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ABSTRACT We outline a model that describes the interaction of rods that form intertwined bundles. In this simple model, we
compare the elastic energy penalty that arises due to the deformation of the rods to the gain in binding energy upon intertwining.
We find that, for proper values of the bending Young’s modulus and the binding energy, a helical pitch may be found for which
the energy of intertwining is most favorable. We apply our description to the problem of Alzheimer’s Ab protein fibrillization. If we
forbid configurations that exhibit steric overlap between the protofilaments that make up a protein fibril, our model predicts that
fibrils consisting of three protofilaments shall form. This agrees well with experimental results. Our model can also provide an
estimate for the helical pitch of suitable fibrils.

INTRODUCTION

Amyloid fibril formation is a process during which soluble

proteins misfold and aggregate into fibrillar structures. It has

been linked to several diseases, such as Alzheimer’s and

Parkinson’s Disease (1–6). It has been well established that

amyloid fibrils formed from different proteins possess many

common structural features (5–7). One such feature is the

uniform diameter of the fibrils: in a given sample of amyloid

fibrils, the lengths of individual fibrils usually vary strongly,

but their diameters do not (3–5,7).

In an earlier article (8) we presented a statistical-mechanical

model, based on a combination of a model for self-assembly

with a conformational transition (9) and lateral assembly

of filaments into fibrils (10). Applying this model, we could

partially reproduce the experimentally observed unifor-

mity of the fibril diameter. While we did find that thin fi-

brils hardly formed, our model favored essentially limitless

growth in the direction perpendicular to the fibril axis (i.e., a

limitless increase in the fibril diameter). This required us to

introduce an artificial cutoff in the number of filaments that

comprise a fibril. In the current article, we introduce a mech-

anism that inhibits the lateral growth of the fibrils, and that

is potentially very relevant for descriptions of protein fibrilli-

zation.

The optimal number of protofilaments that makes up a

fibril is thought to depend strongly on the geometry of the

interacting protein strands inside a fibril (10,11). This effect,

and particularly the protofilament intertwining, has been

studied in some detail by Nyrkova and co-workers (11). Their

approach presupposes that the protein filaments interact

through specific directional interactions, however, which re-

quires a description that includes detailed knowledge of the

architecture and the mechanical properties of the filaments,

such as their twist, bend, and splay constants. Although this

approach provides a good description of the assembly of a

particular class of biomolecule, in some cases a less elaborate

model may suffice.

We introduce here a simple model that describes inter-

twining of smooth, cylindrical filaments into bundles. Spe-

cifically, we compare an elastic-energy term that measures

the deformation of intertwined rods inside a bundle to their

binding energy. Our approach is based on that proposed by

A. E. Cohen to describe the bundling of carbon nanotubes

(A. E. Cohen, unpublished). We find that our description

provides an explanation for the propensity toward the for-

mation of fibrils with a fixed diameter. In the next section we

define our model in terms of the intertwining of cylindrical

rods. Subsequently, we apply our model to the assembly of

amyloid Ab protein (1,3,5,6). We conclude the article with a

summary of our findings.

Model system: smooth cylindrical rods

Let us start with the simple case of two intertwined smooth

cylindrical rods with radius r and length h. If we assume that

each of the cylinders forms a helix without torsion we can

express the elastic energy (per rod) associated with this de-

formation in terms of the radius of the helix and the rigidity

of the rod,

Eel ¼ hBR
�2
=2: (1)

Here B is the bending constant of the rod, given for a solid

cylinder with a circular cross section as B ¼ Ypr4=4, with Y
the Young’s modulus of the cylinder. In Eq. 1, R is the radius

of curvature of the rod, used to measure the deformation it

experiences when bent into a helical geometry. We assume it

is identical at every point along the rod axis. In the model as

detailed here, we use the straight state (for which R / N) as

the reference state, but our model can easily be generalized to

account for a reference state with a finite curvature. This is
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described in some detail in the section Amyloid Ab Fibrils,

below. In Eq. 1, R is given by

R ¼ rh½1 1 ð p=2prhÞ2�; (2)

with p the pitch and rh the radius of the helix described by the

center of the rod.

Besides the elastic penalty the rods incur, intertwining also

introduces a favorable contribution to the energy of the rods.

This is because the number of sites on the surface of a rod

that interact with the neighboring rod, increases upon inter-

twining. We describe this in terms of an increase in the

length of an effective contact line. This length can readily

be calculated if one uncoils the rods from each other and

straightens them (A. E. Cohen, unpublished). If our assump-

tion that the helical bundle forms without torsion holds, the

contact line must always describe a helix around the straight-

ened rod. Its length is given approximately by

l � h½1 1 ð2pr=pÞ2�1=2
; (3)

where h is again the length of the (straight) rod, r is its radius,

and p is the pitch of the helix. The approximation in Eq. 3

stems from the circumstance that, strictly speaking, the value

of the pitch is slightly different dependent on whether it is

measured along the rod axis or the fibril axis. In practice,

however, it turns out that this difference is negligible if the

rod radius is much smaller than the helix pitch. Combining

Eq. 3 with Eqs. 1 and 2, we can write down the total energy

of intertwining for a bundle of rods, defined as the sum of the

elastic and the interaction energies,

etot ¼
Etot

nh
� B

2
r
�2

h ½1 1 ð p=2prhÞ2��2

1
N

n
eintf½1 1 ð2pr=pÞ2�1=2 � 1g: (4)

