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ABSTRACT Using a coarse-grained elastic model, we examine the bending properties of anti-parallel b-sheets comprised of
uniform amino-acid residues in vacuum as well as in explicit solvent. By comparing the conformational probability of the b-sheet
from molecular dynamics simulations with the same quantities obtained from the coarse-grained model, we compute the elastic
bending constant, k. Equilibrium fluctuations of the b-sheet and its response to external forces are well reproduced by a model
with a uniform isotropic bending constant. An anisotropic bending model is also investigated, although the computed anisotropy
is relatively weak and most of the observed properties are well described by an isotropic model. The presence of explicit solvent
also lowers the bending constant. The sequence dependence of our result and its implications in protein conformational
dynamics are discussed.

INTRODUCTION

In many proteins, structural flexibility is intimately related to

protein function. When a protein binds small ligands or other

proteins, a conformational change can occur and the protein

subsequently assumes a different role. This generic mech-

anism is prevalent in cellular signaling, trafficking, self-

assembly, and force generation. While static structures of

many proteins in various conformational states are available,

quantitative energetics of conformational changes are usu-

ally lacking. The strategy of this article is to develop a

coarse-grained model of protein secondary structures, and

ultimately make contact with a continuum description. In

particular, we examine the elastic property of several proto-

typical anti-parallel b-sheets. Previously, the elastic property

of a b-sheet in F1-ATPase was examined using molecular

dynamics (MD) simulations (1). It was found to be flexible,

and can store several kBT of energy during bending (kB is the

Boltzmann constant and T is 300 K). In the present work, we

introduce a general model to describe b-sheet deformations

and compute the bending constant from MD results. The

methodology is related to our previous study of a-helix elas-

ticity, which computed the helix persistence length (2). We

report that the bending modulus of a b-sheet of glycines is

;5 kBT. A b-sheet of alanines is slightly stiffer, and has a

bending modulus of 7 kBT.

Flexibility of b-sheets has been studied using an informat-

ics approach (3,4) and principal component analysis (4).

These authors noted that there is a difference in the apparent

elasticity between parallel and anti-parallel b-sheets. The

current work takes a different approach, and the quantitative

conclusions are based on the computed strains of b-sheets

during deformations. A model is presented to describe changes

of the protein structure away from the static x-ray structure.

Although we study the elasticity of a particular anti-parallel

b-sheet, the coarse-grained model can describe parallel b-sheets

as well. The differences between these two motifs are dis-

cussed. Other coarse-grained models of proteins such as the

elastic network model (5–9) and multibody dynamics (10–16)

have been proposed to model proteins. These different coarse-

grained models, including our current work, are complimen-

tary in the understanding of protein structural flexibility.

To compute elastic properties of the b-sheets, we examine

equilibrium fluctuations of the structure at room temperature.

By matching the probability distributions of elastic strains

from MD data and the corresponding model, we find the

optimum elastic constants. A similar approach has been used

to obtain parameters in coarse-grained models of proteins

and lipids (17,18). Our approach is designed to make contact

with continuum mechanics, which is ultimately independent

of the discrete nature of the coarse-graining approach.

In the following sections, the basic theory of elastic two-

dimensional surfaces and modifications of the theory to

model b-sheet elasticity are discussed. In the current article

and prior work, we compute the elastic modulus from the

statistical fluctuations of the secondary structures. This ap-

proach is explained in Matching Equilibrium Distributions.

After determining the elastic model, we compute the re-

sponse of the b-sheet to external forces and compare MD

results with model predictions.

THE ELASTIC MODEL

Anti-parallel b-sheets are strands of polypeptide stabilized

by interstrand hydrogen bonds (19–23). The overall structure

resembles a curved two-dimensional surface (1,24–26).

While the interstrand hydrogen bonds can be broken when

the sheet is exposed to water, in proteins b-sheets are

typically shielded from solvents by other secondary struc-

tures. Thus, as in earlier work, we postulate that the low

energy distortions of the b-sheet can be described by

changes in the sheet curvature. There are also phonon modes

in the plane of the sheet; however, these longitudinal motions

do not lead to large conformational changes in proteins.
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There is a large body of work on the physics of two-dimen-

sional elastic materials, originating from early developments

of continuum mechanics. Sophie German, in 1821, proposed

that the work done in bending of a plate is ‘‘proportional to

the integral of the square of the sum of the principal

curvatures taken over the surface.’’ With this assumption,

she was able to explain the nodal lines observed in a

vibrating plate (27). If linear elasticity is assumed and the

strains in the perpendicular direction to the surface is small,

the elastic energy of a homogeneous isotropic thin sheet

without any long-range forces may be written as (28,29)

