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ABSTRACT Ionotropic glutamate receptors (iGluRs), a family of ligand-gated ion channels, are responsible for the majority of
fast excitatory neurotransmission in the central nervous system. Within this family, different members serve distinct roles at
glutamatergic synapses. Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors mediate fast depolarization while
N-methyl-D-aspartate (NMDA) receptors mediate the slower component of the excitatory postsynaptic potential. These dispa-
rate functions suggest alternate modes of regulation. In this work, we show that endogenous regulators of iGluRs have different
abilities to bind to specific domains of NMDA NR1-1b and AMPA GluR2 subunits. We have previously shown that the sulfated
neurosteroids pregnenolone sulfate and 3a-hydroxy-5b-pregnan-20-one sulfate bind to the extracellular glutamate-binding core
(S1S2) of the GluR2 subunit. Here we show that neither neurosteroid binds to the S1S2 domain of the NMDA NR1-1b subunit.
This NR1-1b NMDA domain does, however, bind to the endogenous polyamines spermine and spermidine as well as Zn(II).
Binding of the polyamines and Zn(II) to the S1S2 domain of the GluR2 subunit was not observed. This binding of Zn(II) and
polyamines to the S1S2 domain of the NR1-1b subunit defines a new binding site for each of these modulators.

INTRODUCTION

Ionotropic glutamate receptors (iGluRs) comprise a family of

ligand-gated ion channels that include the amino-3-hydroxy-

5-methyl-4-isoxazolepropionic acid (AMPA), kainate, and

N-methyl-D-aspartate (NMDA) receptors. These receptors are

located in the postsynaptic neural membrane and play impor-

tant roles in developmental plasticity, learning and memory,

sensory transmission and coordination, and control of respi-

ration and blood pressure. Binding of the neurotransmitter

glutamate (glycine is a coagonist for the NMDA receptors) to

an extracellular binding site on these receptors causes a con-

formational change which opens a pore, allowing cations to

flow into the postsynaptic neural cell.

Each of the iGluRs is believed to be tetrameric in nature.

The NMDA receptors are hetero-tetramers composed of two

NR1 and two NR2 subunits. There are eight alternatively

spliced versions of the NR1 subunit, encoded by a single gene,

and four different NR2 subunits (NR2A–D) encoded by sepa-

rate genes. The non-NMDA receptors are most often homo-

tetramers. AMPA receptors are composed of four GluR1,

GluR2, GluR3, or GluR4 subunits while kainate receptors

are composed of four GluR5, GluR6, GluR7, KA1, or KA2

subunits. Each of these iGluR subunits has a similar modular

membrane-spanning topology. The extracellular portion of

each subunit has an amino terminal domain (ATD) and an S1

domain that precede the first membrane-spanning region. In

addition, there is an extracellular S2 domain that separates

the second and third membrane spanning regions, three

membrane spanning domains, and a reentrant loop, the latter

of which forms the pore region upon association of all four

subunits. The extracellular S1 and S2 regions are known

to form a clamshell-shaped binding domain for the natural

agonist glutamate (in the non-NMDA receptors as well as in

the NR2 NMDA subunits) or glycine (in the NR1 NMDA

subunits). Soluble extracellular GluR2 (AMPA) and NR1-1b

(NMDA) S1S2 domains have been constructed by eliminat-

ing all three transmembrane spanning regions plus the reen-

trant loop and linking the S1 and S2 domains by two amino

acids (GT) (1–4). These S1S2 domains have been shown to

possess near-native binding affinities for both agonists and

antagonists and their structures have been studied by x-ray

crystallography (Fig. 1) (1–4).

As glutamate is the major excitatory neurotransmitter in

the central nervous system, the level of activity of iGluRs

is tightly controlled. Misregulation has been implicated in

the ischemic stroke cascade, schizophrenia, and Alzheimer’s,

Huntington’s, and Parkinson’s diseases. A number of endog-

enous compounds, including Zn(II), polyamines (spermine

and spermidine, Fig. 2), and sulfated neurosteroids (preg-

nenolone sulfate, PS; and 3a-hydroxy-5b-pregnan-20-one

sulfate, PregaS, Fig. 2), are known to be involved in reg-

ulation.

