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Abstract

Rapid identification of in vivo affinity ligands would

have far-reaching applications for imaging specific

molecular targets, in vivo systems imaging, and

medical use. We have developed a high-throughput

method for identifying and optimizing ligands to map

and image biologic targets of interest in vivo. We

directly labeled viable phage clones with far-red

fluorochromes and comparatively imaged them in vivo

by multichannel fluorescence ratio imaging. Using

Secreted Protein Acidic and Rich in Cysteine (osteo-

nectin) and vascular cell adhesionmolecule-1 asmodel

targets, we show that: 1) fluorescently labeled phage

retains target specificity on labeling; 2) in vivo distri-

bution can be quantitated (detection thresholds of
f 300 phage/mm3 tissue) throughout the entire depth

of the tumor using fluorescent tomographic imaging;

and 3) fluorescently labeled phage itself can serve as a

replenishable molecular imaging agent. The described

method should find widespread application in the rapid

in vivo discovery and validation of affinity ligands and,

importantly, in the use of fluorochrome-labeled phage

clones as in vivo imaging agents.
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Introduction

Molecularly targeted affinity ligands derived from screens

play an important role in our further understanding of human

disease [1–4], pharmaceutical discovery and development

[5–7], nanotechnology sensing applications [8], systems

biology [9], and the design of molecular imaging agents

[10–13]. Various types of high-throughput screens, in-

cluding small molecule screens [14,15], yeast two-hybrid

screens [16], bacterial display screens [17], and phage

display screens [5,10,18,19], have been developed. The

latter offers a number of important advantages, such as

rapid and economical biologic expansion (rather than the

more time-consuming chemical resynthesis), vast peptide

diversity, rapid screening process, and the availability of

many types of phage clones and libraries (for a review, see

Smith and Petrenko [20] and Willats [21]).

A number of modifications to traditional phage screens have

been developed over the last decade. Traditional in vitro

screens commonly use purified target proteins immobilized on

plates [22]. Alternatively, screens have been performed on live

cells, with targets expressed in their native environments, which

has allowed the development of modified screens that bias

toward cell internalized phage [23,24], binding under flow con-

ditions [10] or other biologic processes. One of themost exciting

recent developments has been the use of in vivo phage display

to yield disease-specific or organ-specific phage clones [18,19].

For example, a number of atherosclerosis-targeted phage have

recently been developed [25], and endothelial bed–specific

clones have been found in both mice and humans [2,26].

However, irrespective of the method employed, it is common

for a given screen to yield tens to hundreds of potential phage

clones that subsequently require time-consuming and costly

validation. In addition, once a clone is validated, developing,

validating, and scaling up an imaging agent based on lead

peptides can be challenging and costly.

Given the existing bottlenecks in identifying clones with the

highest likelihood of in vivo success and to determine if we could

use phage as a targeted imaging agent, we set out to develop

comparative in vivo screening tools. We reasoned that such

comparative screens could be of value in eliminating in vitro–

identified clones that would ultimately fail because of unfavor-

able in vivo pharmacokinetics, delivery barriers, opsonization,

or insufficiently high target-to-background ratios [27,28]. Spe-

cifically, we applied far-red and near-infrared fluorescent label-

ing and newer in vivo fluorescence methods to track phage

in vivo to intended targets of interest. Using Secreted Protein

Acidic and Rich in Cysteine (SPARC) as a model target for

invasive cancer [29,30] and vascular cell adhesion molecule-1

(VCAM-1) for inflammatory endothelium [31], we show how

novel targeted peptide sequences can be rapidly developed.

We furthermore show that individual fluorescently labeled

phage clones can be remarkably efficient as in vivo imaging

agents, akin to peptide-decorated nanoparticles [32].
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Materials and Methods

Materials

N-hydroxysuccinimide esters of Cy3.5 and Cy5.5 were

obtained from Amersham (Piscataway, NJ); fluorescein

isothiocyanate (FITC) and tetramethyl rhodamine isothio-

cyanate (TRITC) were from Sigma Aldrich (St. Louis, MO);

N-hydroxysuccinimide esters of Vivotag-680 (VT680) and

Angiosense-750 were from Visen Medical (Woburn, MA);

and N-hydroxysuccinimide esters of AF750 were from Invitro-

gen (Eugene, OR). All other chemicals were purchased from

Sigma Aldrich or Pierce (Rockford, IL) and used as received.