E ¼
Z

dS
1

2
kðc1ðrÞ1 c2ðrÞ � 2c0Þ2 1 k9c1ðrÞc2ðrÞ; (1)

where dS is an infinitesimal area element. The values c1 and

c2 are principal curvatures of the surface. The value c0 is the

preferred curvature of the surface. The bending moduli, k and

k9, relate the energy change with changes in mean and

Gaussian curvatures, respectively. As discussed by many

authors, Gaussian curvature is a perfect derivative and ac-

cording to the Gauss-Bonnet theorem, integration over the

Gaussian curvature is a constant for surfaces that do not

change their topology (30,31). Note that Eq. 1 does not

include a stretch energy and the surface area is assumed to be

constant. In addition, the preferred curvature, c0, is an aver-

age local curvature and cannot describe situations where the

surface is initially curved by different amounts in different

directions.

To incorporate varying curvature in different spatial direc-

tions, the elastic energy can be expressed in terms of the

normal vectors perpendicular to the surface, n(r) (32),

E ¼
Z

dS
1

2
k +

mn

g
mnð@mn� bmÞ � ð@nn� bnÞ; (2)

where gmn is the curvature tensor and @m is the derivative

with respect to the rm; @mn is the tangent vector in the rm

direction. The value bm is then the preferred tangent direc-

tion. To generalize this expression to nonisotropic surfaces,

it is possible to introduce a bending moduli tensor that ac-

counts for unequal bending energies in the m and n directions

(33). However, direct application of these ideas to b-sheets

requires additional thought. Even though we expect bending

along the amino-acid backbone is perhaps stiffer than bend-

ing perpendicular to the backbone, the backbone constantly

fluctuates. There are no obvious definitions for rm and rn, and

the principal directions of anisotropy are ambiguous. These

factors prevent the straightforward application of Eq. 2.

In the current article, we take an alternative approach and

consider a discretized version of the elastic model. The

b-sheet is represented by a set of triangular elements, a meth-

odology that has been used to study crumpling transition and

simulate surfaces in three-dimensional space (34–39). The

positions of the triangle vertices correspond to carbonyl

oxygens along the polypeptide backbone (Fig. 1). If linear

elasticity is assumed, and there are no long-range forces, the

bending energy can be described by an expression analogous

to Eq. 2. In terms of the unit normal vectors of each triangle,

the bending energy is

E ¼ 1

2
+
n

i¼1

kijti � bij2; (3)

where i labels the edge shared by two triangles; ki is again

the bending constant. The tangent vector is defined as ti ¼
na–na–1, where a labels the triangles in the sheet and the

difference is between neighboring triangles sharing the same

edge. The definition of ti is the discrete version of @nn
appearing in Eq. 2. The value bi is the preferred curvature,

which can be different, depending on i. Note that since na is

always perpendicular to the triangles, ti and bi are always

perpendicular to the edge shared by the neighboring tri-

angles. Equation 3 becomes the standard bending energy of a

two-dimensional surface in the continuum limit.

We note that ki in Eq. 3 is not equivalent to k in Eq. 1. The

relationship is given by ki ¼ kd, where d is a topological

factor. For equilateral triangles, d ¼
ffiffiffi
3
p

(37). The anisotro-

pic property of b-sheets is reflected in the dependence of k

on i, i.e., bending along different edges of the triangle may be

different. If the b-sheet is homogeneous (but not isotropic)

and all triangles behave identically, then we expect at most

three different values of ki, one for each edge. Since b-sheets

studied are comprised of the same residues, all triangles

should behave identically.

In addition to anisotropy, the value of the bending con-

stant also depends on the triangulation scheme. For the pres-

ent article, we examine two different triangulation schemes

(Tri I, Tri II in Fig. 1), and compare the results. Tri I consists

of almost equilateral triangles and therefore most of the re-

sults are reported with this scheme. It is also unclear whether

the elastic model of Eq. 3 applies to b-sheets. Even if linear

elasticity is adequate, long-range forces can introduce cou-

pling between different triangles. A more general linear

elastic energy may apply,

E ¼ 1

2
+
n

i¼1

kijti � bij2 1 +
ij

k9ijti � tj 1 . . . : (4)

Thus, by examining the statistics of tangent vectors, we

aim to answer two questions:

1. Can linear elastic theories such as Eqs. 3 and 4 capture

the deformation properties of the b-sheet?

2. What are the elastic constants in the model?

After developing the model, the response of the b-sheet to

external forces will be computed.