PregaS negatively regulates the activity of all iGluRs. PS

also negatively regulates the activity of the non-NMDA

iGluRs, while differentially regulating the NMDA receptors.

It is the most active neurosteroid in its ability to positively

regulate NMDA receptors possessing either NR2A or B sub-

units (5), while it negatively regulates NMDA receptors with

either NR2C or D subunits. It has recently been shown that

both PS and PregaS bind to the S1S2 domain of the GluR2

subunit of the AMPA receptor (6,7). In addition, it has been

demonstrated that PS binds to the NR2B subunit of the

NMDA receptor in a region that encompasses portions of the

extracellular S2 domain and the final transmembrane span-

ning region (8).
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Zn(II), which is stored and released at many glutamatergic

synapses in the brain, regulates the activity of iGluRs by many

different pathways, both voltage-dependent and -independent

(9,10). This regulation can either potentiate or block activity at

iGluRs, depending on the type of iGluR and the concentration

of Zn(II) (11). The existence of an NMDA high affinity NR1/

NR2A Zn(II) inhibitory site as well as NR1/NR2B, NR1/

NR2C, and NR1/NR2D low affinity Zn(II) inhibitory sites

have been reported (12–16). The NR2A and NR2B binding

sites have been suggested to reside in the extracellular ATD

of each subunit (10,17). It has, however, been shown that

both the NR1 and NR2 subunits contribute to Zn(II) inhibi-

tion (12,15,18), with the presence of exon 5 in the ATD of

the NR1 subunit (NR1a forms lack exon 5, while NR1b

forms include exon 5) playing a regulatory role.

The endogenous polyamines spermine and spermidine are

necessary for a number of cellular functions, including pro-

liferation and differentiation, stabilization of nucleic acids,

regulation of protein synthesis, and modulation of ion channel

functioning, including that of the iGluRs (19,20). At NMDA

receptors, they have been proposed to act by at least four

distinct mechanisms, including both glycine and voltage-

dependent and -independent mechanisms (19–24). Con-

centrations of glycine, polyamines, and the NMDA subunit

composition determine whether this action is activating or

inhibiting (21,25). Control of glycine-independent poten-

tiation has been suggested to occur via residues in both the

NR1a and NR2B subunits, including NR1a residues in

regions between the third and fourth membrane spanning

regions as well as amino acids in the ATD of both subunits

(21,26–28).

Thus, while sulfated neurosteroids, polyamines, and Zn(II)

do regulate the activities of both NMDA and non-NMDA

iGluRs, regulation is achieved in a complicated manner,

implicating binding at multiple sites, none of which are yet

fully elucidated. The results presented here further describe

the binding of each of these three classes of ligands to spe-

cific subunit domains from both NMDA (NR1-1b) and non-

NMDA (AMPA: GluR2) receptors. We have previously

shown that the sulfated neurosteroids PS and PregaS bind to

the GluR2 S1S2 domain (6,7). Data is presented here which

shows that neither PS nor PregaS bind to the S1S2 domain of

the NR1-1b subunit of the NMDA receptor. In addition, it

has been found that neither Zn(II) nor the polyamines spermine

or spermidine bind to the GluR2 S1S2 domain, however,

they do bind to the NMDA NR1-1b S1S2 domain. The latter

is significant because it locates a previously unidentified

distinct subunit domain to which each of these modulatory

ligands bind.

MATERIALS AND METHODS

Protein expression and purification of NMDA
NR1-1b S1S2 domain

The cloning plasmid for the NMDA NR1-1b S1S2 domain was obtained

from Eric Gouaux (Oregon Health and Science University, Portland, OR)

and transformed into chemically competent Escherichia coli Origami

FIGURE 1 (Left) RASMOL rendering of the apo GluR2

S1S2 domain (PDB: 1FTO) (1). The four tryptophan

residues in the S1S2 domain (Trp-460, -671, -766, and

-767) are space-filled and are shown in black. In addition,

the location of the glutamate (Glu) binding pocket is

illustrated. (Right) RASMOL rendering of the glycine

bound NMDA NR1-1b S1S2 domain (PDB: 1PB7) (4).

