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CR2-mediated activation of the complement alternative pathway results in
formation of membrane attack complexes on human B lymphocytes
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SUMMARY

Normal human B lymphocytes activate the alternative pathway of complement via complement
receptor type 2 (CR2, CD21), that binds hydrolysed C3 (iC3) and thereby promotes the formation
of a membrane-bound C3 convertase. We have investigated whether this might lead to the
generation of a C5 convertase and consequent formation of membrane attack complexes (MAC).
Deposition of C3 fragments and MAC was assessed on human peripheral B lymphocytes in the
presence of 30% autologous serum containing 4-4 mm MgCl,/20 mm EGTA, which abrogates the
classical pathway of complement without affecting the alternative pathway. Blockade of the CR2
ligand-binding site with the monoclonal antibody FE8 resulted in 56 +13% and 71 + 9% inhibition
of the C3-fragment and MAC deposition, respectively, whereas the monoclonal antibody HB135,
directed against an irrelevant CR2 epitope, had no effect. Blockade of the CR1 binding site with the
monoclonal antibody 3D9 also resulted in a minor reduction in MAC deposition, while FE§ and
3D9, in combination, markedly reduced deposition of both C3 fragments (91 +5%) and C9
(95+3%). The kinetics of C3-fragment and MAC deposition, as well as the dependence of both
processes on CR2, indicate that MAC formation is a consequence of alternative pathway activation.

INTRODUCTION

Normal human B lymphocytes have been shown to activate
the alternative pathway of the complement cascade, resulting
in the deposition of C3 fragments on the B-cell surface.'?
The activation is mediated by complement receptor type 2
(CR2, CD21), which binds the hydrolysed form of C3 (iC3)
and thereby promotes the formation of a membrane-associated
C3 convertase, consisting of iC3, Bb and properdin.* CR2
also serves as the preferred acceptor site for C3b on the B-cell
surface.>* C3b deposited at acceptor sites on the B-cell
membrane is subsequently degraded to iC3b and thereafter
to C3dg, with B-cell complement receptor type 1 (CR1, CD35)
acting as co-factor in both cleavage processes.” These
membrane-bound C3dg fragments can then act as a ligand
for interaction with CR2 expressed either on the same cell
or on other CR2-positive cells, i.e. B cells, follicular dendritic
cells,® or activated T cells.”
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The biological implications of this activation remain poorly
defined. Early studies with Epstein—Barr virus-transformed
lymphoblastoid cell lines indicated that C3-fragment deposi-
tion rendered these cells more susceptible to cell-mediated
cytolysis, presumably involving interaction of deposited
iC3b on the target cells with complement receptor type 3
(CR3, CD11b/CD18) on the effector cells.® However, since
the majority of these cell lines lack CR1® and thereby are
unable to protect themselves by converting iC3b to C3dg,’
the relevance of this finding for normal CR 1-expressing B cells
remains questionable. More recent studies, in the murine
system, suggest that C3dg deposited on B cells, and other
antigen-presenting cells, may promote the response to soluble
antigen by enhancing interactions between the cells involved
in the response.'® No such role has yet been demonstrated in
humans.

A further possibility requiring investigation is that forma-
tion of a C3 convertase in the ligand-binding site of CR2 may
be succeeded by the generation of a C5 convertase, either at the
same site or on C3b deposited at secondary sites on the cell
surface. This would potentiate the formation of membrane
attack complexes (MAC) on the B cells. In the present study,
we demonstrate deposition of MAC on B cells, following
alternative pathway activation, and report on the influence of
the complement receptors, CR1 and CR2, on this process.
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MATERIALS AND METHODS

Cells and serum

Peripheral blood mononuclear cells (PBMC) were isolated
by the centrifugation, over Lymphoprep (Nycomed, Oslo,
Norway), of blood drawn from healthy consenting donors
into sodium citrate-containing tubes (Meda, Copenhagen,
Denmark). Serum was harvested from the same donors by
collecting blood in anticoagulant-free tubes, which were held
for 1 hr at room temperature, before centrifugation at 400 g
for 5 min.