MATCHING EQUILIBRIUM DISTRIBUTIONS

A possible approach for exploring elastic properties of

proteins is directly examining the potential energy function

that specifies the atomic interactions. This is not the
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approach we have taken here. The potential energy land-

scapes of proteins are rough; local behavior tends not to fully

reflect large deformations. Instead, we use molecular dy-

namics data at room temperature to extract elastic properties.

Thus, energies of Eqs. 3 and 4 are free energies and the bend-

ing properties are functions of temperature.

From the MD data, it is not possible to examine the complete

multidimensional probability distribution Pðt1; t2; . . . ; tnÞ.
However, it is possible to examine reduced singlet and

doublet distributions such as P1(ti) and P2(ti, tj), where ti ¼
jtij. These distributions are related to the MD data via the

histogram

P1ðtiÞ}
Z

dq1 . . .

Z
dqNdðti � t̂iðq1; . . . ; qNÞÞe

�bVðq1 ;...;qNÞ;

(5)

where t̂ðq1; . . . ; qNÞ maps the atomic positions of the oxy-

gens to the ith tangent vector; V is the MD potential energy as

a function of all atoms in the sheet. A similar definition exists

for the doublet distribution P2(ti, tj). Since the fluctuations of

the triangles are coupled, and depend on the boundary

conditions on the sheet, it is not possible to obtain analytic

distributions starting from Eq. 3. Our strategy is to compute

the same singlet distributions from the coarse-grained model

using Monte Carlo (MC), and optimize the agreement be-

tween these distributions by fitting the bending constants ki.

The singlet distributions from the middle of the b-sheet will

be used for the optimization. Isotropic and anisotropic bend-

ing constants will be tried. The resulting constants will then

be used to predict the singlet distributions at the edges of the

sheet, and double distributions such as P2(ti, tj). We also

compute the response of the b-sheet under external forces

and assess the quality of the bending constants by comparing

the responses from MD and model predictions.

The existence of long-range interactions among the tri-

angles can be checked by examining the behavior of b-sheets

of different sizes. If triangle elements some distance away

from the edge of interest can influence the bending property,

then the effective bending constant in Eq. 3 becomes renor-

malized. Quantitative estimate of long-range interaction and

k9 requires fitting more parameters, which is not desirable.

We note that there are other ways of extracting the bend-

ing constant. For example, in the Monge representation, if

the z position of a sheet is recorded, then the height corre-

lation function, Æz(x, y)z(x9, y9)æ, is related to the bending

constant and the distance between (x,y) and (x9,y9). In the

FIGURE 1 The b-sheets studied consist of strands

of glycines or alanines. Here, alanines are shown.

Oxygen atoms are used to define vertices of triangle

elements. Bending of the b-sheet is described by

changes in the directions of the normal vectors

(curvature). The minimized structure shows the sheet

is slightly curved. Two different triangularization

schemes, Tri I and Tri II, can be used to describe the

curvature change.
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case of a flat isotropic sheet, analytical predictions are avail-

able. In the present case, with preferred curvatures and pos-

sible anisotropic behavior, there are no analytical results

without resorting to approximations. Thus, numerical com-

parisons must be made. Matching equilibrium distributions

or matching correlations functions are probably equivalent in

terms of accuracy.

RESULTS

The methodologies used in this article are summarized in

Appendix: Simulation Details. We use two types of bound-

ary conditions, BC I and BC II, applied on the oxygens at the

edges of the sheet (see Appendix). The results from BC I and

BC II are both examined.

Equilibrium geometry

After energy minimization with no boundary conditions, we

compute the average equilibrium tangent vectors, bi, for the

similar edges in the glycine b-sheet. Note that bi is an in-

trinsic property of the sheet and must be determined by the

equilibrium structure. Here, we have used bi obtained from

the static minimized structure. An alternative is to use aver-

age tangent vectors from a simulation at 300 K. These two

approaches do not yield very different results. After some

analysis, a distinct pattern characterized by the position of

the edge with respect to the backbone, emerges. For Tri I, the

pattern is shown in Fig. 2. There are 12 similar edges in the

sheet, denoted by bi and b9i. The preferred curvatures, bi and

b9i, are similar to each other in magnitude, although the

directions are not the same. For Tri II, there is also a pattern,

although the values of bi are different. In this work, the pre-

ferred curvatures are inputs in Eq. 3 and are not fitted. The

preferred curvatures are likely to depend somewhat on the

choice of triangle vertex, e.g., nitrogen atoms versus oxygen

atoms. However, the bending constant should be indepen-

dent of such choices.