The four tryptophan residues in the S1S2 domain (Trp-

498, -731, -768, and -792) are space-filled and are shown

in black. In addition, the location of the glycine (Gly)

binding pocket is illustrated.

FIGURE 2 Endogenous ligand structures. (A) Pregnen-

olone sulfate (PS), (B) 3a-hydroxy-5b-pregnan-20-one

sulfate (PregaS), (C) spermine, and (D) spermidine.
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B(DE3) cells. The expression system was designed as follows: (His)8-TSG-

LVPRG(thrombin cut site)-S1(394-544)-GT-S2(663-800). NMDA NR1-1b

S1S2 protein was overexpressed and purified as in Furukawa et al. (4).

Protein expression and purification of wt and
mutant AMPA GluR2 S1S2 domains

Mutant AMPA GluR2 S1S2 domains (amino acids: S1:383-524-GT-S2:

627-791) were constructed and wild-type and mutant AMPA GluR2 S1S2

proteins were overexpressed and purified as in Stoll et al. (2,3,7).

Fluorescence studies

NMDA

Fluorescence was performed on a Proton Technology International fluores-

cence spectrophotometer at a cell temperature of 25�C using 4.0-nm

excitation and 1.0-nm emission slit widths. All scans were performed from

285 to 450 nm with a 280-nm excitation in a 3-mm pathlength cell. Each

sample was equilibrated for 60 s at 25�C in the sample holder before data

acquisition.

Blanks were measured by adding the appropriate ligand to buffer 3 (10

mM MES, 25 mM NaCl, 1 mM glycine, pH 6.5). Since all blank signals

were ,1% of the total fluorescence signal at 325 nm, experimental data was

reported without subtraction of a blank. Protein samples for the EC50 and

competition binding experiments were at a concentration of 3.75 mM, and

for the Stern-Volmer experiments were at a concentration of 3.41 6 0.16

mM in buffer 3. All ligands were solubilized in water. Spermine (Sigma, St.

Louis, MO) and spermidine (Sigma) were diluted to a stock concentration of

100 mM. Zinc acetate (EM Science, Gibbstown, NJ) was diluted to a stock

concentration of 150 mM.

In the EC50 experiments (Table 1 and Fig. 2S in the Supplementary

Material), spermine was added to a final concentration of 0.300–50.0 mM

(79.8:1–13,300:1 molar ratio of ligand/protein), spermidine was added to a

final concentration of 0.250–50.0 mM (66.5:1–13,300:1 molar ratio ligand/

protein), and zinc acetate was added to a final concentration of 2.0–75.0 mM

(320:1–12,000:1 molar ratio ligand/protein). For determination of the EC50,

percent binding was defined as [(fluorescence emission in the absence of

ligand at 325 nm – fluorescence emission in the presence of a certain con-

centration of ligand at 325 nm) / (fluorescence emission in the absence of

ligand at 325 nm – fluorescence emission in the presence of a saturating

concentration of the ligand at 325 nm)] 3 100. Saturating concentrations

were determined to be 75 mM zinc acetate (20,000:1 molar ratio ligand/

protein), 50 mM spermine (13,000:1 molar ratio ligand/protein), and 35 mM

spermidine (9300:1 molar ratio ligand/protein).

For competition studies (Table 3) the sample was allowed to equilibrate

for 30 s after the addition of the first ligand and an additional 30 s after ad-

dition of the second ligand before data was collected. Percent quenching was

defined as [(fluorescence emission in the absence of the ligand at 325 nm �
fluorescence emission in the presence of the ligand at 325 nm)/fluorescence

emission in the absence of the ligand at 325 nm] 3100.

In the Stern-Volmer experiments (Table 4 and Fig. 4S in the Supple-

mentary Material), potassium iodide (EM Science) ranging in concentration

from 25 to 400 mM was added to 3.41 6 0.16 mM NMDA NR1-1b-S1S2

that had been mixed with ligand at a final concentration of 0.5 mM spermine,

0.8 mM spermidine, or 5 mM Zn (II). Data was analyzed using the Stern-

Volmer equation F0/F ¼ 1 1 KSV[Q], where the Stern-Volmer constant

KSV ¼ kqt0. The values F0 and F are the fluorescence intensities in the ab-

sence and in the presence of quencher, respectively, [Q] is the concentration

of quencher, kq is the biomolecular collisional constant, and t0 is the lifetime

of the fluorophore in the absence of quencher. Since it is assumed that the

lifetime, t0, does not change after ligand binding, KSV can be used as a

measure of the biomolecular collisional constant and therefore reflects the

change in accessibility of the tryptophan residues to quencher upon ligand

binding (29,30). Data corresponding to at least six different iodide concen-

trations were used to construct each Stern-Volmer plot.