We define this intertwining energy, etot, per unit length and

per rod. In Eq. 4, n equals the number of rods that make up

the bundle, while N is the number of rod-rod contacts inside

the bundle, and eint , 0 is the interaction energy per unit

length. It, like all energies in this article, is given in terms of

the thermal energy, kBT, with kB Boltzmann’s constant and T
the absolute temperature. The factor –1 in the last term serves

to compare the energy of the intertwined rods to that of

straight ones. Note that Eq. 4 presupposes that the elastic

energy of each rod is identical. This need not be the case. For

configurations in which the bundle is not symmetrical around

its center, we can generalize Eq. 4 to read

etot �
1

n
+
n

i¼1

B

2
r
�2

h;i ½1 1 ð p=2prh;iÞ2��2

1
N

n
eintf½1 1 ð2pr=pÞ2�1=2 � 1g; (5)

with rh,i the radius of the helix described by the center of the

rod designated i. We assume here that the difference in helix

diameter of the filaments does not influence the length of the

contact line. This assumption is reasonable for small bun-

dles. Also, in our model, we neglect end effects, and assume

that the geometry of the intertwined bundle is identical at

every point along its length (i.e., that there are no defects in

the intertwined state).

Because our interest is ultimately in amyloid fibrils, which

consist of a limited number of so-called protofilaments, we

consider what Eqs. 4 and 5 predict for small bundles of rods.

In Fig. 1, we compare the energy of two intertwined rods to

that for the reference case of two fully straight rods. We plot

here the energy gain upon intertwining (etot in Eq. 4) as a

function of the helix pitch, and find that a minimum may

occur in this curve. This means that an optimum value of the

pitch exists, for which the energy gain is largest. As might

be expected, the value of the optimum pitch and the depth of

the energy-well depend strongly on the bending stiffness of

the rods. After all, for infinitely rigid rods, no intertwining

can occur. Accordingly, we see in Fig. 1 that a large value

of the Young’s bending modulus favors the formation of a

helix with a long period, which decreases with a decrease of

the Young’s modulus. Coupled to the decrease of the pitch,

we see that a decrease of the bending stiffness also causes

the energy-well to become deeper. This is because the elastic

energy penalty (the first term of Eq. 4) is smaller for the

flexible rod, and the gain in interaction energy is larger due

to the circumstance that tighter-wound helical configurations

become possible. A similar trend is observed if we keep the

Young’s modulus constant and instead vary the binding energy

per unit length. For large binding energies, there is again a

clear optimal pitch, whereas for small values, the energy well

becomes shallower, while the optimal pitch increases.

Let us now examine the case where the number of rods is

larger than two. In Fig. 2, we compare three geometries,

shown in cross section on the left-hand side of the figure: one

that corresponds to a bundle of two rods, one that corre-

sponds to a bundle of three, and one that corresponds to a

fourfold bundle. We limit ourselves to the configurations

shown in Figs. 2 and 3, because these are likely the most

FIGURE 1 Energy of intertwining versus pitch, for a bundle of two rods.

We use a value of �10 kBT/nm for eint, and vary the Young’s bending

modulus. The drawn line corresponds to Y¼ 0.5 GPa, the dashed line to Y¼
1 GPa, the dot-dash line to Y ¼ 5 GPa, and the dotted line to Y ¼ 100 GPa.
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favorable ones within the confines of our model. Other

configurations can certainly occur (e.g., one where filaments

placed in a straight line make up a fibril). However, these

configurations contain less than the optimal number of inter-

filament interactions, and can only be the most stable species

if the interfilament interactions are strongly directional in

nature. A description of this type of interaction is beyond

the scope of the current article, and we refer to the work of

Nyrkova and co-workers for a model for this type of ag-

gregation (10,11). We choose the Young’s bending modulus

equal to 1 GPa, and the interaction energy per unit length

equal to �8 kBT/nm. We expect these values to roughly

correspond to those for the Ab protein. As far as we are

aware, neither the Young’s modulus of the protofilament nor

the interaction energy has been measured for this protein.

Therefore, we must estimate these values. The Young’s mod-

ulus likely lies between 0.01 and 10 GPa; these limits cor-

respond roughly to the (macroscopic) moduli of rubber and

wood, respectively. The value of 1 GPa was chosen for con-

venience. Our estimate of the interaction energy stems from

our earlier choice of the lateral-interaction energy per protein

molecule. In our recent article (8), we set this value equal to a

few times the thermal energy. Combined with our estimate

that each protein molecule has a thickness along the fibril

axis of ;0.45 nm (the characteristic distance in a b-sheet),

this leads to an estimate of –6 to –10 times the thermal

energy per nanometer.