After heating from the minimized structure, other equi-

librium properties are obtained. Triangles in Tri I are nearly

equilateral where the sides have lengths 4.6 Å, 4.7 Å, and 4.0

Å. At equilibrium, the length of the sides fluctuate slightly

(60.5 Å), therefore the overall area of the sheet does not

change by .2%. The length of the sides also vary slightly

depending on the sequence of the sheet. However, the

fluctuations are invariably small.

Bending constant

Constant temperature Langevin dynamics is used to compute

the equilibrium properties of a glycine b-sheet. To obtain the

probability distributions P1(ti) from MD data, we saved co-

ordinates of every atom at 0.05-ps intervals during the 10-ns

analysis run. In this section we consider the boundary con-

dition where the first and the last strands are fixed in space

(BC I). Corresponding probability distributions are obtained

from Eq. 3 using MC calculations by moving the vertices in

three dimensions (see Appendix).

We first consider isotropic bending, i.e., ki is independent

of i. The singlet probability distributions reach the best

agreement when k ¼ 5 kBT. The comparison between the

coarse-grained model and MD distributions is shown in

Fig. 3. Thus, if we approximate the b-sheet as an isotropic

elastic surface, the bending constant is less than the bending

constant of typical cellular membranes (10–20 kBT) (40–43).

Anisotropic properties of the b-sheet can be obtained by

introducing three different ki values, one for each edge of the

triangle in Tri I. Assuming that the triangles behave iden-

tically, edges with curvatures b1, b91, b2, and b92 are similar;

the bending constant for this group of edges is denoted as k1.

For edges with curvatures b3, b93, b4, and b94, the bending

constant is denoted as k2. For edges with curvatures b5, b95,

b6, and b96, the bending constant is denoted as k3. Different

values of k1, k2, and k3 are tried. After iterative trials, we

found that k1 ¼ 8 kBT, k2 ¼ 8 kBT, and k3 ¼ 2 kBT give the

best agreement. The probability distributions obtained using

these values are shown in Fig. 3. We expect the amino-acid

backbone to be stiffer than the interstrand hydrogen bonds.

However, our results indicate that this is not the case. Here,

k1 and k2 are both larger than k3. The value k3 corresponds

to the edge in between the backbone (Fig. 2). Bending along

this edge is a twist in the backbone. Our results indicate that

this motion along the backbone is quite soft. The other

bending constants, k1 and k2, roughly correspond to bending

perpendicular and parallel to the backbone, respectively.

These two motions appear to be equally stiff. Due to

statistical uncertainty, a range of values give reasonable

FIGURE 2 The equilibrium geometry of the sheet is projected onto a two-

dimensional coordinate system. The equilibrium configuration of a portion

of the b-sheet is determined by the preferred curvatures bi. There are 12

similar edges, labeled by bi and b9i. The preferred curvatures are inputs for

the coarse-grained elastic model.
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agreement with MD and model distributions. These are

k1 ¼ 6–10 kBT, k2 ¼ 6–10 kBT, and k3 ¼ 2–4 kBT. The

probability distributions obtained from anisotropic model is

also not significantly better than those obtained from the

isotropic model, although the fitting error per bin, e, appears

to be smaller (see Fig. 3).

To test the quality of our obtained bending constants, we

use the coarse-grained model to predict the singlet and double

distributions in b-sheet. Fig. 4 shows the singlet distributions

for triangles around the outer edge of the b-sheet. Model

results from uniform bending and anisotropic bending are

compared with the MD results. These results are not fitted

and show good agreement. Additional comparisons are made

by comparing doublet distributions P2(ti, tj). The contour

plots are also shown in Fig. 4. We see that the uniform

bending model and the anisotropic model both give reason-

able agreement with MD data.

We conclude that bending in anti-parallel b-sheets is an-

isotropic. However, the anisotropic model is not overwhelm-

ingly superior. The predicted anisotropy is relatively weak if

Tri I is used. For Tri II, anisotropy is more pronounced and

the uniform bending model is not adequate.

Sequence dependence

The discussion thus far is limited to a b-sheet of all glycines.

Similar computation is carried out for a b-sheet of all ala-

nines. If a uniform bending constant is assumed, we obtain

k ¼ 7.0 kBT, with a fitting error of e ¼ 0.245 pb. Thus,

glycine b-sheets appear to be slightly softer than alanine.

The probability distributions are also less well described by

either the uniform bending model or the anisotropic model

(see Fig. 5). The preferred curvatures, bi values, are also

different for alanine. It is clear that the larger side chain of

alanine is changing the behavior of the sheet. Thus, the bend-

ing constant does depend on the side-chain configuration.