Phage Libraries

The SPARC-targeted phage used in this study was iso-

lated from the linear 7 mer library (PhD 7), and the VCAM-1–

targeted phage was isolated from the disulfide constrained

cyclic 7 mer phage display peptide library (PhD C7C; New

England Biolaboratories, Cambridge, MA).

Selection of Targeted Phage Clones

To identify SPARC-targeted clones, phages [2 � 1011

plaque-forming units (pfu)] were incubated for 1 hour at

37jC in a well containing purified SPARC protein (Hemato-

logic Technologies, Inc., Essex Junction, VT) that was ad-

sorbed (100 mg/ml) onto MaxiSorp immunoplates (Nalge

Nunc, Rochester, NY) and saturated with bovine serum

albumin (BSA). Following incubation, unbound phages were

removed by 10 washes with Dulbecco’s phosphate-buffered

saline (DPBS) containing 1% BSA and 0.1% Tween-20.

Bound phages were eluted with 100 ml of acidified glycine

buffer (0.2 M glycine, pH 2.2) and neutralized with 10 ml of
1 M Tris (pH 9.0) to preserve viability. The eluted phage pool

was then amplified, titered, and subjected to three addi-

tional rounds of SPARC selection, and individual clones were

selected for enzyme-linked immunosorbent assay (ELISA)

and sequencing. VCAM-1–targeted phage clones were se-

lected and validated as previously described [10]. A clone

expressing the peptide sequenceCVHSPNKKCwas used for

fluorescent labeling.

ELISA Assay

Purified SPARC protein or BSA adsorbed (20 mg/ml) on

NuncMaxiSorp plates (4jCovernight) was incubated at room

temperature with phage clones (1012 pfu, 1 hour), washed

with DPBS containing 1% BSA and 0.1% Tween-20, in-

cubated with biotinylated anti-M13 antibody (Amersham

Pharmacia Biotech, Piscataway, NJ) (1:40, 1 hour), detected

with streptavidin–horseradish peroxidase (1:500), and de-

veloped with tetramethyl benzidine (Pierce), and absorbance

was determined at 650 nm (Emax; Molecular Devices, Sunny-

vale, CA). Specificity was determined by dividing SPARC abs

650 nm by BSA abs 650 nm.

Phage Labeling

Phages were labeled with a number of different fluoro-

chromes. Fluorochromes were all conjugated to the phage

usingstandardNHSor isothiocyanate chemistry.Phages (1�

1012 pfu) were resuspended in 100 ml of a 0.3-M NaHCO3

(pH 8.6) solution containing 1 mg/ml fluorochrome–hydroxy-

succinimide ester (Cy3.5, Cy5.5, VT680, and AF750) or

0.25 mg/ml FITC (TRITC). The phage/fluorochrome reaction

was allowed to continue for 1 hour at room temperature in the

dark. Subsequent to incubation, the volume of the labeled

phage was brought up to 1 ml with DPBS, and the phage was

purified by polyethyleneglycol precipitation. Fluorochrome-

labeled phage was then resuspended in 200 ml of DPBS

and titered to determine plaque-forming units, and the con-

centration of fluorochrome was determined spectrophoto-

metrically (Varian Cary II; Varian, Palo Alto, CA).

In Vitro Characterization of Labeled Phage

1. Fluorochromes/phage: the number of fluorochromes

bound per phage was determined by comparing the

concentration of fluorochrome in the sample as

determined spectrophotometrically in the phage titer.

