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ABSTRACT The electric field-induced translocation of cylindrical particles through nanopores with circular cross sections is
studied theoretically. The coupled Nernst-Planck equations (multi-ion model, MIM) for the concentration fields of the ions in solu-
tion and the Stokes equation for the flow field are solved simultaneously. The predictions of the multi-ion model are compared with
the predictions of two simplified models based on the Poisson-Boltzmann equation (PBM) and the Smoluchowski’s slip velocity
(SVM). The concentration field, the ionic current though the pore, and the particle’s velocity are computed as functions of the
particle’s size, location, and electric charge; the pore’s size and electric charge; the electric field intensity; and the bulk solution’s
concentration. In qualitative agreement with experimental data, the MIM predicts that, depending on the bulk solution’s concen-
tration, the translocating particle may either block or enhance the ionic current. When the thickness of the electric double layer is
relatively large, the PBM and SVM predictions do not agree with the MIM predictions. The limitations of the PBM and SVM are
delineated. The theoretical predictions are compared with and used to explain experimental data pertaining to the translocation of
DNA molecules through nanopores.

INTRODUCTION

We consider two compartments separated by an electrically

insulating membrane equipped with a single pore (Fig. 1).

One of the chambers contains a dilute solution of rigid cylin-

drical, charged particles. In the presence of an appropriate

potential difference between the two chambers, particles

translocate electrophoretically from one chamber to the other

and affect the ionic current through the pore. Through the

particles’ effect on the ionic current, one hopes to detect the

presence of particles inside the pore as well as obtain in-

formation on the particles’ characteristics. This phenomenon

has been utilized in Coulter Counters (1,2) for particle count-

ing and cell sorting and in various biosensors in which

specific binding events increase the apparent diameter of the

particles (3).

Recently, there has been a growing interest in mimicking

nature’s ionic channels and utilizing nanopores to obtain in-

formation on individual molecules such as proteins, DNA,

and RNA. Earlier workers utilized nanopores formed by

proteins in a lipid bilayer membrane to form ‘‘molecular-

scale’’ Coulter counters (see (4) for a review). With the

advent of nanofabrication, various groups (4–16) fabricated

synthetic nanopores and nanotubes and used these solid-

state, nanopore ‘‘microscopes’’ to measure the effect of the

translocating molecules on the ionic current through the

pore. The experimental studies demonstrated that the ionic

current during translocation depends on the voltage bias

across the nanopore (6–10,13,14), the length and the cross-

sectional area of the molecules (6,8–14,27), the thickness of

the membrane (6), the pore size (6,12–15), and the elec-

trolyte bulk concentration (7,9,15,16). When the solvent con-

tains a high salt concentration (thin electric double layer),

typically ‘‘current blockade’’ is observed (6–12). When the

bulk ionic concentration is reduced, both current blockade

and current enhancement are observed during a single mole-

cule translocation (13,14). When the bulk ionic concentra-

tion is low, current enhancement is often observed (15,16).

The objectives of this article are to improve the understand-

ing of these diverse phenomena through continuum simula-

tions and to provide a predictive tool to estimate the effect of

translocating molecules on ionic currents.

To better understand the effect of the electric double layer

on the ionic current during the translocation process, we

study theoretically the translocation of a rigid, cylindrical

particle with a fixed surface charge through a nanopore as a

function of the solution’s bulk concentration, the particle’s

and pore’s sizes, the particle’s location, and the electric field

intensity. To this end, we solve the Nernst-Planck, Poisson,

and Stokes equations (the MIM model) for the ion concentra-

tion in the pore, the particle’s velocity, and the ionic current.

The results of this model are compared with the predictions

of frequently used, simplified models based on the Poisson-

Boltzmann equation (PBM) and on the Smoluchowski slip

velocity (SVM).

The article is organized as follows. Mathematical Model

details the multi-ion model (MIM) that accounts for the po-

larization of the electric double layer; the nonlinear, Poisson-

Boltzmann model; and a model based on the Smoluchowski

slip velocity (17). Numerical Methods describes the numer-

ical procedures and code validation. Results and Discussion

provides the results of the calculations pertaining to the ionic

current when a cylindrical particle translocates axisymmetri-

cally through the pore. The theoretical predictions are
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compared with experimental observations. This is followed

by Conclusions.

MATHEMATICAL MODEL

Consider a charged, cylindrical particle of radius a and

length Lp, having two hemispherical caps of radius a at both

ends (Fig. 1). The particle is submerged in an electrolyte

solution. The solution is confined in a vessel that is separated

by an electrically insulating membrane of thickness h into

two reservoirs, each of radius B and height H. The membrane

is equipped with a single pore of radius b � B and has a

uniformly distributed surface charge of density sm.

We define a cylindrical coordinate system with radial co-

ordinate r and axial coordinate z. The origin of the coordinate

system is at the pore’s center. The surfaces jzj ¼ H and r¼ B
are sufficiently far from the pore to have little effect on the

translocation process of the particle through the pore. The

surfaces jzj ¼ H are permeable to fluid flow and maintained

at uniform equal pressures. The electrolyte solution at jzj ¼
H is neutral and has its bulk concentration. The surfaces

z ¼ H and z ¼ �H are, respectively, maintained at uniform

potentials f(r,H) ¼ 0 and f(r,�H) ¼ f0. The surface r ¼ B
is insulated, free of charge, and impermeable to fluid flow.

A cylindrical particle is initially placed with its axis

coinciding with the pore’s axis. The location of the particle’s

center of mass is denoted as zp. The particle’s surface is

uniformly charged with charge density sp.

The potential difference f0 induces an electric field that

causes the particle to migrate axially and translocate through

the pore. Due to symmetry, the particle’s center of mass will

move along the z axis (r ¼ 0). We wish to determine the

particle’s velocity and the ionic current through the pore as

functions of the particle’s location, the magnitude of the

potential f0, the geometry, and the solution’s composition.

We assume that the continuum equations provide a rea-

sonable description of the physics associated with the trans-

location process, and we focus on steady-state conditions.

Below, we will use a number of models that are applicable

for various ranges of problem parameters. The first model,

dubbed the multi-ion model (MIM), consists of the Nernst-

Planck equations and accounts for the effect of the external

electric field and convection on the ions’ concentration field.

The second model assumes that the ions obey the Boltzmann

distribution. This model is based on the Poisson-Boltzmann

equation (PBM). The third model does not account for the

ion distribution explicitly, but rather replaces the effect of the

electric double layer with a slip velocity at charged surfaces.

We refer to this model as the Smoluchowski velocity model

(SVM).