Indeed, the same calculation with a b-sheet of all leucines

give a uniform bending constant of k ¼ 7.5 kBT.

The sequence dependence of the bending constant can be

rationalized by considering interactions between side chains

in addition to bending of the hydrogen-bond network. If the

glycine sheet can be considered as the reference system, the

alanine and leucine sheets can be modeled by

E ¼ E0 1 +
a;a9

Vðna; na9Þ; (6)

where E0 is the energy of Eq. 3 with k equal to that of

glycine. The second term in Eq. 6 is the interaction between

the side chains, which are approximately normal to the tri-

angles. The introduction of additional interactions changes

the local preferred curvature. In addition, our bending results

for alanine and leucine should be interpreted as using E0 with

an effective bending constant to approximate Eq. 6. This

procedure produces a renormalized bending constant. How-

ever, as expected, E0 with a renormalized bending constant

produces quantitatively inferior agreement for the probabil-

ity distributions.

An alternative viewpoint is to consider an elastic plate

with a uniform Young’s modulus, Y. If the strain in the di-

rection perpendicular to the surface is small, it can be shown

that the bending modulus is (44)

k ¼ h
3
Y

12ð1� s
2Þ
; (7)

FIGURE 3 The equilibrium singlet distributions, P1(ti),
from the middle of the b-sheet (solid line) is compared

with the distributions from the model of Eq. 3. Here, the

triangulation scheme is Tri I. The bending constants, ki, are

fitted to obtain the best agreement. When ki is uniform for

all edges (red dashed line), k ¼ 5 kBT (the error is e ¼
0.094 per bin ( pb)). If three different bending constants are

used (green dashed line), k1¼ 8 kBT, k2¼ 8 kBT, and k3¼
2 kBT (e ¼ 0.055 pb).
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where h is the plate thickness and s is the Poisson ratio. For

the sheets studied here, the thickness is 1.8 Å, 4.5 Å, and

11.2 Å for Gly, Ala, and Leu, respectively. We do not find

that the bending constant scales as h3. Therefore, b-sheets

cannot be regarded as a uniform elastic plate.

Long-range correlations

Long-range electrostatic forces are important in proteins.

Within the protein interior, the effective dielectric constant is

lower than the solvent. Long-range forces between different

parts of the b-sheet may influence bending properties. For

a given triangle in the middle of a sheet, the number of

neighboring triangles that influences its behavior will depend

on the sheet size. We find that a seven-strand anti-parallel

b-sheet of all alanines has a bending constant of k¼ 6.5 kBT,

very similar to the five-strand b-sheet result: k ¼ 7 kBT. We

conclude that the long-range interactions are of secondary

importance in b-sheet elasticity. Since the MD simulations

are obtained in vacuum where electrostatic interactions are

dominant, these correlations are probably negligible for a

buried b-sheet in a protein.

FIGURE 4 Representative equilibrium singlet and

doublet distributions, P1(ti) and P2(ti, tj), are compared

with model predictions (dashed lines). The singlet

distributions are from the outer edges of the glycine

sheet. No fitting is performed here. The distributions

from the uniform bending model (red dashed line, e ¼
0.129 and 0.043 pb for singlet and doublet distributions,

respectively) and the anisotropic model (green dashed
line, e ¼ 0.114, 0.063 pb) are compared with the MD

distributions (blue solid line).

b-Sheet Elasticity 1209

Biophysical Journal 92(4) 1204–1214



b-sheets in explicit solvent

The bending constants obtained thus far are for b-sheets in

vacuum. However, explicit solvents do influence the sheet

property. Therefore, the same simulations have been carried

out with TIP3 water molecules for the glycine and alanine

b-sheets. We collect 5-ns simulation data and the same fit-

ting procedure was used to obtain the isotropic bending con-

stant. We found that k ¼ 3.0 kBT for the glycine sheet and

k ¼ 2.5 kBT for the alanine b-sheet. Thus, bending is much

softer in solvent than in vacuum, principally due to screening

effects of the solvent medium. The side chains also affect

the bending constant to a lesser extent.

It should be noted that the b-sheet in explicit solvent is

also much less stable than in vacuum. The strands can fall

apart after 5 ns. In proteins, single b-sheets are not usually

directly exposed to solvent and are protect by other parts of

the protein (45). The effective dielectric environment of the

b-sheets is somewhere in between the solvent and vacuum.