2. Fluorescence as a function of labeling: the fluorescence

of phage with increasing dye loading was quantified

by fluorescence spectroscopy (Fluorolog2; Jobin Yvon

Horiba, Edison, NJ). For in vivo experiments, we chose

phage with a dye loading of 800 fluorochromes/phage

due to optimized signal versus quenching.

3. Viability of fluorochrome-labeled phage: phages labeled

with increasing amounts of fluorochrome were titered

using New England Biolabs (NEB) protocols to deter-

mine their ability to transfect and amplify in Escherichia

coli.

Mouse Models

Nude mice were injected subcutaneously with 2.5 � 106

Lewis lung carcinoma (LLC) cells in both flanks. Tumors were

allowed to grow until they had reached a diameter of 7 to

10 mm before the animals were used for experimentation. To

induce microvascular VCAM-1 upregulation, C57Bl/6 mice

(n = 10) were injected subcutaneously in the right ear with

5 ng/50 ml mTNFa in normal saline. After 24 hours, animals

were anesthetized with inhaled isoflurane and injected intra-

venously (through the tail vein) with VT680-labeled VCAM-

1–targeted phage.

In Vivo Imaging of LLC Tumor-Bearing Mice

For the time course experiment (Figure 3A), mice (n = 10)

were coinjected with VT680-labeled SPARC-targeted phage

and AF750-labeled wild-type (no insert) phage at equal

fluorochrome concentrations and then imaged 2, 4, 6,

and 24 hours postinjection. For clone comparison studies

(Figure 5A), mice (n = 5 per clone) were also coinjected with

VT680-labeled SPARC-targeted phage and AF750-labeled

wild-type (no insert) phage through the tail vein then imaged

4 hours postinjection. In Figures 3C and 4, mice (n = 10) were

injected with either VT680-labeled SPARC-targeted phage

or VT680-labeled wild-type phage (no insert) then imaged

4 hours postinjection with surface reflectance imaging and

fluorescent molecular tomography (FMT). Mice were anes-

thetized by inhalation anesthesia (2% isoflurane, 1 l/min O2).
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FMT experiments were performed at two wavelengths (at

680/700 nm to detect SPARC-targeted phage and at 750/

780 nm to detect wild-type phage excitation/emission) in

anesthetized mice [33]. Briefly, mice were positioned and

surrounded by matching fluid to simulate tissue properties

according to the manufacturer’s instructions (Visen Medical).

Image data sets were reconstructed using a normalized Born

forward model adapted to small mouse models [33]. Image

acquisition time per animal was 2minutes, and reconstruction

time was 1 to 2 minutes. Images were displayed as raw

data sets (excitation, emission, and masks) and as recon-

structed 3D data sets in axial, sagittal, and coronal planes.

Fluorochrome concentration in the target was automatically

calculated from reconstructed images and expressed as

picomoles of fluorochrome per defined target volume. In

addition to the 3D FMT described above, we also performed

rapid fluorescence screening using reflectance detection

only (Figure 3C). This method allowed for a throughput of

> 20 mice/hour.

Intravital Laser Scanning Microscopy

Multichannel fluorescence imaging was performed with a

prototypical laser scanning fluorescence microscope (Olym-

pus Corporation, Tokyo, Japan) specifically developed for

intravital imaging of mouse organs [34]. Three laser lines at

488, 633, and 748 nm were used. Image acquisition was

1 second. The FluoView 300 software program (Olympus

Corporation) was used to control the microscope and to

collect images of 512 � 512 pixels with a pixel size of about

5.4 mm/pixel and a total image size of about 2.8 � 2.8 mm.

Images were stored as multilayer 16-bit tagged image file

format files. Images in the 680-nm channel (660- to 730-nm

bandpass filter) and in the 750-nm channel (770-nm longpass

filter) were collected concomitantly using custom-made filters

and dichroic mirrors (Olympus Corporation). A dry objective

(�4 UplanApo NA 0.16; Olympus Corporation) with a field of

view of 3.25 mm and a theoretical lateral resolution of about

2.6 mm at 680 nm were used. Wide spectral response photo-

multiplier tubes (model R928P; Hamamatsu, Bridgewater,

NJ) were used as detectors for both visible light and near-

infrared signals. After initial images had been obtained, a

near-infrared vascular imaging agent (Angiosense-750) was

administered to define microvascularity [35].