The multi-ion model (MIM)

The multi-ion model (MIM) consists of the ion conservation

equations, Poisson’s equation, and the hydrodynamic equa-

tions for a viscous, incompressible fluid. Assuming quasi-

steady state and no chemical reactions, the ionic conservation

for species i requires that the flux (N
*

i) is divergence-free:

= � N
*

i ¼ 0: (1)

In the above,

N
*

i ¼ �Di=ci � zimiFci=f 1 ciu
*
: (2)

Di is the molecular diffusion coefficient, ci is the ionic

concentration, mi is the ion mobility, zi is the valence, F is the

Faraday constant, and u* is the flow velocity. The first,

second, and third terms in Eq. 2 correspond, respectively, to

diffusion, migration, and convection. In the above, we as-

sume that the diffusion coefficients and mobilities are uni-

form throughout the domain and neglect confinement effects.

The potential f satisfies the Poisson equation

=
2
f ¼ �+

K

i¼1
Fzici=e; (3)

where e is the fluid’s dielectric constant. Here, we assume

that e is uniform. The summation carried over K species repre-

sents the net charge density in the solution.

Since typically the Reynolds number associated with elec-

trophoretic flows is very small, we neglect the inertial terms

in the Navier-Stokes equation, and model the fluid motion

with the Stokes equation,

m=
2 u
*� =p� F +

K

i¼1

zici=f ¼ 0; (4)

and the continuity equation for an incompressible fluid,

= � u* ¼ 0: (5)

In the above, p is the pressure and m is the fluid’s dynamic

viscosity. The first, second, and third terms in Eq. 4 repre-

sent, respectively, the viscous, pressure, and electrostatic

forces.

FIGURE 1 A schematic depiction of the computational model.
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To complete the mathematical model, we need to specify

the appropriate boundary conditions. The boundary condi-

tions associated with the electric field are f(r,H) ¼ f(r,�H)

�f0 ¼ 0, specified electric charge densities on the particle’s

and the membrane’s surfaces, and insulation condition
n* � =f ¼ 0 at r ¼ B, where n~ is an outwardly-directed unit

vector normal to the surface. The boundary conditions as-

sociated with the Nernst-Planck equation include specified

concentrations at the top and bottom boundaries ci(r,H) ¼
ci(r,�H) ¼c0

i and zero flux at all impermeable surfaces,

N
*

i � n* ¼ 0: (6)

The boundary conditions for the flow field are specified

pressures at the top and bottom boundaries

pðr;HÞ ¼ pðr;�HÞ ¼ 0; (7)

zero velocities at all solid boundaries other than the particle’s

surface, and

u~¼ upe~z (8)

on the particle’s surface. In the above, up is the vertical

velocity of the particle’s center of mass. The velocity up is

determined by requiring the total force in the z direction (FT)

acting on the particle

FT ¼ FE 1 FD ¼ 0; (9)

where

FE ¼
ZZ

S

sp � ð�@f=@zÞdS (10)

and

FD ¼ �
ZZ

S

ðmð@v=@r 1 @u=@zÞ � nr

1 ð2m@v=@z� pÞ � nzÞdS

(11)

are, respectively, the electrostatic and hydrodynamic forces

acting on the particle. S is the particle’s surface; u and v are,

respectively, the r and z components of u~; and nr and nz are,

respectively, the r and z components of n~. In the above, we

assume that the induced charges in the particle are negligible

compared to the assigned surface charge sp.

The current density

i
* ¼ F +

K

i¼1

zið�Di=ci � zimiFci=f 1 ciu
*Þ: (12)

By integrating the Eq. 12 over the cross-sectional area of the

pore, we obtain the total current through the pore.

The Poisson-Boltzmann model (PBM)

When the external electric field (potential c) is weak relative

to the field induced by the surface charges (potential u), one

can employ the classical treatment (17) of electrophoresis,

which assumes that the electric field can be described as a

linear superposition of the potentials c and u, i.e., f¼ c 1 u,

and that the ions’ concentrations satisfy the Boltzmann

distributions

ci ¼ c
0

i expð�ziFu=ðRTÞÞ; (13)

where R is the universal gas constant, T is the temperature,

and c0
i is the bulk (far field) concentration of the ion of type i.

The potential associated with the surface charges is given by

the Poisson-Boltzmann equation:

=
2u ¼ �+

K

i¼1
Fzic

0

i expð�ziFu=ðRTÞÞ=e: (14)

Along the particle and membrane surfaces, the potential u
satisfies, respectively,

�e n
* � =u ¼ sp (15)

and

�e n
* � =u ¼ sm: (16)

At all other solid boundaries, n* � =u ¼ 0 and u(r,�H) ¼
u(r,H) ¼ 0. The external electric potential satisfies the

Laplace equation

=
2
c ¼ 0 (17)

with c(r,�H) � f0 ¼ c(r,H) ¼ 0 and =c � n* ¼ 0 at the sur-

faces of the particle and the membrane.

The corresponding Stokes equation becomes (18)

m=
2u
*� =p�+

K

i¼1
Fzic

0

i expð�ziFu=ðRTÞÞ=ðc 1 uÞ ¼ 0:

(18)

The boundary conditions for the flow field are the same as in

the MIM.

The Smoluchowski velocity model (SVM)

When the thicknesses

lD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eRT=+

K

i¼1
F

2
z

2

i c
0

i

q
(19)

of the electric double layers adjacent to the particle and

the membrane are very small, it is not practical to resolve the

electric double layer with numerical simulations. Instead, the

motion of the liquid next to the particle and the solid

boundaries is approximated with the Smoluchowski electro-

osmotic slip velocity. In other words, when (a/lD)� 1, the

difference between the fluid’s velocity at the ‘‘edge’’ of the

electric double layer and the particle’s velocity at any point

on the particle’s surface is given by the slip velocity US ¼
�ezp E

*
=m, which is independent of the particle’s shape (19).

In the above, the zeta-potential zp on the particle’s surface

corresponds to the potential u in the PBM, and it relates to

the surface charge by the formula (20):

sp ¼ 2eRTsinhðFzp=ð2RTÞÞ=ðFlDÞ

3 1 1 ðK2

1ða=lDÞ=K
2

0ða=lDÞ�1Þ=cosh
2ðFzp=ð4RTÞÞ�1=2

:
h

(20)
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In the above, K0 and K1 are, respectively, the zero-order and

the first-order modified Bessel functions of the second kind.

The applied electric field is E
* ¼ �=c, where c was defined

by Eq. 17.