Each data set consists of emission spectra from independent scans of at

least four identically prepared samples. The average spectrum of each data

set was calculated by averaging the intensity at individual wavelengths be-

tween 285 and 450 nm. The standard deviation (SD) was calculated at 325

nm for each data set based on the four data points for each protein-ligand

mixture, and the error at the 95% confidence interval was determined. The

95% confidence interval (m) was defined as (t * SD)/(number of data

points)1/2, where t is the Student’s t value for the appropriate degrees of

freedom at the 95% confidence level.

AMPA

Fluorescence studies were performed at 25�C using 2.5 nm excitation and

emission slit widths. All emission scans were performed from 285 to 450 nm

with a 280 nm excitation in a 3-mm path length cell. Each sample was

equilibrated for 30 s at 25�C in the sample holder before data acquisition.

Blank samples of buffer 9 (650 mM arginine-HCl, 400 mM KCl, 10 mM

NaCl, 1 mM EDTA, pH 8.5) were analyzed and were shown to contribute

,1% to the total fluorescence signal at 340 nm, and therefore, experimental

data was reported without subtraction of a blank. Protein samples were at a

concentration of 5.2 mM in buffer 9. Neurosteroids (PS, Sigma; and PregaS,

Steraloids, Newport, RI) were solubilized in 100% methanol to a stock

concentration of 15 mM. To take into account any effects methanol had on

the fluorescence emission spectrum of the GluR2-S1S2 domain, fluores-

cence emission in the absence of quencher was determined in the presence of

the final concentration of methanol, thus allowing for a direct comparison

between samples with and without neurosteroid. Final methanol concentra-

tions up to 6.0% were determined to be acceptable (6).

To construct a Stern-Volmer plot (Table 2 and Fig. 3S in the Supple-

mentary Material), acrylamide (Sigma) ranging in concentration from 39 to

280 mM was added to 5.2 mM GluR2-S1S2 that had been mixed with ligand

at a final concentration of 308 mM PS or 308 mM PregaS. Data was analyzed

as described above for NMDA NR1-1b S1S2.

Each data set consisted of emission spectra from independent scans of at

least three identically prepared samples. The standard deviation (SD) of the

intensity at 340 nm was calculated for each data set based on the three data

points for each protein-ligand mixture, and the error at the 95% confidence

interval was determined as described above.

TABLE 1 Ligand binding affinity to NMDA NR1-1b and AMPA

GluR2 S1S2 domains

NMDA S1S2, EC50 GluR2 S1S2, EC50

PS ND* 316 mMy

PregaS ND* 327 mMz

Spermine 1649 6 135 mM ND*

Spermidine 1052 6 136 mM ND*

Zinc acetate 13.5 6 1.2 mM ND*

In each NMDA NR1-1b S1S2 experiment, the fluorescence emission at 325

nm of 3.75 mM NMDA NR1-1b S1S2 in buffer 3 was probed. Ligands

were used in the following final concentrations: 2–75.0 mM zinc acetate

(320:1–12,000:1 molar ratio ligand/protein), 0.250–50.0 mM spermidine

(66.5:1–13,300:1 molar ratio ligand/protein), and 0.300–50.0 mM spermine

(79.8:1–13,300:1 molar ratio of ligand/protein). In each GluR2 S1S2

experiment, the fluorescence emission at 340 nm of 7.1 mM GluR2 S1S2 in

buffer 9 was probed. Ligands were used in the following final concentra-

tions: 25–1030 mM PS or PregaS (3.5:1–145:1 molar ratio of ligand/

protein). EC50 was determined from a plot of % bound versus log [ligand].

Error is reported at the 95% confidence level.