Histology

Epifluorescence microscopic images were obtained with

an upright fluorescence microscope (Eclipse 80i; Nikon

Instruments, Melville, NY) with a cooled charge-coupled

device camera (Cascade 512B; Photometrics, Tucson, AZ).

After imaging by intravital confocal microscopy, immuno-

histochemical analysis ofmouse ears was performed. Frozen

sections were stained for the presence of CD31, VCAM-1, or

M13. Digital images were taken using a Nikon Eclipse E400

upright microscope (�40 objective; Nikon Instruments)

equipped with an Insight color camera (Diagnostics Instru-

ments, Sterling Heights, MI).

Results

A number of commercially available fluorochromes were ini-

tially used to test the labeling efficiency of M13 phage coat

proteins throughhydroxysuccinimideor isothiocyanatechem-

istry, yielding fluorescent phage clones. Figure 1 summarizes

the optical properties of differently-labeled M13 phage. As-

suming a 6-mm depth in tissues, near-infrared– labeled

phages would be detectable roughly 102-fold more efficiently

compared to labeled phages in the visible spectrum. There-

fore, we particularly focused on far-red and near-infrared

fluorochromes as light penetration in vivo is more efficient

at these wavelengths [36]. To better understand the effect

of labeling efficiency on phage affinity, fluorescence, and

viability, we subsequently performed more in-depth experi-

ments on a phage labeled with a fluorochrome with an ex-

citation wavelength of 680 nm (VT680).

Figure 2 summarizes the effect of the incremental modi-

fication of phage coat proteins on the fluorescence, affinity,

and viability of isolated phage clones. As a model system, we

used one clone (clone 23) isolated from a selection against

Figure 1. Phage labeling. (A) Fluorochromes used for phage labeling. Listed are the mean numbers of fluorochromes from a single comparative experiment. The

relative fluorescence signal at a 6-mm tissue depth of different fluorochrome-labeled phages was calculated from known spectral tissue absorption. Note the much

higher fluorescence of 680- to 750-nm fluorochrome-labeled phages in tissues. (B) Emission spectra of fluorescently labeled phages (excitation and color of data

points as listed in A).
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SPARC protein. Regardless of the extent of phage coat pro-

tein modification (up to 2400 fluorochromes/phage particle),

derivatized phage bound with the same affinity to SPARC

protein, as analyzed through ELISA (Figure 2A). Tomaximize

the net fluorescence per phage and to enhance signal for

in vivo imaging, we next measured fluorescence versus the

extent of fluorochrome labeling. Beyond 800 fluorochromes

per phage, fluorescence did not improve significantly pre-

sumably due to dye–dye quenching (Figure 2B). Importantly,

at this extent of modification, labeled phages still retained

their biologic targeting ability in that they were able to bind

to SPARC (Figure 2A). Indeed, in cell-based screens, phages

were shown to bind specifically to SPARC-expressing cells

but not to fibroblasts isolated from SPARC�/� knockout mice

(Figure 2C). Taken together, these results demonstrate an

optimum labeling of 800 fluorochrome/phage. Therefore, in

subsequent experiments, we used phage with 800 fluoro-

chromes attached, corresponding to f 25% of coat pro-

tein modification. The ability of labeled phage to infect

host bacteria and to amplify (viability) was affected in a

concentration-dependent fashion (Figure 2D). However, at

the dose used for in vivo experiments, 50% of phages were

viable and still permitted regeneration of phage clones when

necessary. Similar experiments, as described above, were

also conducted with VT680-labeled wild-type and AF750-

labeled SPARC and wild-type phages, showing similar

results (data not shown).