Complement activation

The PBMC were washed twice in 10 ml veronal buffer or
RPMI-1640, suspended in low-absorbing polypropylene tubes
(Life Technologies, Paisley, UK), at a density of 10° cells per
ml, in veronal buffer or RPMI-1640 containing 30% v/v
autologous serum and 20 mm ethyleneglycoltetraacetic acid
(EGTA)/4-4 mm MgCl, or 20 mm ethylenediaminetetraacetic
acid (EDTA), and incubated at 37°C for the indicated times.
The cells were then washed once in phosphate-buffered saline
containing 0-5% bovine serum albumin.

Experiments with a C8-deficient serum (kindly donated
by Dr Claus Koch, Statens Seruminstitut, Copenhagen,
Denmark) were performed with PBMC from a blood group
O donor, using autologous serum and sera from three other
donors as positive controls.

Antibodies against complement receptors

The binding-site-blocking anti-CR2 monoclonal antibody
(mAb) FE8 [immunoglobulin G1 (IgGl)] was prepared
as described!" and used for receptor-blockade at a concen-
tration of 1 pg/ml. The mAb 3D9 (IgGl), which blocks
the C3b binding site of CRI,'> was a kind gift from
Dr J. O’Shea (Frederick Cancer Research and Development
Center, Frederick, MD), and was used either singly or in
combination with FE8 at a final concentration of 1 pg/ml.
HB135 (IgG2a, anti-CR2, non-function-blocking, 1 pg/ml) and
HB8592 (IgGl, anti-CR1, non-function-blocking, 1 pg/ml)
were purchased from the American Type Culture Collection
(Manassas, VA) and served as controls. The antibodies were
added to the cell samples prior to mixture with serum and
were present during the entire incubation period.

Measurement of C3 and C9 complement fragment deposition
on PBMC
After incubation with serum, the cells were incubated for
1 hr at room temperature with either (i) fluorescein isothio-
cyanate (FITC)-conjugated polyclonal rabbit anti-human
C3d (DAKO, Copenhagen, Denmark); (ii) a monoclonal
murine anti-C3d IgGl antibody (Quidel Corporation, San
Diego, CA), conjugated to a FITC:antibody ratio of 4-0:1
in this laboratory; or (iii) the anti-human C9 mAb E11'
directed against a neoepitope only exposed on C9 associated
with MAC (kindly donated by Dr T. E. Mollnes, Nordland
Central Hospital, Bode, Norway), which was conjugated to
a FITC:antibody ratio of 4:3:1. B cells, in the PBMC
preparations, were labelled concurrently by inclusion of
phycoerythrin-conjugated anti-CD19 in the incubation.
After one further wash, the cells were suspended in
Sheath-buffer (Becton-Dickinson, Copenhagen, Denmark)
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and analysed by flow cytometry, using a FACScalibur
cytometer (Becton Dickinson) with CELLQUEST software. B cells
were identified by a combination of morphological (forward
and side scatter) and fluorescence gating. Specific C3-fragment
and C9 deposition on B cells was measured as the mean
fluorescence intensity (MFI) of CDI19-positive cells minus
the MFI for CD19-negative lymphocytes and is given as
‘Net MFT".

Statistics

The Student’s z-test was used to calculate P-values
and confidence intervals for comparison of the means in
C3-fragment and C9 deposition on B cells.

RESULTS
Demonstration of C9 deposition

In view of our previous demonstration that CR2 on normal
peripheral B cells activates the alternative pathway of com-
plement,' resulting in the deposition of C3 fragments at
secondary acceptor sites, we wished to establish whether this
activation also led to the formation of MAC in the B-cell
membrane. To this end, PBMC were incubated for 90 min
with 30% autologous serum in veronal buffer containing
4-4 mm MgCl, and 20 mm EGTA, to block classical pathway
contribution, and were then probed with FITC-labelled
anti-C9 mAb Ell. In parallel, FITC-conjugated polyclonal
rabbit anti-human C3d was used to assess C3-fragment deposi-
tion. As a negative control, PBMC incubated with autologous
serum in the presence of 20 mm EDTA were treated alike.

A significant level of C9 deposition was observed on
B cells but not other lymphocytes in the preparation, while
little or no deposition was seen when EDTA was present
(Fig. 1, lower panel). A similar pattern was observed for
C3-fragment deposition (Fig. 1, upper panel), although the
background values in EDTA-serum or RPMI-1640 were some-
what higher, reflecting the presence of in vivo-deposited C3d
fragments on the B cells.!