A study with the appropriate dielectric environment is

FIGURE 5 Representative equilibrium

singlet and doublet distributions, P1(ti)

and P2(ti, tj), for the alanine b-sheet. The

MD results (solid line) are compared with

model predictions. The distributions from

the uniform bending model (red dashed

line, e ¼ 0.282 and 0.104 pb for singlet

and doublet distributions, respectively)

and the anisotropic model (green dashed

line, e ¼ 0.305 and 0.096 pb) are

compared with the equivalent MD distri-

butions. The optimal uniform bending

constant is 7 kBT.
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desirable. b-barrels are usually two b-sheets in parallel, and

stabilize each other; therefore, the solvent bending constant

can only be considered as an estimate.

b-sheet under an applied force

To further assess the validity of our coarse-grained model,

we compute the shapes of the alanine b-sheet under an

external load and compare MD and coarse-grained model

results. MD simulations are performed in vacuum on the

b-sheet using Langevin dynamics. After equilibration of the

system under the applied force, the average configuration of

the b-sheet is obtained. The same shape is computed using the

estimated bending constant k in the previous section and

the bending energy in Eq. 3. In this simulation we use a five-

strand b-sheet, and each strand has six Ala residues. We

apply 2 pN and 5 pN to the oxygen atoms in the first strand of

the sheet while the other end of the sheet is held fixed. The

detailed simulation procedure is explained in the Appendix.

Fig. 6 shows the positions of all 25 vertices from MD

and model simulations. The average displacement of the last

strand is 4 and 6 Å, for 2 pN and 5 pN per oxygen, re-

spectively. The average distance, D, between MD and model

vertices as a function of the bending constant is shown in

Fig. 7. Here,

D ¼ 1

N
+
N

i¼1

jrMD

i � rMC

i j; (8)

where rMC
i and rMD

i are atomic positions from MC model and

MD simulations, respectively, and N is the total number of

atoms. There is good agreement between MD results and the

predictions of the coarse-grained model. If Tri I is used and

the uniform bending constant is k ¼ 7 kBT, the average error

D ¼ 1.24 Å for F ¼ 2 pN per oxygen, while D ¼ 1.40 Å for

F ¼ 5 pN per oxygen. Note that there are five oxygen atoms

in the strand. Therefore, the total force applied to the b-sheet

is 10 pN and 25 pN, respectively.

If anisotropic bending constants are used, no noticeable

improvements are seen in the results (D ¼ 1.32 Å for 2 pN

and D ¼ 1.91 for 5 pN). Since the force is applied perpen-

dicular to the amino-acid backbone, we expect that bending

mostly occurs in the edges corresponding to k2 and k3. An

average of k2 and k3 can capture most of the b-sheet re-

sponse. If triangulation scheme Tri II is used, a uniform

bending constant does not predict the sheet response well.

Anisotropic bending constants must be used for Tri II.

Our coarse-grained model can compute the response of the

b-sheet to larger forces. However, MD results show that

larger forces tend to destroy the interstrand hydrogen bonds.

In a protein, other structures may stabilize the b-sheet and

FIGURE 6 The comparison between MD and the

elastic models under an external force. (A) The MD

results when 5 pN per oxygen is applied to one edge

of the b-sheet. The average before and after struc-

tures are shown. (B) The coarse-grained model with

the same force. The results are obtained from Monte

Carlo. (C) The quantitative comparison between the

results. The (x,y,z) positions of all vertices are com-

pared. The x axis of the plot is the index of the vertices.

The circles are the MD results, and the triangles are

the model results.
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prevent unfolding, therefore b-sheets in proteins may sustain

larger forces.

Comparison to the parallel b-sheet in F1-ATPase

Having estimated the bending constant, in principle, we can

predict the elastic energy stored in b-sheets during a protein

conformational change. In Sun et al. (1), one of us showed

that ;6 kBT of elastic energy is stored in the b-sheet in

F1-ATPase as the b-subunit undergoes its hinge bending

motion (46,47). In this subsection, we estimate the elastic

energy of the same b-sheet using our coarse-grained model.

Note that the b-sheet in Sun et al. (1) is a parallel b-sheet.

Therefore, the preferred curvatures and bending constants

are expected to be different. We attempted to compute the

bending constant of this parallel b-sheet using the strategy

outline above. However, parallel b-sheets are unstable in vac-

uum and unfolds easily. Therefore, as an order-of-magnitude

estimate, we use the bending constant of the anti-parallel

sheet, and the preferred curvatures obtained from the bE

subunit of F1-ATPase in the open conformation to param-

eterize our model. This allows us to compute the elastic

energy change as the sheet is closed.