To determine the time course of biologic uptake and

system detection levels of fluorochrome-labeled phage, we

next tested labeled phage in a mouse tumor model. LLC cells

expressing SPARC [37] were grown in mice until tumors had

reached a diameter of 7 to 10 mm. Subsequently, mice were

injected intravenously with 10 nmol (fluorochrome concen-

tration) of fluorochrome-labeled phage and serially monitored

by FMT [38]. Maximum tumor signal occurred 2 to 4 hours

after systemic injection of phage (Figure 3A). In dose es-

calation studies (Figure 3B), tumoral signal intensity was

highest with the largest amount of phage injected. At this

level of phage labeling, the detection threshold by FMT

was calculated to bef 300 phage/mm3. Surface reflectance

imaging (rapid screening) demonstrated preferential tumoral

accumulation of SPARC-targeted phage over wild-type

phage (Figure 3C). To quantitate variability in tumoral dis-

tribution and heterogeneity, we also performed tomographic

FMT imaging (Figure 4). Screening experiments showed

that SPARC-targeted clones accumulated in all bilaterally

implanted LLC tumors (Figure 4A), whereas VT680-labeled

wild-type phage did not (11,481.92 ± 977 FU in VT680-

SPARC phage versus 776.01 ± 24 in VT680-WT phage;

P < .0001; specificity ratio = 14.7; n = 10). Serial sections

through tumors clearly identified intratumoral phage in a

somewhat heterogeneous distribution, which corresponded

well with correlative fluorescence microscopy (Figure 5). By

FMT measurements, the mean tumoral concentration of

SPARC phage was determined to be 23,600 phage/mm3 or

0.297 pM phage. Although a difference between wild-type

and SPARC phage accumulation was noted when they were

imaged using surface-weighted fluorescence imaging, a

larger differencewas seen between thewild-type andSPARC

phages when they were imaged with FMT. The ability of FMT

to detect fluorescent signal throughout the entire depth of

the sample allows for a more precise imaging and opens

the door for imaging phage-targeted agents in deep tissues

where surface-weighted imaging would not be useful.

We next performed comparative in vivo screens of phage

clones that had been identified through in vitro screens

Figure 2. Properties of labeled phage. (A) Effect of increasing fluorochrome labeling (VT680) on phage affinity determined by ELISA (blue region: error range). (B)

Effect of increasing labeling on phage fluorescence. Beyond 800 fluorochromes per M13 phage, there is little increase in fluorescence. (C) VT680-labeled phage

clone (800 fluorochromes/phage) binds specifically to SPARC-expressing fibroblasts, but not to fibroblasts derived from SPARC�/� mice (scale bar: 10 �m). (D)

Effect of successive phage labeling on viability (ability of the phage to infect and amplify in E. coli).
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against SPARC protein, focusing on 5 of 30 ELISA-confirmed

clones (Figure 5A). There were considerable in vivo differ-

ences in tumoral homing among lead candidates (Figure 5B).

Although in vitro analysis demonstrated similar specificity

constants for the top five lead candidates, in vivo testing re-

vealed that phage clone 23 (SPPTGIN) demonstrated excel-

lent in vivo targeting ability, whereas clone 12 (NFPQRFL),

clone 18 (APTRYNG), clone 21 (HWGMWSY), and clone 26

(GETRAPL) showed much lower in vivo homing to tumors

(Figure 5A). These observations held true among different

animals in each group, indicating that homing was not due

to individual tumor heterogeneity but rather due to in vivo

targeting. Furthermore, coinjection of mice with AF750-

labeled wild-type phage did not show appreciable targeting

(Figure 5A), demonstrating the in vivo tumor targeting of

identified peptide sequences. Additional histologic experi-

ments confirmed the imaging findings (Figure 5C).