*No binding detected.
yError estimated as 69.1 mM (6).
zError estimated as 67.0 mM (6).
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RESULTS AND DISCUSSION

PS and PregaS bind to the AMPA GluR2 S1S2
domain, but not to the NMDA NR1-1b S1S2 domain

Intrinsic tryptophan fluorescence emission spectroscopy was

employed to monitor the binding of PS and PregaS to the

GluR2 S1S2 domain (four tryptophans: Trp-460, -671, -766,

-767) and the NMDA NR1-1b S1S2 domain (four trypto-

phans: Trp-498, -731, -768, -792) (Fig. 1S:B-E in the

Supplementary Material). We have previously shown (Table

1 and Fig. 2S:A in the Supplementary Material) that the

GluR2 S1S2 domain binds with approximate equal affinity

to both PS (EC50: 316 mM) and PregaS (EC50: 327 mM)

(6,7). Here we report that neither sulfated neurosteroid binds

to the NMDA NR1-1b S1S2 domain. This latter result is

consistent with the observation that whether PS activates or

inhibits the NMDA receptor depends upon the NR2 subunit

composition, with NR1-NR2A/NR2B combinations being

activated by PS and NR1-NR2C/NR2D combinations being

inhibited by PS (31). In addition, it is in agreement with a

proposed steroid modulatory domain for PS containing part

of the NR2B subunit (8).

Although it has been proposed from electrophysiology

studies that PS and PregaS bind to two independent extra-

cellular binding sites on the NMDA receptor, the location of

the extracellular binding sites have not been defined, nor has

the existence of independent binding sites been shown for

other iGluRs (32). To explore the latter, a Stern-Volmer anal-

ysis was completed for both the wt and three tryptophan

mutants (W460F, W671F, W766/767F) of the GluR2 S1S2

domain (Table 2 and Fig. 3S in the Supplementary Material).

These experiments probe the ability of acrylamide to access

the tryptophan residues of the GluR2 S1S2 domain and

quench their fluorescence emission—with an increase in Ksv

corresponding to an increase in the bimolecular collisional

constant and an increase in accessibility (29,30). Within the

95% confidence intervals calculated, this Stern-Volmer anal-

ysis did not allow for a differentiation of the conformational

changes that take place upon binding of each neurosteroid to

the GluR2 S1S2 domain.

The polyamines spermine and spermidine bind to
the NMDA NR1-1b S1S2 domain, but not to the AMPA
GluR2 S1S2 domain

Spermine was found to bind to the glycine-bound NMDA

NR1-1b S1S2 domain with an EC50 of 1649 6 135 mM,

while spermidine was found to bind with an EC50 of 1052 6

136 mM (Table 1 and Fig. 2S:C-D in the Supplementary

Material). Neither were found to bind to the GluR2 S1S2

domain (in the presence or absence of glutamate) at concen-

trations up to 2.1 mM. Competition binding assays (Table 3)

show that spermine, spermidine, and Zn(II) all have over-

lapping binding sites in the NMDA NR1-1b S1S2 domain.

For example, upon binding spermidine, the solo quenching

of 34.1 6 5.5% resulting from spermine binding is dimin-

ished to 3.4 6 5.6% and the solo quenching of 41.8 6 6.6%

resulting from Zn(II) binding is diminished to �16.7 6

6.9%. In an effort to differentiate the nature of the confor-

mational change to the NMDA NR1-1b S1S2 domain upon

binding to each of the polyamines, a Stern-Volmer analysis

was performed (Table 4 and Fig. 4S:B-C in the Supplemen-

tary Material). The Stern-Volmer constant for iodide quench-

ing of the apo S1S2 domain was determined to be 2.52 6

0.09 M�1, while iodide quenchings of the spermine-bound

and spermidine-bound S1S2 domains were determined to be

1.31 6 0.05 M�1 and 1.36 6 0.05 M�1, respectively. This

indicates that upon binding of either of the polyamines to the

NR1-1b S1S2 domain, the conformational change that

ensues places the tryptophan residues that are quenched by

iodide in less accessible locations. Neither the Ksv values nor

the competition binding assays allow differentiation of the

binding regions or the induced conformational changes of

TABLE 2 Stern Volmer constants (Ksv) of acrylamide

accessibility of wt and mutant GluR2 S1S2 tryptophan residues

Apo (M�1) PS (M�1) PregaS (M�1)