In the framework of the SVM approximation, the particle

and its adjacent double layer are considered as a single entity,

and the fluid motion outside the electric double layer is de-

scribed by the Stokes equation without any electrostatic body

forces:

m=
2 u
*� =p ¼ 0: (21)

In other words, all the electrodynamic effects induced

by the surface charges are incorporated in the slip velocity

boundary conditions. The liquid’s velocities adjacent to the

particle and membrane surfaces are, respectively,

upe~z � ezpðI� n
*

n
*Þ � E

*

=m (22)

and

�ezmðI� n
*

n
*Þ � E

*

=m: (23)

In the above, I is the unitary tensor, and zm is the zeta-

potential of the pore’s surface. According to Newton’s third

law, the total force acting on the particle together with its

adjacent electric double layer is

FD ¼ 0: (24)

Equation 24 is used to determine the unknown particle’s

velocity up.

The multi-ion model accounts for the deformation and the

polarization of the electric double layer, and it is valid for all

thicknesses of the electric double layer. The PBM neglects

the deformation of the electric double layer due to convec-

tion and polarization and assumes that the ions satisfy the

Boltzmann distribution. The PBM model does not require

one to compute the ionic concentration fields; consequently,

it reduces significantly the computational complexity. One

would expect that the PBM would provide reasonable

predictions when the external electric field is relatively small

compared to the electric field induced by the surface charges.

Both the MIM and PBM require one to determine the electric

double layer. When the thickness of the electric double layer

is very small (lD � a,b), it is impossible to provide a

sufficiently fine mesh to resolve the electric double layer, and

the SVM provides a great simplification in the computational

effort. Below, we will compare the predictions of the various

models. An agreement between the MIM, PBM, and SVM in

the limiting cases when all three are applicable will provide

us with a means to verify the numerical code.

Dimensionless form of the various
mathematical models

In what follows, we consider a binary, symmetric electrolyte

such as KCl aqueous solution (z1 ¼ 1 and z2 ¼ �1). It is

convenient to normalize the various variables. We use the

bulk concentration c0 as the ion concentration scale, RT/F as

the potential scale, the pore’s radius b as the length scale,

U0 ¼ c0RTb/m as the velocity scale, and mU0/b as the pres-

sure scale. The dimensionless governing equations of the

multi-ion model are

= � ð�D
�
i =c

�
i � ziD

�
i c
�
i =f

�
1 Pec

�
i
u
*�Þ ¼ 0; (25)

=
2
f
� ¼ �ðc�1 � c

�
2Þ=ð2ðl

�
DÞ

2Þ; (26)

and

=
2 u
*� � =p

� � ðc�1 � c
�
2Þ=f

� ¼ 0: (27)

Variables with superscript * are dimensionless. In the above,

D�i ¼ Di=D1, Pe ¼ U0b=D1 is the Peclet number, and l�D ¼
lD=b is the dimensionless thickness of the electric double

layer. The dimensionless current density normalized with

FD1c0=b is

i
*� ¼ +

K

i¼1
zið�D

�
i =c

�
i � ziD

�
i c
�
i =f

�
1 Pec

�
i
u
*�Þ: (28)

Similarly, the dimensionless equations of the PBM are

=
2u� ¼ sinhu�=ðl�DÞ

2
; (29)

=
2
c
� ¼ 0; (30)

and

=
2 u
*� � =p

�
1 2sinhu�=ðc�1 u�Þ ¼ 0: (31)

The dimensionless momentum equation for the SVM is

=
2u
*� � =p

� ¼ 0 (32)

with the slip velocity boundary conditions

u
�
pe~z � ezpðI� n

*
n
*Þ � E

*�
=ðc0Fb

2Þ (33)

and

�ezmðI� n
*

n
*Þ � E

*�
=ðc0Fb

2Þ (34)

on the particle’s and membrane’s surfaces, respectively.

NUMERICAL METHODS

The solution process is complicated by the fact that the particle’s velocity up

is not known a priori and needs to be obtained as part of the solution. In the

next two subsections, we describe briefly the algorithms used to obtain the

particle’s velocity. The section concludes with a brief description of code

verification.

Determination of the particle’s velocity with MIM

In the MIM, the ion mass transport and the momentum transport are coupled.

The flow field affects the ionic concentration through convection, and the

ionic concentration affects the flow field through the electrostatic force. To

determine the particle’s velocity, we need to solve the force balance Eq. 9.

We start with an initial guess up¼ u0
p for the particle’s velocity, and compute

the various fields and forces. The resulting forces are not likely to satisfy the

force balance Eq. 9, and it is necessary to correct the initial guess. To

compute the correction dup, we use the Newton-Raphson algorithm:
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FTðun

p 1 dupÞ ¼ FTðun

pÞ1 @FT=@up 3 dup ¼ 0: (35)

The process is repeated with un11
p ¼ un

p 1 dup until the changes in the

computed velocity are insignificant. This process typically converges within

fewer than five iterations.

Determination of the particle’s velocity with PBM
and SVM

In the PBM and SVM, the equations for the electric field are decoupled

from the momentum equation and can be solved without knowledge of the

particle’s velocity up. Furthermore, the momentum equation is linear, and

one can use superposition. To this end, we decompose the velocity field into

the electroosmotic-induced velocity field (u
*

1) and particle-induced velocity

field (u
*

2):

u
* ¼ u

*
1 1 upu

*
2: (36)

The pressure field is decomposed in a similar way:

p ¼ p1 1 upp2: (37)

In the PBM, u*1 satisfies Eq. 18 with zero (nonslip) velocity at all solid

boundaries. The second velocity component u*2 satisfies Eq. 18 without the

electrical body force. The value u*2 satisfies unit velocity boundary condition

on the particle’s surface (u
*

2 ¼ e*z) and zero (nonslip) velocity at all other

solid boundaries. The particle’s velocity is determined from the force

balance:

FE 1 F
1

D 1 F
2

Dup ¼ 0: (38)

In the above, F1
D and F2

D are, respectively, the z-direction hydrodynamic drag

forces on the particle resulting from the flows u*1 and u*2. We use a similar

technique to determine the particle’s velocity in the SVM.

Code verification

The computations were carried out with the finite-element, multiphysics

program FemLab (COMSOL AB, Stockholm, Sweden). We used a nonuni-

form grid with a higher concentration of elements in the electric double layer

regions. We verified that the numerical solutions were convergent, inde-

pendent of the size of the finite elements, and satisfied the various conservation

laws. The total electric current was computed at the lower and upper surfaces

and through the pore’s cross section. All three current values agreed within

0.01%.

