maintenance of basal levels in the Th1 clone were

further con®rmed following 4 hr of PI stimulation.

DISCUSSION

In this study we analyse the expression of GATA-3, a

multifunctional transcription factor essential for T-cell devel-

opment and Th differentiation, in human naive T cells, during

early T1/T2 commitment and in Th polarized cells. We show

high amounts of GATA-3 mRNA in naive T cells and

maintenance of this high transcription level in T2 polarizing

cells, with a peak of transcription at 24 hr. On the contrary,

during T1 commitment we found a drastic and rapid GATA-3

down-regulation and a trend to restore the basal transcription

level at 48 hr of polarization. Our data are in accordance with

the murine model, where GATA-3 gene was strongly up-

regulated in Th2 conditions with a peak of expression at 48 hr,

while it decreased during the Th1 commitment.24,25,35 How-

ever, low levels of GATA-3 gene expression were described in

murine naive T cells, at variance with the high transcription

level we found in human cord blood cells. In long-term

polarized Th cell lines and clones, a basal expression of GATA-

3 gene was always detected in resting cells. GATA-3

transcription appeared to be differentially regulated only after

activation: while Th2 cells strongly up-regulated GATA-3

transcription, Th1 cells maintained basal expression.

We found a peak of IL-4 and IL-5 mRNAs by 24 hr

following polarization, concomitantly with the highest expres-

sion of GATA-3. Similarly, GATA-3 correlated with IL-4 and

IL-5 gene up-regulation in activated Th2 cell lines and clones.

Thus, the known positive action of GATA-3 gene on

Th2-speci®c cytokine production is re¯ected by their expres-

sion kinetics. While a direct interaction of GATA-3 with the

IL-5 promoter was demonstrated,24,46 a similar direct role for

GATA-3 in IL-4 promoter activation was not evident.34

However, a GATA-3-dependent enhancer activity has been

found in several regions surrounding the IL-4 gene.33 Because

in murine T cells, the Th1±Th2 commitment appears to occur

between 24 and 48 hr after the initial T-cell activation,47 we

decided to revert the T1 and T2 phenotype after 24 hr of
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Figure 5. Selective up-regulation of GATA-3 gene in human Th2

clones after TCR activation. One human Th1 (C21.9.4) and one Th2

(C22.5.4) clones were activated either with anti-CD3 mAb (5 mg/ml)

coated on plate or with PI. To analyse the GATA-3 expression kinetics,

the cells were harvested at different time points (2, 6, 12 hr) after anti-

CD3 activation. GATA-3 and cytokine±receptor gene expression were

examined by RT±PCR. b-actin PCR (30 cycles) is shown as control.
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polarizing conditions. Interestingly, T1 cells were still able to

up-regulate GATA-3 upon addition of IL-4 in the culture and

this expression corresponded to high IL-4 and IL-5 transcrip-

tion. These data provide further evidence for the positive

correlation between GATA-3 and Th2-speci®c cytokine gene

expression. Recently, Lee et al.48 showed that committed

Th1 cells expressing ectopic GATA-3 could change their

phenotype by inducing Th2 cytokine expression and chromatin

remodelling.

The IL-12Rb2 chain is lost in Th2 cells but maintained in

Th1 cells.49,50 GATA-3 was proposed as an inhibitory factor of

IL-12Rb2 expression and therefore as a possible blocking agent

of the IL-12-induced responses.35 If an inhibitory in¯uence of

GATA-3 on IL-12Rb2 transcription exists, from our data it

appeared to be effective only before 24 hr of polarization. In

early human T2 commitment (12 hr), strong expression of

GATA-3 corresponded to a complete block of IL-12Rb2

transcription while after 24 hr of polarization, the presence of

GATA-3 transcription did not inhibit IL-12Rb2 gene expres-

sion upon IL-12 addition (T2 `reverted' cells). Moreover, after

24 hr of polarization the induced GATA-3 expression in T1

`reverted' cells did not cause loss of IL-12Rb2 transcription.

These data suggest that the major role of GATA-3 at the

initial phases of T-cell commitment might be to in¯uence

the polarization by inhibiting IL-12 responsiveness, while in

later steps, may be mainly to enhance Th2 cytokine production.