Kinetics of alternative-pathway-mediated C3-fragment and
C9 deposition on B cells

In order to compare the kinetics of the two processes, PBMC
were incubated for various times with autologous serum in
RPMI-1640 containing Mg/EGTA or EDTA and then probed
with antibodies against C3d or C9. The deposition of C3 frag-
ments occurred rapidly, reaching a plateau value after about
30 min (Fig. 2) while incorporation of C9 into the B-cell
membrane was delayed in relation to that for C3 fragments,
consistent with dependence of MAC formation upon the
activation of C3. Furthermore, the C9 deposition failed to
reach a plateau value during the observed time-span (Fig. 2).
On this basis, a 90-min incubation period was chosen for all
further studies.

Dependency of C9 incorporation on C8

In order to confirm that the deposited C9 was in the form of a
MAC, PBMC from a blood group O donor were incubated
with either autologous serum, sera from three healthy donors,
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or serum from a C8-deficient individual. Although the extent
of C3-fragment deposition with C8-deficient serum was only
19-7% of that seen with autologous serum and considerably
lower than that seen with the other normal donor sera
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Figure 1. Deposition of C3 fragments and C9 on peripheral B cells.
Histograms displaying the fluorescence intensity of B cells stained with
FITC-conjugated polyclonal anti-human C3d (upper panel) and the
anti-C9 mAb, El1, following incubation for 90 min in normal human
serum (NHS)/Mg/EGTA (dark grey peak), NHS/EDTA (black peak)
or RPMI-1640 (light grey peak). The white peak depicts non-B lympho-
cytes in the PBMC preparation incubated in NHS/Mg/EGTA, which
was used in all subsequent experiments as the background value.
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Figure 2. The kinetics of AP-mediated C3-fragment deposition and C9
incorporation. The mean fluorescence intensity (MFI) of B cells stained
with polyclonal anti-C3d () or mAb E11 (M) following incubation
for various times with normal human serum (NHS)/Mg/EGTA
(solid lines) or NHS/EDTA (broken lines). The data shown are for
a representative experiment from the four performed.

(36:1+2:9%), it was nevertheless appreciable (see Table 1).
On the other hand, no C9 deposition was observed with
the C8-deficient serum while, with the normal donor sera, C9
incorporation was roughly proportional to the C3-fragment
deposition capacity (Table 1).

The role of CR1 and CR2 in promoting C3-fragment
deposition and MAC formation following activation
via the alternative pathway

Since CR2 has previously been shown to be instrumental in the
alternative-pathway-mediated C activation process that leads
to C3-fragment deposition on B cells,'> we chose to investigate
whether the formation of MAC was equally dependent on
the function of this receptor. The PBMC suspensions were
incubated with the CR2-blocking mAb FE8, while the non-
blocking anti-CR2 mAb HBI135 was employed as a negative
control. Whereas HB135 did not affect either C3-fragment
deposition or the formation of MAC on B cells, a marked
inhibition of both processes (48:6+20:6 and 62-:9+421-9%
inhibition from six experiments, respectively) was seen with
FES8 (Fig. 3).

Furthermore, the CR1-blocking mAb 3D9, alone, had no
significant influence on C3-fragment deposition, but mediated
a slight, though significant, decrease in the deposition of
MAC (18-8+15-3%, n=6, P<0-05). No effect on either pro-
cess was observed with the control anti-CR1 mAb HB8592.
Used in combination with FE8, however, 3D9 markedly
enhanced the inhibitory effect on both processes (83-04-20-7%
and 94-9+3-3% inhibition, for C3 fragment deposition and
MAC formation, respectively), as compared to FE8 alone
(Fig. 3).

DISCUSSION

We report here the novel finding that the activation of the
alternative pathway of complement, mediated by CR2 on
normal B cells, results not only in the deposition of C3
fragments at the cell surface, but also in the formation of MAC.
This observation is in line with previous reports concerning
Epstein—Barr virus-transformed B-lymphoblastoid cell-lines
such as Raji.'* The kinetics of C9 deposition, which are
delayed with respect to C3-fragment deposition, are consistent
with the requirement of prior C3 activation, while the failure to
detect cell-bound C9, following incubation with C8-deficient
serum, confirms that C9 is being deposited as a MAC com-
ponent. Formation of the C5 convertase, required to initiate
MAC assembly, could occur via two mechanisms: first, C3b
generated by the alternative pathway convertase on CR2 might
deposit on the convertase itself thereby generating an effective
CS5 convertase; or second, nascent C3b deposited at an acceptor
site elsewhere on the cell surface might combine with factor B
to form first a C3 convertase and thereafter, upon incorpora-
tion of a further C3b molecule, the C5 convertase. The data
derived in this study do not permit distinction between these
possibilities.