Using Tri I and Eq. 3, and a uniform bending constant of

k¼ 5–7 kBT, we estimate that the energy difference between

the closed and open conformation is 10–14 kBT. This

estimate is larger than the previous result of 6 kBT. Although

we do not expect agreement, the results are within an order

of magnitude. In addition, this result suggests that parallel

b-sheets are perhaps softer than anti-parallel ones, where the

same deformation stores less elastic energy. This is also

consistent with our observation that parallel b-sheets unfold

easily. In proteins, parallel b-sheets are frequently protected

from solvent by other secondary structures, whereas anti-

parallel b-sheets can be exposed to solvent.

DISCUSSION

The main objective of this article is to introduce a discrete

coarse-grained model that describes the bending elasticity of

anti-parallel b-sheets. The model has a smaller number of

variables, and contains the essential properties of the b-sheet.

The model can be used to predict the deformation response

of the b-sheet to external forces. The actual value of the

bending constant in the model is sequence-dependent. For a

glycine anti-parallel sheet, k ¼ 5 kBT best agrees with the

MD result. Other residues such as alanine and leucine give

slightly stiffer structures (k ¼ 7–8 kBT). Using a particular

triangulation scheme, we find that a uniform bending

constant is a reasonable model, although some anisotropic

behavior is observed. The bending constant may also depend

on parameters used by the MD package. Having the bending

constant allows us to make contact with a continuum model

of two-dimensional elastic surfaces (Eq. 1 or 2).

In the present problem, we have not considered possible

shape changes of the triangular elements. The lengths of the

edges are kept within 60.5 Å of the equilibrium length.

Length and shape changes of the triangles are related to the

in-plane phonon modes of the sheet, and are not the focus of

the present article. These internal motions are also not likely

to result in large conformational changes seen in proteins.

The introduced model is unable to describe deformations

where the b-sheet unfolds. It is important to note that un-

folding is very likely when a large force (.30 pN) is applied.

Unfolding is also likely if the force is applied rapidly. In a

protein, however, other secondary structures can help to sta-

bilize the sheet. This raises the question whether the com-

puted elastic constant is relevant for proteins. Our view is

that it is relevant. The overall elastic behavior will be a

composite of the substructures. The elasticity of the b-sheet

will contribute as a component. The bending elasticity of

b-sheet is seen to depend on the physical size of the side

chain, or loops and turns decorating the sheet. Other struc-

tures surrounding the sheet may affect the elastic property as

well. In the current work, we have focused on the ‘‘bare’’

bending constant.

The presence of solvents also changes the elasticity of

secondary structures. Our earlier study on a-helices showed

that the persistence length is lowered by ;25% when the

aqueous solvent is present. In the current work, inclusion of

explicit water also lowered the bending constant substantially.

Thus, the dielectric environment of the protein is important for

protein elastic properties. We note that b-sheets are typically

shielded from solvents. Therefore, a study with a dielectric

environment more typical of protein interiors is desirable.

FIGURE 7 The error between the coarse-grained model and MD results is

shown. The force is applied to the first strand of the alanine b-sheet; 5 pN is

applied to each oxygen atom (vertex) in the strand. The triangulation scheme

is Tri I. The left graph shows the error per vertex for all the oxygen atoms in

the sheet. The right graph shows the error per atom for the first strand of the

sheet where the force is applied. The optimal agreement is reached when k¼
6.0 kBT for the model, consistent with the value obtained from fitting

probability distributions.
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We also have not examined the effects of other structural

motifs on b-sheet elasticity. Structures such as loops and

turns do affect b-sheet stability (48–50). In a coarse-grained

model, these structures will appear as additional terms in Eq.

6 and will change the effective bending constant of the sheet.

If a uniform bending modulus is indeed adequate for de-

scribing b-sheet elasticity, then completely continuum theories

such as Eqs. 1 and 2 can be used to obtain the energetics of

b-sheet conformational change. Note that these theories do

not depend on the choice of the vertex, or the triangulation

scheme. The preferred curvatures bm,v are then functions

capturing the rough equilibrium shape of the sheet. Predic-

tions of bending can be obtained using established contin-

uum methods. Just as our earlier studies of the a-helices (2),

an atom-independent model of protein conformational change

is perhaps possible.

APPENDIX: SIMULATION DETAILS

Bending constant

A part of PDB structure 1PO3 (a b-barrel) is used as the initial structure. We

mutate all residues to glycines (Gly), alanines (Ala), and leucine (Leu). The

number of strands in the sheet is varied between five and seven (see Fig. 1).

We use the CHARMM package version c27b3 (51,52) for MD simu-

lations and VMD (53) for visualization. Parameter file par-all27-prot-na.prm

from c27b3, which contains Ver. 22 (52) of the protein parameter set is used.

The sheet is first examined in vacuum with no surrounding solvent.