wt 6.29 6 0.22 6.65 6 0.19 6.67 6 0.54

W460F 5.44 6 0.26 5.84 6 0.28 5.28 6 0.17

W671F 5.80 6 0.15 6.31 6 0.29 5.92 6 0.12

W766/767F 6.36 6 0.17 4.82 6 0.25 4.88 6 0.19

Acrylamide ranging in concentration from 39 to 280 mM was added to 5.2

mM GluR2 S1S2 mixed with ligand that was at a final concentration of 308

mM PS or PregaS, and the fluorescence emission at 340 nm was probed.

Data was analyzed using the Stern-Volmer equation F0/F ¼ 1 1 KSV[Q].

Error is reported at the 95% confidence level.

TABLE 3 Competition binding studies of the NMDA NR1-1b S1S2 domain

First ligand added Average (%) quenching Second ligand added Total (%) quenching Quenching (%) due to second ligand

Zinc acetate 41.8 6 6.6 Spermidine 47.3 6 3.9 5.5 6 7.7

Spermine 49.1 6 4.2 7.3 6 7.8

Spermidine 55.0 6 4.1 Zinc acetate 38.3 6 5.5 �16.7 6 6.9

Spermine 58.4 6 3.8 3.4 6 5.6

Spermine 34.1 6 5.5 Zinc acetate 44.9 6 4.9 15.8 6 7.4

Spermidine 57.5 6 4.1 23.4 6 6.9

The fluorescence emission at 325 nm of 3.75 mM NMDA NR1-1b S1S2 in buffer 3 was probed. Ligands were used in the following final concentrations: 33

mM zinc acetate, 1.3 mM spermidine, and 833 mM spermine. Error is reported at the 95% confidence level.
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spermine and spermidine upon binding to the NMDA NR1-

1b S1S2 domain.

It has been suggested that the polyamines, whose biosyn-

thesis is under tight and highly regulated control, appear to

be well suited for regulation of iGluRs (19). Although not

normally found in the synaptic cleft, under certain conditions

polyamine synthesis is upregulated and polyamines are re-

leased into the synaptic cleft where they can interact with the

extracellular surface of iGluRs (33–36). Although the bind-

ing affinities determined for these polyamines (EC50s of

1649 and 1052 mM) are not tight, it has been estimated that

in proliferating cells as well as mature secretory cells that

cytosolic concentrations of spermine and spermidine are at

the mM level (33,34). This data is the first report of poly-

amine binding to the S1S2 domain of an iGluR, and in par-

ticular an NMDA NR1b S1S2 domain, extending the list of

possible extracellular binding sites.

Zn(II) binds to the NMDA NR1-1b S1S2 domain, but
not to the AMPA GluR2 S1S2 domain

Zn(II) was found to bind to the glycine-bound NMDA NR1-

1b S1S2 domain with an EC50 of 13.5 6 1.2 mM (Table 1

and Fig. 2S:B in the Supplementary Material). It was not,

however, found to bind to the GluR2 S1S2 domain (in the

presence or absence of glutamate) at concentrations up to

21 mM. Competition binding assays (Table 3) show that the

Zn(II) binding site on the NR1-1b S1S2 domain overlaps

with that of both spermine and spermidine. Upon binding of

Zn(II), the solo quenching of 34.1 6 5.5% resulting from

binding of spermine is decreased to 7.3 6 7.8% and the

solo quenching of 55.0 6 4.1% resulting from binding of

spermidine is decreased to 5.5 6 7.7%. This overlap sup-

ports the concept of partial overlapping binding sites or com-

mon downstream targets, which have been proposed (9). The

results presented here localize at least one possible over-

lapping binding site to the S1S2 domain of the NMDA

NR1-1b subunit. A Stern-Volmer analysis was performed to

differentiate the conformational change induced upon Zn(II)

binding from that of polyamine binding (Table 4 and Fig.