The predictions of the MIM, PBM, and SVM were compared and found

to be in excellent agreement in the limiting cases when all three models are

valid. See Thin Electric Double Layer for additional details.

We have performed several tests to ensure the validity of the MIM

solutions. In one instance, we calculated the coaxial electrophoretic motion

of a spherical particle of radius a in a long cylindrical tube of radius b when

the thickness of the electric double layer is significant. Fig. 2 compares the

results of our calculations (circles) with the approximate solution of Ennis

and Anderson (22) (solid line) that was derived using the Poisson-

Boltzmann equation and the method of reflections. The figure depicts the

normalized velocity of the sphere as a function of the radii ratio a/b when

a/lD � 1, zm ¼ 0, and zp ¼ 1 mV. The velocity of the sphere is normalized

with Uep¼ ezpEz/m. When a/b , 0.2, the MIM solution (circles) agrees well

with the approximate analytical solution (solid line). When a/b increases, the

precision of the reflection method deteriorates and so does its agreement

with the numerical solution.

RESULTS AND DISCUSSION

In this section, we present the results of our numerical com-

putations and compare them with experimental data. All the

available experimental data pertains to the translocation of

single- and double-stranded DNA molecules. The structure

of the DNA molecule is considerably more complex than

that of the rigid, cylindrical particle that we are considering

here. Nevertheless, as we shall see below, our simple model

captures many of the phenomena observed in the experi-

ments. This may be due, in part, to the large persistence

length of the double-stranded DNA, ;50 nm, which is much

larger than the pore’s radius and height, and which allows us

to consider the DNA as a rigid object.

In experiments, one typically measures the ionic current

(I) as a function of time as the particle translocates through

the pore. DI ¼ I–Ib is the deviation of the current from the

base current Ib when the particle is far from the pore. We

define the normalized current deviation x ¼ DI/Ib, and we

will present many of our results in the form of x as a function

of the particle’s location z�p, where z�p ¼ zp=b.

Thin electric double layer

First, we investigate the case of a thin EDL. We consider a

pore of radius b ¼ 5 nm and membrane thickness h ¼ 5 nm.

The particle’s radius a ¼ 1 nm and its length Lp ¼ 20 nm.

The particle carries a surface charge of density sp ¼ 7.65 3

10�3 C/m2, and the membrane is not charged (sm ¼ 0). The

two reservoirs have heights H¼ 60 nm and radii B ¼ 40 nm,

and are filled with 1 M KCl solution at 300 K. The mag-

nitudes of H and B are chosen large enough so that further

increases in H and B had little effect on the computational

results, but small enough so as not to tax computer memory

too heavily. A bias potential of f0 ¼ 120 mV is imposed

across the top and bottom boundaries. The positively charged

particle is driven toward the cathode (in the positive z
direction).

FIGURE 2 Relative mobility of a sphere moving coaxially in a long

cylindrical tube as a function of the ratio of the sphere and the tube radii. The

z-potentials along the surfaces of the sphere and the cylindrical pore are,

respectively, 1 mV and 0. The value a/lD � 1. The solid line and symbols

correspond, respectively, to the approximate analytical solution of Ennis and

Anderson (22) and to the MIM predictions.
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Fig. 3 a depicts the relative ionic current deviation x as a

function of the particle’s location z�p when the bulk ion con-

centration c0¼ 1 M. The corresponding electric double layer

thickness is lD ¼ 0.3 nm. It is convenient to express the

thickness in terms of the gap width. Accordingly, we define

a ¼ lD/(b�a). Here, a ¼ 0.078. The solid line, dashed line,

and circles correspond, respectively, to the predictions of the

MIM, PBM, and SVM. When the particle is far from the

pore, the ionic current is nearly at its unperturbed free pore

value (x ; 0). As the particle translocates through the pore,

x decreases, attains a minimum (xmin ; �0.018) when

z�p ; 0, and then increases again. This reduction in the ionic

current is known as blockade-current.

Many authors (2,12,23) attribute the current reduction

to the particle’s presence in the pore reducing the cross-

sectional area available to the ionic current flow and thus

increasing the electric resistance by DRS. Accordingly, the

resistance

RS ¼
Z H

�H

dz=AðzÞ
� �.

KN
; (39)

where A(z) is the cross-sectional area available for current

flow, and KN is the bulk solution conductivity and

xmin ¼ �DRs=Rs ¼ �ha
2½B2ðB2 � a

2Þ=ðb2 � a
2Þ � b

2�=
½ð2H � h� LpÞðB2 � a

2Þb2
1 LpB

2
b

2

1 hB
2ðB2 � a

2Þ�:
(40)

In our case, Eq. 40 yields xmin ; �0.03, which greatly

underestimates the MIM’s prediction. This discrepancy can

be attributed to the fact that Eq. 39 does not account for the

intensification of the electric field in the gap between the

particle and the pore. In fact, the increase in the electric

field’s intensity is likely to compensate for most, if not all, of

the blockade-effect. The actual reduction in the ionic current

is a result of edge effects. Not surprisingly, when the current

reduction is estimated from the solution of the Laplace equa-

tion for a conductive medium with the same bulk conduc-

tivity as our electrolyte solution and the corresponding

geometry, one finds xmin ; �0.018.

Fig. 4 a depicts the corresponding particle’s velocity (cm/s)

as a function of the dimensionless location of the particle’s

center of mass z�p. As the particle approaches the pore, the

electric field’s magnitude increases and so does the particle’s

velocity. The particle attains its maximum velocity when z�p ¼
0. The solid line, dashed line, and circles correspond, re-

spectively, to the predictions of the MIM, PBM, and SVM.

Since a� 1, the presence of the particle in the pore does not

alter significantly the ion distribution inside the pore, and the

results of the three models are in good agreement. Thus,

under the above conditions, the SVM is applicable.