This could explain why the strong GATA-3 transcription

we observed at 48 hr in T1 `reverted' cells correlated with

a very high IL-4 expression, which exceeded that found in T2

cells, but not with IL-12Rb2 inhibition. We also observed

transcription of IL-12Rb2 in a long-term-polarized activated

Th2 cell line and we demonstrated the presence of an IL-12

responsive population inside the line. It is possible that the

IL-12-responsive population originated from a fraction of

uncommitted cells. However, the alternative possibility that

some IL-4-producing cells can up-regulate IL-12Rb2 and

modify their phenotype towards Th1 pathway cannot be

ruled out.

In murine developing Th1 cells it was found that the ectopic

expression of GATA-3 induces Th2-speci®c cytokines and

suppresses IFN-c production in part by down-regulating IL-

12Rb2.25,35,51 Although we observed a slightly diminished

IFN-c production in T1 `reverted' cells, this could suggest a

repressing activity of GATA-3 on IFN-c promoter, we favour

the possibility that the IFN-c decrease was simply due to the

absence of IL-12 in the culture medium. Accordingly, Ouyang

et al.35 showed that GATA-3 repressed IFN-c only when

continuously expressed during initial naive T-cell differentia-

tion but not when reintroduced into Th1 cells after IL-

12-induced Th1 development. Altogether, these data indicate

that GATA-3 behaves more likely as a regulator in early steps

of Th commitment, rather then as a repressor of the IFN-c
promoter.

It is well known that IL-12 and IL-4 play a dominant role in

driving the development of Th1 and Th2 cells, respectively,17±19

and that IL-4 can induce early expression of GATA-3 in a

Stat6-dependent manner.35 Accordingly with the results

obtained for murine T cells,25,35 here we show that during

the early phases of polarization the presence of IL-4 in the

culture was essential to maintain or enhance human GATA-3

transcription. First, we observed that human naive T cells

cultured in the absence of exogenous cytokines (PHA-line)

showed a rapid decrease of GATA-3 transcription and

maintained low levels of GATA-3 gene expression at the

following time points, analogously to that observed in T1 cells.

Second, the ®nding that T1 cells after 24 hr of polarization

were still able to up-regulate GATA-3 upon addition of IL-4 in

the culture strongly supports the importance of IL-4 on

GATA-3 transcription at early stages of T-cell commitment. In

long-term-polarized Th2 cells, we observed an IL-4-indepen-

dent GATA-3 up-regulation, and this might indicate that

GATA-3 could have an active role in the maintainance of the

Th2 phenotype that was demonstrated to become increasingly

stable over time.50,52 A positive GATA-3 autoactivation was

observed in Stat6-de®cient T cells, suggesting a role for GATA-

3 in maintaining cell fate commitment.36

An important and still debated point is the in¯uence of IL-

12 on GATA-3 transcription. Requirement of IL-12 for full

repression of GATA-3 was reported in developing naive

T cells.35 On the contrary, our data indicated that IL-12 was

not necessary to down-regulate GATA-3 whose expression

naturally decreased in the absence of exogenous cytokines in

culture (PHA-line). During T1 polarization, the presence of IL-

12 had the only effect of delaying the restoration of the basal

GATA-3 expression level (at 48 hr instead of 24 hr) when

compared to the PHA-line. Moreover, we observed that the

addition of IL-12 and anti-IL-4 after 24 hr of T2 polarization

could not block GATA-3 transcription. In agreement with this

view, a recent work of Nishikomori et al.53 showed that in

IL-12Rb2 transgenic Th2 cells, the addition of IL-12 did not

shut down the expression of GATA-3 mRNA previously

induced by IL-4.

The demonstration of a selective GATA-3 expression along

the human Th2 pathway and of its strong up-regulation in

Th2-polarized cells following activation could contribute to

clarify the origin of GATA-3 overexpression in asthma.40,41

This is most probably due to locally activated Th2 cells, as also

supported by the observation that the number of local T

lymphocytes did not differ between normal and asthmatic

airways.40,54
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