In all simulations, an integration step size of 10�15 s ¼ 0.001 ps is used.

We use constant temperature Langevin dynamics with a friction coefficient

g ¼ 50 ps�1. We set CUTNB ¼ 14.0, CTOFNB ¼ 12.0, and CTONNB ¼
10.0 Å for nonbonded interactions.

After minimizing the overall potential energy with no applied boundary

forces, an initial structure of the b-sheet is obtained. The initial structure

provides the preferred curvatures bi values. Before heating, additional con-

strains are used to prevent the atoms at the ends of the b-sheet from falling

apart. Specifically, we fixed the first and the last strand in space (BC I). This

method is analogous to holding a sheet of paper by two sides, and analyzes

the thermal vibrations of the sheet. The magnitude of the vibrations are

related to the bending constant.

We also simulate the system with other boundary conditions for a larger

Ala b-sheet (seven strands, 84 Ala residues). For instance, one end of each

strand is fixed in space, and the other end is left free (BC II).

The system is heated from 0 K to 300 K gradually for 150 ps, i.e., by 20 K

for every 10 ps. The system is equilibrated for 100 ps, and data is collected

for 10 ns.

During the analysis run, the atomic configurations of the b-sheet are

saved every 0.05 ps. The singlet probability distributions of ti are generated

using 200 bins between 0 and 2. The doublet distributions are generated

using 30 bins between 0 and 1 for each variable.

We also simulate the system in explicit solvent. Alanine and glycine

b-sheets are immersed in a periodically replicated rectangular water box.

The preferred curvature, t0, is taken from the minimized structure after

immersing each b-sheet into water. The size of the water box is 37.4 3

37.4 3 37.4 Å3 and 40.4 3 40.4 3 40.4 Å3 for the alanine and the glycine

b-sheet, respectively. The number of TIP3 water molecules is 1633 and

2026, respectively. We set CUTNB ¼ 12.0, CTOFNB ¼ 10.0, and

CTONNB ¼ 8.0 Å. The particle-mesh Ewald method with a cutoff of

k ¼ 0.34 is used in the evaluation of electrostatic interaction. During heating

and equilibration, Langevin dynamics is used to control temperature. The

friction coefficient is set to g ¼ 62.0 ps�1 for oxygen atoms in the water

molecules. After initial equilibration, standard Verlet algorithm is used to

compute the dynamics for the 5-ns analysis stage. We apply SHAKE only to

bonds containing hydrogens. Data is collected and analyzed using the same

procedure as above.

As for the MC simulations, we apply the same boundary conditions as in

MD simulations, i.e., BC I and BC II, when appropriate. The initial structure

is taken from the MD simulation after heating and equilibration. Metropolis

Monte Carlo is used to update the remaining points. First, we change the

(x,y,z) positions of a randomly chosen vertex by a small amount. Then, the

lengths of edges associated with the vertex are computed. If the new edge

lengths are within 60.5 Å of the average length, the new vertex position is

accepted. Otherwise, it is rejected. The average edge lengths from MD

simulations are used. Additional comparisons in the bending energy using

the standard Metropolis algorithm determine the final acceptance. In most

simulations the acceptance ratios is ;20%.

During the 5 3 107 MC iterations, the shape of the sheet is saved every

500 moves. Histograms, P1(ti) and P2(ti, tj), are collected in the same fashion

as the MD simulations.

Force-displacement simulations

We use the five-strand Ala b-sheet for this calculation. An initial structure is

obtained after energy minimization and initial heating. The PULL command

in CHARMM is used to apply a constant force in the same direction. The

direction of the force is parallel to the surface normal vector at the center of

the sheet. First, we fix the oxygen atoms in the last strand of the Ala b-sheet

in space. Then, force (jFj ¼ 2 pN, 5 pN) is applied to each oxygen atom in

the first strand. We compute the response using Langevin dynamics with

g ¼ 50 ps�1. During the 5-ns run, the positions change gradually; after

which they fluctuate around some average value. We average the positions

of the b-sheet atoms during the 5–10 ns analysis run.

For the model calculations, we use the same move algorithm as the pre-

vious section. The following energy is used for the Monte Carlo calculation,

E9 ¼ E� +
5

i¼1

Fi � ri; (A1)

where Fi is the applied force on the ith vertex and ri is its displacement

vector. E is the force free elastic energy of Eq. 3. The number of iterations is

5 3 107. We average the positions of the b-sheet as follows. During the last

1.5 3 107 moves, we compute the average positions of the vertex and their

standard deviations. When the standard deviation is within 20% of the

average position, we start collecting statistics for D.
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