The computational efficiency of the SVM facilitates the

simulation of the translocation of relatively long particles

with thin electric double layers. Next, we use the SVM to

simulate the experiments of Li et al. (6). The experimental

setup consisted of 0.3-mm high chambers with a radius of

1.5 mm, a nanopore of 1.5-nm radius and 5-nm thickness,

and a 120-mV potential bias across the electrodes. The 3-kb

translocating dsDNA with an approximate radius of 1 nm, a

length of 1 mm, and an aspect ratio of 103 was submerged in

FIGURE 3 The ionic current deviation x as a function of the dimension-

less particle’s location z�p when (a) c0¼ 1 M, sp¼ 7.65 3 10�3 C/m2, (b) c0¼
0.1 M, sp ¼ 7.65 3 10�3 C/m2, and (c) c0 ¼ 0.01 M, sp ¼ 3.06 3 10�2

C/m2. Note a¼ 1 nm, b¼ 5 nm, Lp¼ 20 nm, H¼ 60 nm, B¼ 40 nm, f0¼
120 mV, and sm ¼ 0. The solid line, dashed line, and circles represent,

respectively, the MIM, PBM, and SVM predictions.
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a 1 M KCl and 10-mM TRIS-HCl buffer (pH¼ 8.0, and a ;

0.08). Given the large disparity of length scales, we simu-

lated a reduced size chamber of 0.6-mm height and 0.3-mm

radius. Numerical experiments indicated that increases in the

chamber’s size beyond the dimensions specified above had

an insignificant effect on the calculations’ results. The large

aspect ratio of the particle also presented a computational

challenge. Therefore, we simulated a cylindrical particle

(with two spherical caps) with a radius of 1 nm and a length

of 50 nm (�pore thickness of 5 nm). We will show in The

Effect of the Particle’s Length that once the particle’s length

exceeds a certain threshold, both xmin and the particle’s maxi-

mum velocity are insensitive to the particle’s length. The

calculated base current Ib¼ 1730 pA, the blockade current is

1100 pA, xmin ¼ �0.36, and the average particle velocity is

0.81 cm/s. The experimental ionic current as a function of

time is qualitatively similar to Fig. 3 a, which depicts the

ionic current as a function of the particle’s location (in the

interest of space, we did not reproduce a figure depicting

current as a function of time). In the experiment, the base

current was 1430 6 20 pA, the blockade current was 1310 6

15 pA, xmin ¼ �0.084 6 0.02, and the average velocity was

0.85–1.13 cm/s. The computational results are of the same

order of magnitude as the experimental observations. The

deviations between the experimental observations and the

theoretical predictions can be attributed, in part, to the com-

plexity of the DNA molecule, which was not captured in the

numerical simulations and, in part, to underestimation of the

pore’s size (23). The reported pore geometry is interpreted

from transmission electron microscope images. These images

are, however, two-dimensional projections of the pore and

capture the smallest dimensions of the pore along its length.

In fact, the nanopores are often elliptical in cross section

rather than circular, and typically have a conical shape along

their length. Hence, the reported pore dimensions are an

underestimate of the pore’s true dimensions, and therefore

the experimental jxminj is smaller than the computed one.

The fact that the measured translocation velocity is nearly the

same as the predicted one indicates that the translocation

process is governed by a balance between the electrostatic

and viscous forces and that, in this case, the entropic effects

associated with the coiling of the molecule do not play a sig-

nificant effect. This is perhaps due to the persistence length

of the molecule being much larger than the pore’s diameter,

the stretching of the molecule in the electric field, and the

molecule being relatively short.

Thick electric double layer

Fig. 3 b depicts x as a function of z�p when the bulk ion

concentration c0 ¼ 0.1 M, lD ¼ 0.97 nm, and a ¼ 0.24. All

other conditions are as in Fig. 3 a. The solid line, dashed line,

and circles correspond, respectively, to the predictions of the

MIM, PBM, and SVM. The PBM and SVM predictions are

in excellent agreement; but they deviate somewhat from the

MIM’s predictions. The PBM and SVM predict only current

blockade and are similar to Fig. 3 a while the MIM predicts

current blockade along most of the particle’s path, but

current enhancement when 2.4 , z�p , 4. This difference is

due to the electric double layer significantly affecting the ion

FIGURE 4 The translocation speed of the particle as a function of the

particle’s location z�p when (a) c0¼ 1 M, (b) c0¼ 0.1 M, and (c) c0¼ 0.01 M.

The simulation parameters are the same as in Fig. 3. The solid line, dashed

line, and circles represent, respectively, the results of MIM, PBM, and SVM.
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distribution inside the pore. The particle’s locations at the

current minimum and maximum correspond, respectively, to

the upper and lower ends of the particle coinciding with the

center of the pore. The behavior depicted in Fig. 3 b is similar

to the experimental observations of Heng et al. (14). When

they were measuring the ionic current of 100 bp dsDNA

translocating through a 3.5-nm diameter pore (1 M KCl

concentration and 200 mV bias), Heng et al. observed (Fig. 3

in their article) that the ionic current had a ‘‘positive spike’’

immediately before the particle cleared the pore—quite simi-

lar to the one depicted in Fig. 3 b. The continuum simulations

are also in agreement with the results of the Aksimentiev

et al. (13) molecular dynamics simulations. However, to re-

duce the time of the simulations, the molecular dynamic

simulations were carried out at much larger electric field

intensities than those used in the experiments.

The current elevation becomes more pronounced as the

thickness of the electric double layer increases. This effect is

exemplified in Fig. 3 c, which depicts x as a function of

z�p when c0 ¼ 0.01 M, lD ¼ 3.08 nm, sp ¼ 3.06 3 10�2

C/m2, and a ¼ 0.77. The solid line, dashed line, and circles

correspond, respectively, to the predictions of the MIM,

PBM, and SVM. The predictions of the PBM and SVM are

qualitatively similar to the ones depicted in Fig. 3 a and

consist only of a current blockade. The predictions of the

MIM are, however, markedly different. Witness that as the

particle enters the pore, the current declines, attains a mini-

mum at z�p ;�2, increases, attains its undisturbed (free pore)

value at z�p ; 0, increases further above the base current,

attains a maximum value at z�p ; 2, and then declines back to

the base current as the particle clears the pore.

To better understand the reasons for the current enhance-

ment, Figs. 5 and 6 depict, respectively, the distributions of

the dimensionless ionic concentrations of K1 (c1) and Cl�

(c2) when the particle is below (a, zp ¼ �12.5nm), inside

(b, zp ¼ 0), and above (c, zp ¼ 12.5 nm) the pore. When the

positively charged particle enters the pore, the concentration

of the co-ions c1 around the particle (Fig. 5) decreases below

and the concentration of counterions c2 (Fig. 6) increases

above the bulk concentration. When the particle is below the

pore (Fig. 6 a), the co-ions’ z-direction concentration grad-

ient in the pore is negative and the concentration gradient of

FIGURE 5 The distribution of the dimensionless ionic concentration of K1 (c1) when the particle is below the pore, zp ¼ �12.5 nm (a); in the pore, zp ¼ 0

(b); and above the pore, zp ¼ 12.5 nm (c). The simulation parameters are the same as in Fig. 3 c.
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the counterions is positive. The resulting diffusion induces

current in the negative z direction, enhancing the blockade-

effect and reducing the ionic current through the pore. In

contrast, when the particle is above the pore (Fig. 6 c), the

diffusion contributes to an increase in the ionic current.