Although a major role for CR2 in the generation of MAC
is clearly demonstrated, the finding that blockade with FE8
leads to only partial inhibition of C3-fragment deposition
and MAC formation, even though the mAb was employed at
a concentration that achieved saturation binding (ref. 11 and
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Table 1. C3-fragment deposition and MAC formation on B cells following incubation with various sera

C3-fragment % of 9 % of
Serum deposition* autologous deposition* autologous Ratio}
Autologoust 142 100 433 100 1:1
Donor 1 71-6 50-4 20-1 46-4 1:092
Donor 2 836 589 17-2 397 1:0-67
Donor 3 781 550 181 41-8 1:0-76
C8 deficientt 280 197 0-2 0-5 1:0-025

*Difference in values (mean fluoresence intensity units, MFTI) for cells incubated in normal human serum (NHS) or NHS/EDTA, upon probing with FITC-

conjugated anti-C3d and anti-C9 mAb, respectively.
TMean values from two experiments.
fRatio of relative efficiency for C3-fragment: C9 deposition.
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Figure 3. Influence of CR2 and CRI1 blockade on C3-fragment
deposition and MAC formation on B cells. The percentage of C3d-
specific (open columns) and C9-specific (solid columns) fluorescence,
respectively, relative to incubation in normal human serum (NHS)/
Mg/EGTA, in the absence of blocking antibodies, is given. B cells
were incubated under the given conditions in the presence of the
CR2-blocking mAb FES8, the CR1-blocking mAb 3D9 or the control
mAbs HB135, for CR2 and HB8592, for CR1. The error bars display
the 95% confidence intervals for the values obtained with sera from
six donors.

data not shown), suggests that factors other than CR2 may
also be involved. Indeed, the observation of a marginal, but
significant, effect of CR1 blockade on MAC formation, as well
as synergy in the inhibition of both C3-fragment deposition
and MAC formation upon combined blockade, suggests that
CR1 plays a subsidiary role. This finding is, at first sight,
somewhat surprising, given the reported function of CR1 as
a negative regulator of complement function at several levels
including convertase decay acceleration and co-factor activity
in the cleavage of C3b and, subsequently, iC3b to C3d.'>'®
Thus blockade of CR1’s active site with mAb 3D9 might have
been expected to enhance, rather than inhibit, the deposition
of C3 fragments and MAC formation. The mechanism under-
lying the subsidiary role of CR1 remains to be defined. One
possibility is that, given its reported association with CR2,'7 it
might serve to stabilize or even promote formation of the
convertase(s) by capturing hydrolysed C3 (C3i) from the fluid
phase or nascent C3b, generated by the CR2-bound alternative
pathway convertase, thereby furnishing CR2 with the compo-
nents required for generating the C3 and C5 convertases,
respectively. This mechanism would require that association
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of CR1 with CR2 leads to blockade of CR1’s function as
co-factor in the degradation of C3b.

The finding that alternative pathway activation via CR2
leads to MAC formation at the B-cell surface has clear
biological implications. While the B cells bearing such com-
plexes may not, by virtue of their expression of CD59,'
succumb to lytic attack, MAC deposition may induce changes
in both membrane polarity'®* and intracellular free Ca®*
concentration,”'* leading to the activation of a range of
intracellular signalling pathways.* % Indeed, it has previously
been reported that the C5b-9 complex, incorporated into
the membrane of the human lymphoblastoid B-cell line, JY25,
couples with heterotrimeric G proteins,”® resulting in the
activation of Ras and the mitogen-activated protein kinase
pathway.?” Thus MAC incorporated into the membranes of
normal B cells may influence a range of functions, including
their proliferative response to antigen. Another possibility is
that the presence of MAC may influence B-cell survival,
either as an inducer of apoptosis*® or by conferring protection
against other apoptotic stimuli.>’ The consequences of MAC
incorporation into the B-cell membrane are currently under
investigation.
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