To determine whether fluorochrome-labeled phage could

also be used for microscopic imaging and to extend the

technique past one in vivo system, we finally performed intra-

vital confocal imaging experiments (Figure 6). Using the

TNFa-induced endothelial VCAM-1 upregulation model

[10], we performed microvascular imaging in the ear of live

mice (Figure 6). Similarly as described above, VCAM-1

internalized phages (bearing the sequence CVHSPNKKC)

[10] were labeled with VT680 and injected intravenously

4 hours before imaging. To unequivocally identify micro-

vessels, we coinjected a circulating vascular maker. At the

time of imaging, near-infrared fluorescence attributed to

phage was highly elevated in the vasculature of the in-

flamed ear, but was largely absent in the contralateral control

ear. There was excellent correlation between local phage

homing and signal from the intravascular agent (Figure 6A).

Immunohistochemistry confirmed the expression of VCAM-1

Figure 3. In vivo behavior of labeled phage. (A) Time course of tumor homing. Mice bearing subcutaneous bilateral LLC-derived tumors were coinjected through

the tail vein with VT680-labeled SPARC-targeted phage and AF750-labeled wild-type phage (no insert) and imaged at 0, 2, 4, 6, and 24 hours after injection. Blue

line: SPARC-targeted phage clone 23. Brown line: wild-type phage (no insert). (B) Detection threshold. Tumor-bearing mice were injected with increasing log doses

of labeled phage and imaged 4 hours after injection. The line indicates detection threshold. (C) Reflectance imaging. Mice bearing subcutaneous bilateral tumors

(LLC cells) were injected with either VT680-labeled wild-type phage (right) or VT680-labeled SPARC-targeted phage. Note the brightly fluorescent tumors in the

near-infrared fluorescence channel of the SPARC-targeted phage clone [identical white light (WL) settings].

Figure 4. In vivo imaging of labeled phage. Mice bearing subcutaneous bilateral tumors (LLC cells) were injected with fluorescent phage. (A) Serial coronal

tomographic images at different depths of a representative mouse injected with the SPARC-targeted phage clone. Note the distribution of phages throughout the

tumors. The scale bar is in nanomolars of fluorescence. (B) Wild-type control phage (identical white light settings as in A).
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Figure 5. Screening of SPARC-targeted phage clones. (A) Comparison of the target affinity of different SPARC clones by in vitro (left) or in vivo (middle and right)

imaging (control ELISA: BSA; control FMT: wild-type phage). Note the high target-to-background ratio of clone 23 in vivo, whereas most clones are similar by

in vitro screening. (B) FMT imaging of mice bearing bilateral LLC tumors injected with different phage clones. Maximum intensity projections are shown for the five

phage constructs investigated. All images have been equally leveled. The scale bar is presented as the concentration of fluorochromes in nanomolars. (C)

Comparative immunofluorescence of indicated phage clones’ tumoral accumulation (red). Nuclei are counterstained with DAPI (blue). Scale bar = 10 �m.

Figure 6. In vivo microscopic imaging of phage. (A) Microscopic imaging of bilateral ear vessels of a live mouse injected with labeled VCAM-1– targeted phage

(CVHSPNKKC, green) and vascular marker (Angiosense-750, red). Shown are confocal projections of Z stacks from mTNFa-treated ear or control ear at 4 hours

after phage injection. Images are representative of different animals in each case and five different fields per ear. (B) Correlative histology: adjacent sections of

ears taken from in vivo intravital experiments were stained for CD31, VCAM-1, or phage protein pVIII (M13).
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in the TNFa-injected ear, but not in the control ear (Figure 6B).

In addition, phage particles colocalized with VCAM-1–

expressing vessels, confirming the retention of phage spec-

ificity for VCAM-1 and the use of this technique for in vivo

imaging (Figure 6B).

Discussion

The use of phage display libraries is a powerful method for

identifying affinity peptides for biologic applications. For

example, phage display has been used to identify vascular

zip codes [18], markers of angiogenesis [22], targeted ther-

apeutics [39], or affinity ligands for imaging [10,19]. However,

the in vivo validation of in vitro hits can remain challenging,

time-consuming, and costly. Here, we describe methods to

label phages with far-red fluorochromes and to test them

in vivo by optical imaging. This approach is universal, fast,

cost-effective, and accurate as multiwavelength imaging can

incorporate control phage. The described method enhances

in vivo phage screening as it allows the direct visualization

of injected phage and the identification of cell type–specific

clones. In addition, the method is useful for in vivo testing

whole phage libraries, subsets, or specific clones. Further-

more,we show that near-infrared–labeled phages themselves

can serve as an economical and replenishable source of

molecularly targeted imaging agents.