This enhancement appears to more than compensate for the

blockade-effect. This contribution to the ionic current is

significant only when the electric double layer is relatively

thick.

Fig. 7 depicts the diffusion, migration, and convection

contributions to the ionic current as functions of z�p. Since the

convection’s contribution is very small, the magnitude of the

convection-induced current was multiplied by a factor of

103 to enhance visibility. The dominant migration current

remains positive during the particle’s translocation. The

alteration in the migration current’s magnitude due to the

particle’s presence in the pore is of the same order of mag-

nitude as the diffusive current. The direction of the diffusive

current depends on the particle’s location. When the par-

ticle’s center of mass is below/above the pore’s center, the

diffusive current is negative/positive. The total current re-

sults in a blockade and a hilltop due to, respectively, the

offset and contribution of the diffusive current.

Since neither the PBM nor the SVM account for the varia-

tions in the concentration field, both models fail to predict

the current enhancement.

Fig. 4, b and c, respectively depict the particle’s velocity

as a function of z�p for c0¼ 0.1 M and 0.01 M. The solid line,

dashed line, and circles correspond, respectively, to the pre-

dictions of the MIM, PBM, and SVM. As the bulk con-

centration decreases (the electric double layer’s relative

thickness increases), the discrepancy between the MIM

predictions and the SVM predictions increases. The PBM

predictions are in good agreement with the MIM predictions.

In all cases, the particle attains its maximum velocity when

its center of mass is located at the center of the pore. For the

conditions of Fig. 4 c, the particle’s velocity increases nearly

linearly as a function of the potential difference f0, up,max ;

0.4 f0. As the ion concentration decreases and the thickness

of the electric double layer increases, so does the maximum

velocity of the particle. When c0 ¼ 1 M, 0.1 M, and 0.01 M,

the maximum velocity up,max ; 0.85, 2, and 13.8 cm/s.

FIGURE 6 The distribution of the dimensionless ionic concentration of Cl� (c2) when the particle is below the pore, zp ¼ �12.5 nm (a); in the pore, zp ¼ 0

(b); and above the pore, zp ¼ 12.5 nm (c). The simulation parameters are the same as in Fig. 3 c.
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In yet another experiment, Chang et al. (15) recorded the

ionic current during the translocation of a 200-bp dsDNA

through a silicon oxide nanopore with a radius of 2.2 nm and

a thickness of 50 nm. The particle’s translocation was in-

duced by a potential bias of f¼ 200 mV. Their chamber was

filled with 0.1 M KCl solution with 2 mM Tris buffer with

pH ; 8.5. Under these conditions, the silicon oxide pore is

expected to carry a negative charge (24) of ;�0.0095C/m2.

The surface charge density of the dsDNAs (6) is estimated at

�0.15 C/m2. The ratio a � 0.88 suggests that it is necessary

to use the MIM to simulate the experiment. In the simu-

lations, we specified sp ¼ �0.015C/m2 and sm ¼ �0.0095

C/m2. Fig. 8 depicts the computed ionic current as a function

of the dimensionless particle’s location (z�p). In the simula-

tions, H ¼ 150 nm, B ¼ 40 nm, Lp ¼ 60 nm, and the other

parameters are consistent with Chang et al.’s data. As in

Chang et al.’s experiment, throughout most of the translo-

cation process, the ionic current is above the base value.

Although the simulation results are in qualitative agreement

with the experimental data, there are significant differences

in the current’s magnitude. In the simulations, the current

changed from the open pore value of 100 pA to the maxi-

mum value of 240 pA while the corresponding values in the

experiment were, respectively, 75 pA and 90 pA. The differ-

ence between the predicted and measured open-pore currents

may be due to differences between the modeled and the

actual pore’s dimensions (see earlier discussion) and possi-

bly due to an unmodeled potential drop at the electrodes’

buffer interface. Current enhancement was also observed by

Fan et al. (16). We will discuss their experimental data later

in The Effects of Buffer and Surface Charge Concentrations.

The effect of the particle’s length

Next, we investigate the effect of the particle’s length on the

ionic current. Figs. 9 and 10 depict x0 as a function of the

particle’s normalized length (Lp/h) when a ¼ 0.5 nm, h ¼
5.2 nm, f0 ¼ 120mV, sp ¼ �0.0637 C/m2 (approximate

surface charge density of a single strand DNA molecule),

sm¼ 0, zp¼ 0, and the solution concentration c0¼ 1 M. The

subscript 0 in x0 indicates that x is evaluated at zp ¼ 0. In

Fig. 9, H¼ 36 nm, B¼ 18 nm, b¼ 0.9 nm, and a¼ 0.75. In

Fig. 10, H ¼ 200 nm, B ¼ 100 nm, b ¼ 5 nm, and a ¼ 0.07.

The solid line with diamonds and the dashed line with circles

correspond, respectively, to MIM and SVM predictions.

When a ¼ 0.75 (Fig. 9), the MIM model predicts that as

Lp increases, x0 initially decreases (current blockade), attains

a minimum at ;Lp/h ; 0.5, and then increases to eventually

FIGURE 8 The ionic current through the pore as a function of the

particle’s location z�p. Note a ¼ 1 nm, b ¼ 2.2 nm, h ¼ 50 nm, Lp ¼ 60 nm,

H¼ 150 nm, B¼ 40 nm, f0¼ 200 mV, c0¼ 0.1 M, sp¼�0.15 C/m2, and

sm ¼ �0.0095 C/m2. The simulation parameters are consistent with the

experimental conditions of Chang et al. (15).

FIGURE 7 The ionic currents from diffusion (solid line), migration

(dashed line), and convection (dashed-dot line) as functions of the particle’s

location z�p. The conditions are the same as in Fig. 3 c.

FIGURE 9 The current deviation x0 as a function of the particle’s length.

Note a ¼ 0.5 nm, b ¼ 0.9 nm, h ¼ 5.2 nm, H ¼ 36 nm, B ¼ 18 nm, f0 ¼
120 mV, c0 ¼ 1 M, sp ¼ �0.0637 C/m2, and sm ¼ 0. The solid line with

diamonds and the dashed line with circles represent, respectively, the results

of the MIM and SVM.
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attain positive values (current enhancement). Once Lp/h . 2,

x0 increases very slowly as Lp is further increased. This slow

increase can be attributed to the increasing length of the

electric double layer with its excess ion concentration. In

contrast, the SVM (thin electric double layer) predicts only

current blockade. As Lp increases, the SVM-predicted x0

(dashed line) decreases and attains an asymptotic value once

Lp/h . 1.8. In other words, further increases in the particle’s

length have a negligible effect on the ionic current.