4S:A in the Supplementary Material). The Stern-Volmer

constant for iodide quenching of the apo S1S2 domain was

determined to be 2.52 6 0.09 M�1, while those of spermine-

bound, spermidine-bound, and Zn(II)-bound S1S2 domains

were determined to be 1.31 6 0.05 M�1, 1.36 6 0.05 M�1,

and 9.33 6 0.15 M�1, respectively. This indicates that while

binding of either of the polyamines to the NR1-1b S1S2 do-

main causes a conformational change that places the trypto-

phan residues that are quenched by iodide in less accessible

locations, the conformational change upon Zn(II) binding

places them in more accessible regions. Since iodide is an

external quencher, this would suggest a more solvent-exposed

and more polar location for the tryptophan residues that are

quenched by iodide upon Zn(II) binding of the NMDA NR1-

1b S1S2 domain. This idea is further supported by the data

in Table 5 (and Fig. 1S:A in the Supplementary Material)

showing the maximum wavelength of emission of both the

apo and ligand bound NMDA NR1-1b S1S2 domains. As

can be seen, the maximum emission is red-shifted by ;8 nm

from 326 to 334 nm upon Zn(II) binding, supporting a con-

formational change that places at least some of the trypto-

phan residues in a more polar environment.

To our knowledge, this is the first report of a low affinity

Zn(II) binding site in the S1S2 domain of any iGluR.

Summary

Although the S1S2 domains from the NMDA NR1-1b sub-

unit and the AMPA GluR2 subunit are 33% identical (54%

homologous) at the primary amino-acid level and have simi-

lar tertiary structures (Fig. 2) (1,4), they have been shown

here to bind to different endogenous modulators. It is in-

teresting to speculate that this difference in ability to be

modulated correlates with difference in function, as AMPA

receptors mediate fast depolarization while NMDA receptors

mediate the slower component of the excitatory postsynaptic

potential. Of particular significance are two findings. The

first is that while PS and PregaS bind to the S1S2 domain of

the GluR2 subunit, neither binds to the S1S2 region of the

NR1-1b subunit. Since it is known that both PS and PregaS

modulate the activity of the NMDA receptor from the extra-

cellular face (32), this leaves the possibility of its binding to

either an extracellular region on the NR2 subunit or an ex-

tracellular interface between the NR1 and NR2 subunits.

The second is that the polyamines spermine and spermidine

as well as Zn(II) bind to the S1S2 domain of the NR1-1b

TABLE 4 Stern Volmer constants (Ksv) of iodide accessibility

to NMDA NR1-1b S1S2 domain tryptophan residues

Apo

(M�1)

Spermine

(M�1)

Spermidine

(M�1)

Zinc acetate

(M�1)

NMDA S1S2 2.52 6 0.09 1.31 6 0.05 1.36 6 0.05 9.33 6 0.15

Iodide ranging in concentration from 25 to 400 mM was added to 3.41 6

0.16 mM NMDA NR1-1b S1S2 mixed with ligand at a final concentration

of 0.5 M spermine, 0.8 M spermidine, or 5 M Zn (II) and the fluorescence

emission at 325 nm was probed. Data was analyzed using the Stern-Volmer

equation F0/F ¼ 1 1 KSV[Q]. Error is reported at the 95% confidence level.

TABLE 5 Maximum wavelength of emission of the apo and

ligand bound NMDA NR1-1b S1S2 domain

Ligand Maximum wavelength (nm)

Apo 326 6 3

Spermidine 325 6 3

Spermine 324 6 2

Zinc acetate 334 6 2

The fluorescence emission at 325 nm of 3.75 mM NMDA NR1-1b S1S2 in

buffer 3 was probed. Ligands were used in the following final concentra-

tions: 75 mM zinc acetate, 2 mM spermidine, and 1 mM spermine.
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subunit, but not to the S1S2 domain of the GluR2 subunit.

While the binding site for all three of these modulators over-

laps, the conformational change caused by Zn(II) binding is

distinct. These findings are important, as they locate pre-

viously unidentified distinct subunit domains to which each

of these modulatory ligands bind. Understanding specific

ligand-receptor binding interactions and the nature of the

resultant conformational change has potential for the rational

design of therapeutics to be used against diseases caused by

iGluR misregulation.
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