Labeling of phage can be accomplished with different

available fluorochromes that are well established, yielding

highly fluorescent targeted phage particles. M13 filamentous

phage (6.5 nm in diameter, f 880 nm in length) contains

approximately 2700 copies of the major coat protein P8 and

5 copies of three different minor coat proteins (P9, P6, and

P3) on the ends. Our results indicate that labeling of coat

proteins (800 fluorochromes/phage or f 25% of coat pro-

teins) does not interfere with a displayed peptide’s targeting

ability or a phage’s ability to be internalized into mammalian

cells (Figure 2C). Because we only label 25% of phage coat

proteins, the probability of labeling the major coat protein

(2700 copies/phage)—as opposed to labeling the peptide

(5 copies/phage)—that confers targeting ability is high,

therefore allowing the retention of selected biologic activity.

Indeed, the six phage clones examined (five SPARC and one

VCAM-1) all retained their biologic activity. In vivo, we were

able to measure the tumor concentration of phage with a

threshold of f 300 pfu/mm3. On microscopic resolution, we

estimate that the detection threshold ismuch lower (f 10 pfu/

mm3) based on confocal laser scanning experiments [34].

The availability of fluorochromes with different spectral prop-

erties (Figure 1) allows multicolor imaging (i.e., measure-

ments can be made using a control reference channel) or

screening of differently labeled phages simultaneously.

These strategies can be exploited to rapidly eliminate clones

that would ultimately fail because of unfavorable in vivo

pharmacokinetics, delivery barriers, or insufficient target-to-

background ratios.

We focused on two differentmodel targets in this research,

SPARC and VCAM-1, given their importance in human dis-

ease [29,31]. SPARC (osteonectin) is a 32-kDa glycoprotein

that interacts with the extracellular matrix and exerts an

antiadhesive promigratory effect on cells [29]. In vivo, SPARC

expression is restricted to rapidly remodeling tissues, such

as invasive cancers [40]. SPARC has recently been used as

a biomarker to identify invasive and/or high-metastatic-

potential prostate cancer [29], distinguishing it from more

indolent forms. We identified one novel phage clone (23-

SPPTGIN) that had high affinity and specificity for SPARC

and demonstrated excellent in vivo tumoral targeting ability,

suggesting that this agent may be useful for the detection

and targeting of invasive SPARC-expressing cancers. Con-

version of the identified targeted peptide into imaging agents

detectable by magnetic resonance imaging and/or positron

emission tomography imaging modalities is currently under

way. The second example chosen was a phage with high

avidity (and endothelial cell internalization) for VCAM-1 ex-

pression (CVHSPNKKC). We show that fluorescently labeled

clones specifically target VCAM-1–expressing blood vessels

in vivo and could be used for the imaging of VCAM-1 expres-

sion in high-mortality diseases such as atherosclerosis.

The developed in vivo screening tool could be used to de-

crease the time between the identification of potential ‘‘hits’’

and the development of in vivo molecularly targeted imaging

agents. This could potentially eliminate a number of failed

‘‘hits’’ earlier in the investigation, reducing time and cost.

Furthermore, we believe that near-infrared tagged phage

could play an important role as a molecularly targeted imag-

ing agent. M13 phage particles have the same width and

ability to be functionalized as some synthetic nanomaterials

currently being used in vivo [11,41,42] and have been used

here as a platform for the development of imaging agents.

Infection with filamentous phages is not lethal as they have

been injected intravenously [26]. Furthermore, phages have

no intrinsic tropism for mammalian cells and are biodegrad-

able. Phages have also been engineered to serve as delivery

vehicles, suggesting that the targeted labeled phage can be

used for both imaging and therapy [43].
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