When a ¼ 0.07 (Fig. 10), as the length of the particle

increases, the MIM predicts that x0 decreases, attains a min-

imum at Lp/h ; 2, and then increases slowly. The qualitative

behavior is similar to that depicted in Fig. 9. The SVM

predicts that x0 decreases and eventually attains an asymp-

totic value when Lp/h . 4.

The prediction that the increase in the particle’s length

beyond ;2h has a minimal effect on jx0j is consistent with

Meller et al.’s (10) measurements. They reported two distinct

regimes: when Lp , h, jx0j increased as Lp increased; and

when Lp . h, x0 was nearly independent of Lp. Interestingly,

despite the relatively large value of a (;0.75) in some of

their experiments, Meller et al. observed only current sup-

pression and no current enhancement (under circumstances

when others observed current enhancement with double-

stranded DNA). One possible reason for the difference be-

tween our predictions and Meller et al.’s experiments is that

the single-strand DNA has much smaller persistence length

than the double-stranded DNA, and is less likely to mimic

the rigid cylinder simulated here.

The effects of buffer and surface
charge concentrations

The ionic conductivity can be decomposed into bulk con-

ductivity and a contribution from the ‘‘surface conductance’’

(25,26).

I ¼ ðAK
N

1 SK
sÞpb

2
E: (41)

In the above, A is a shape-factor that describes the re-

duction in the ionic current due to the presence of the particle

in the pore. A is a function of the aspect ratio (a/b) and of the

length of the particle (when the particle is short). S ¼
2(a1lD)/b2 is the ratio of the circumference of the electric

double layer and the pore’s cross-sectional area. KN and Ks

are, respectively, the bulk conductivity (in AV�1 m�1) and

the surface conductivity of the electric double layer (in AV�1).

The base current when the particle is far from the pore,

Ib ¼ pb2KNE, results only from the bulk conductivity of the

electrolyte (assuming a thin electric double layer at the pore’s

surface). Therefore, the normalized current deviation is

x ¼ ðA� 1Þ1 aSDu; (42)

where Du ¼ Ks=ðaKNÞ is the Dukhin number (25). The first

term results from the disturbance induced by the particle. The

second term represents the current elevation resulting from

the excess of ions in the electric double layer, and it depends

both on the electric double layer’s thickness and on the par-

ticle’s surface charge.

The surface conductivity can further be decomposed into

two parts,

K
s ¼ K

s

i 1 K
s

d ; (43)

where Ks
i and Ks

d are, respectively, the surface conductivities

of the Stern layer and the diffuse layer. In our simulations,

we do not account for ion diffusion in the Stern layer, and we

take Ks
i ¼ 0. When the electrolyte is 1:1 with equal diffusion

coefficients, the concentration obeys the Boltzmann distri-

bution, and the zeta-potential is small (26):

Du ¼ 2lDð1 1 2eR2
T

2
=ðmD0F

2ÞÞK2

1ða=lDÞ=ðaK
2

0ða=lDÞÞ

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 s

2

pF
2
l

2

DK
4

0ða=lDÞ=ð4e2
R

2
T

2
K

4

1ða=lDÞÞ
q

� 1
h i

:

(44)

The diffusion coefficients of the ions K1 and Cl� are nearly

identical. D0¼ 2 3 10�9 m2/s. The above expression is valid

only when lD � b� a. When the electric double layer’s

thickness and/or the surface charge increase, so does the

Dukhin number.

Eq. 42 suggests that there is a critical Dukhin number,

D
cr

u ¼ ð1� AÞ=ðaSÞ; (45)

which corresponds to x ¼ 0. When Du . Dcr
u , x . 0 and

current elevation occurs, Du , Dcr
u , x , 0 and current sup-

pression is observed.

To examine the effect of bulk solution concentration on

the ionic current, we computed x0 as a function of the bulk

solution concentration (c0). Fig. 11 depicts x0 as functions of

c0 (upper section) and D�1
u (lower section) when a ¼ 1 nm,

b ¼ 5 nm, h ¼ 5 nm, Lp ¼ 20 nm, H ¼ 60 nm, B ¼ 40 nm,

sp ¼ �0.15 C/m2, sm ¼ 0, and f0 ¼ 120 mV. The hollow

circles and the solid line correspond, respectively, to the

FIGURE 10 The current deviation x0 as a function of the particle’s length

when the radius of the pore is 5 nm. All other conditions are the same as in

Fig. 9. The solid line with diamonds and the dashed line with circles

represent, respectively, the results of the MIM and SVM.
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results of the MIM simulations and the predictions of Eq. 42.

When the bulk concentration is low, the electric double layer

is relatively thick, the Dukhin number is large, and x0 . 0

(current elevation). As the concentration increases, the thick-

ness of the electric double layer and the Dukhin number

decrease and so does x0. When the bulk concentration c0 ¼
0.46 M, Du ¼ 1.19, and x0 ¼ 0. Further increases in the bulk

concentration (reductions in the Dukhin number) lead to

current suppression (x0 , 0). Similar trends are featured by

the approximate expression Eq. 42, albeit the agreement

between the approximation and the full numerical solution is

poor. The discrepancy between simulation and theory can be

attributed to the assumptions of small z-potential (zpF/

(RT)� 1) and thin electric double layer (a¼ lD/(b–a)� 1)

for the Eq. 42. In our simulation, the large surface charge sp

yields large zeta-potentials of the particle. For example,

when c0 ¼ 2 M, zpF/(RT);1.6. As the concentration in-

creases, the value of a decreases and so does the discrepancy

between the MIM results and the analytical predictions.

The theoretical predictions of Fig. 11 are consistent with

the experimental observations of Fan et al. (16), who mea-

sured the ionic current as a function of the bulk solution

concentration when double-stranded DNA translocated in a

silicon oxide tube. At high salt (KCl) concentrations (i.e.,

c0 ¼ 2 M), current blockade was observed. At relatively low

bulk concentrations (i.e., c0 ¼ 0.5 M), current enhancement

was observed.

To examine the effect of the particle’s surface charge sp,

we fixed sm and varied sp from zero to �0.4 C/m2. Fig. 12

depicts the relative current deviation x0 as a function of sp

(upper image) and as a function of D�1
u (lower image) when

a¼ 1 nm, b¼ 2.2 nm, h¼ 50 nm, Lp¼ 60 nm, H¼ 150 nm,

B ¼ 40 nm, f0 ¼ 200 mV, c0 ¼ 0.1 M, a � 0.78, and sm ¼
�0.009 C/m2. The above parameters were selected to mimic

Chang et al.’s (15) experiment. The symbols and solid line

represent, respectively, the MIM solution and the approxi-

mate Eq. 42. Since a in Fig. 12 is relatively large, we do not

expect the approximate Eq. 42 to provide a good prediction

of x0 for large surface charges. As Eq. 42 is valid only for

small z-potentials, we depicted the approximate expression

only in the range �0.1 C/m2 , sp , 0. Witness that as jspj
decreases, the discrepancy between the simulation and

theory decreases. When jspj , 0.05 C/m2, the Eq. 42

provides a good approximation for the MIM results. When

jspj is small, the excess concentration in the electric double

layer is relatively small and current suppression (x0 , 0) is

observed. When the magnitude jspj increases, the excess

concentration in the electric double layer and the Dukhin

number increase and we observe ionic current enhancement

(x0 . 0).

Fig. 13 depicts the particle’s speed U0
P, calculated with the

MIM when zp ¼ 0, as a function of sp (upper section) and as

a function of D�1
u (lower section) under the same conditions

as in Fig. 12. Since the particle is negatively charged, it is

expected to migrate toward the anode (in the negative z
direction). This is, indeed, the case as long as sp , sm.

When sp is close to the value of sm, the particle’s velocity

FIGURE 11 The relative current deviations x0 as functions of the bulk

concentration C0 (upper) and D�1
u (lower). Note a¼ 1 nm, b¼ 5 nm, z�p ¼ 0,

Lp ¼ 20 nm, H ¼ 60 nm, B ¼ 40 nm, f0 ¼ 120 mV, sp ¼ �0.15 C/m2, and

sm ¼ 0. The solid line represents the approximate solution from Eq. 42, and

the circles are the MIM results. FIGURE 12 The current deviations x0 as a function of the surface charge

density on the particle (upper) and as a function of D�1
u (lower). Note a ¼

1 nm, b¼ 2.2 nm, z�p¼ 0, h¼ 50 nm, Lp¼ 60 nm, H¼ 150 nm, B¼ 40 nm,

f0 ¼ 200 mV, C0 ¼ 0.1 M, and sm ¼ �0.009 C/m2. The solid line

represents the approximate solution from Eq. 42, and the circles are the MIM

results.
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goes to zero. When 0 . sp . sm, the electroosmotic flow

induced by the membrane’s surface charge will drive the

particle away from the pore (positive translocation speed),

and the particle will not translocate.

Finally, Fig. 14 divides the parameter space spanned by

lD and jspj into a region in which current elevation (x0 . 0)

and current suppression (x0 , 0) are observed. The solid and

dashed lines correspond, respectively, to the predictions of

the approximate formula Eq. 42 and the results of the MIM

calculations. In Fig. 14, a ¼ 1 nm, b ¼ 5 nm, Lp ¼ 20 nm,

H ¼ 60 nm, B ¼ 40 nm, f0 ¼ 120 mV, and sm ¼ 0. The

approximate solution underestimates the values of lD cor-

responding to x0 ¼ 0. This is due to the assumption used

in Eq. 42 that the thickness of the electric double layer is

much smaller than the width of the gap between the particle

and the pore.

CONCLUSIONS

Using a multi-ion model that accounts for the polarization of

the electric double layer, we computed the effect of a trans-

locating, cylindrical particle on the ionic current through a

pore. When the electric double layer is thin (high bulk solu-

tion concentration), current blockade is typically observed.

The magnitude of the current blockade is roughly propor-

tional to the cross-sectional area of the particle, and the

duration of the blockade is proportional to the length of the

particle. The blockade’s amplitude is independent of the par-

ticle’s length as long as the particle is longer than the pore.

When the membrane’s surface charge is of the same sign and

same magnitude (or larger) as the particle’s surface charge,

the electroosmotic flow induced by the pore’s surface charge

will prevent the particle from translocating and the particle

will not go through the pore. When the electric double layer

is thin, predictions based on the Poisson Boltzmann model

and the Smoluchowski’s slip velocity model are in good

agreement with the results of the multi-ion model.

When the electric double layer is thick, the excess ion con-

centration inside the electric double layer and the polariza-

tion of the double layer contribute significantly to the ionic

current. As a result, one may observe either both current de-

pression and elevation or current enhancement alone during

the translocation process. Models based on the Poisson-

Boltzmann equation and the Smoluchowski velocity fail to

predict the current enhancement phenomenon and are not

appropriate for simulating a particle’s translocation under the

conditions of a thick electric double layer.

The theoretical predictions were compared and qualita-

tively agreed with experimental observations for the trans-

location of double-stranded DNA molecules through synthetic

nanopores. When the cylindrical particles were endowed

with similar charge distributions to those of DNA molecules,

the predicted electrophoretic velocity was in good agreement

with experimental measurements. This suggests that DNA

translocation is dominated by a balance between electric and

viscous forces.

In our simulations, we used exclusively a continuum

model. A few studies found discrepancies between contin-

uum model and Brownian Dynamics model predictions for

transport through ionic channels and concluded that the

continuum model is not appropriate when the Debye length

(lD) exceeds the pore’s radius and when the number of ions

in the pore is very small (28,29). In our case, however, the

number of ions is an order-of-magnitude larger than in the

above studies. Moreover, studies of ion transport in syn-

thetic nanopores reveal a remarkable agreement between the

FIGURE 13 The translocation speed of the particle as a function of the

surface charge density on the particle (upper) and as a function of

D�1
u (lower). All the conditions are the same as in Fig. 12.

FIGURE 14 The dependence of the relative current deviation x0 on the

surface charge density and the electric double layer’s thickness. Note a ¼
1 nm, b ¼ 5 nm, z�p¼ 0, Lp¼ 20 nm, H¼ 60 nm, B¼ 40 nm, f0¼ 120 mV,

and sm ¼ 0. The solid and dashed lines represent, respectively, the

predictions of Eq. 42 and the MIM results.
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experimental data and continuum model predictions

under conditions when the pore’s smallest dimension ranged

from 0.1 to 1 Debye lengths (30–33). MIM continuum

theories have also been successful in predicting ionic

currents through ionic channels (34). Finally, our contin-

uum-based predictions are in good qualitative agreement

with experimental data for DNA translocation and with

predictions of molecular dynamics simulations (13). Hence,

it appears that the MIM model captures the essential physics

of the translocation process. The quantitative differences

between the simulations and the experiments can be

attributed to the complex geometry of the synthetic pore,

which was not duplicated in the numerical simulations.
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