Of the geometries pictured in Fig. 2, the bundle comprised

of three rods possesses the lowest energy. This is due to two

effects. Firstly, for this bundle, the factor N/n (the number of

contacts per cylinder) equals unity, rather than one-half for

the twofold fibril. This means that the total interaction energy

per rod becomes larger. For the bundle of four rods, we also

find a value of N/n of unity. The reason why the bundle of

three rods is nevertheless more favorable than that of four is

that its helix has a smaller radius, and hence the elastic

energy penalty of the rods is lower. This trend, where N ¼ 3

gives the most favorable energy, is observed for all inves-

tigated values of the Young’s modulus and binding energy,

although the depth of the energy-well and the value of the

optimum pitch can vary (see Fig. 1).

Going beyond the geometries shown in Fig. 2, we gen-

erally expect bundles to form for which N/n is maximized,

but for which the helix radius is not too large. For our model

FIGURE 2 Energy of intertwining versus pitch, for bundles of rods of the

three geometries depicted. We use a value of 1 GPa for the Young’s modulus

and a value of �8 kBT/nm for eint. Lines correspond to the geometries pic-

tured, as indicated.

FIGURE 3 Energy of intertwining versus pitch, calculated with Eq. 5, for

the three geometries depicted. We use a value of 1 GPa for the Young’s mod-

ulus and a value of �8 kBT/nm for eint. Lines correspond to the geometries

pictured, as indicated.
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system of completely smooth intertwined rods, bundles with

N ¼ 7, with one rod surrounded by six others (N/n ¼ 12 / 7),

or bundles with N ¼ 4, with two rods touching in the center

of the aggregate (N/n¼ 5 / 4), have a slightly more favorable

intertwining energy, and as such, may dominate (see Fig. 3).

These geometries may also play a role in amyloid fibril for-

mation. However, for the protein we discuss in the next sec-

tion, i.e., Ab amyloid protein, it is known that protofilaments

consisting of two ‘‘stacks’’ of protein molecules, and fibrils

containing two, three, or six ‘‘stacks’’ form, dependent on the

protein concentration (12,13).

Amyloid Ab fibrils

It is well known that amyloid fibrils, including those of Ab,

consist of several intertwined protofilaments (7,11,12,14,15).

It has been observed that mature fibrils of the Ab amyloid

protein have a very uniform diameter between 6 and 10 nm,

whereas protofilaments measure 3–5 nm across (1,2,16,17).

Studies have shown that the fibrils likely consist of six stacks

of protein molecules (1,4,13,18), while protofilaments con-

sist of two protein stacks (2,3). This may vary somewhat

with the conditions under which the fibrils form, as fibrils

containing only two or three stacks are observed at low pro-

tein concentrations, and stirring the protein solution has also

been found to affect the structure of the fibrils (12,13,19,20).

Furthermore, it has been found that the two forms of Ab

protein, Ab1-40 and Ab1-42, where the index refers to the

number of residues that makes up the protein, exhibit some

differences in the assembly and structure of their fibrils. Our

model, as described below, is coarse-grained enough that we

can reasonably ignore the distinction between these types of

Ab. In any case, fibrils consisting of six protein stacks appear

to be the largest mature fibrils that have been detected, and as

such they are the most interesting aggregate from our point

of view. Their presence has been observed by x-ray measure-

ments (1), as well as by the determination of the linear den-

sity of the fibrils (13).

We start our study of the aggregation of Ab1-42 protein at

the level of the single protein molecule. It has been estab-

lished that the protein molecules adopt a specific conforma-

tion inside amyloid fibrils (2,3,14,21). This conformation is

depicted in Fig. 4 a. It contains two b-strands (formed by

residues 18–26 and 31–42) and a disordered chain at the

N-terminus (residues 1–17).

Inside the protofilaments, the proteins stack in a parallel and

in-register manner, leading to long intermolecular b-sheets,

known as cross b-sheets (3). These cross b-sheets serve to

stabilize the stacks. Because the residues that make up the

b-strand near the C-terminus (residues 31–42) are quite hy-

drophobic in nature (17), this stacking leads to the formation

of a large hydrophobic patch. It stands to reason that a single

stack may not be stable (12), and that two (or in some cases,

three) of these protein stacks likely associate to minimize the

contact between the hydrophobic residues and the surround-

ing water (3,14). The dimers that are formed in this way are

shown in cross section in Fig. 4, b and c.

The dimeric entities that form by the association of two

protein stacks likely act as protofilaments from which the

mature fibrils can later form. As shown in Fig. 4, b and c,

there are two possible ways in which protofilaments can be

formed from two protein stacks. We presuppose that this

association takes the form shown in Fig. 4 c. This is because

the protein stacks intertwine while forming a protofilament

(3,5,14). This implies that the protein stacks in Fig. 4 b have

opposite helical twist senses. It seems unlikely that this state

would ultimately be a stable one, because of the inherent

(homo) chiral character of the proteins. Indeed, microscopy

studies have shown that the protein fibrils (for a given sam-

ple) all have the same handedness (22). In Fig. 4 c, the two

protein stacks have the same screw sense. Recent studies

indicate that the structure shown in Fig. 4 c is indeed the one

that forms (23,24).

The Ab protofilaments shown in Fig. 4 do not exactly

match the smooth cylinder model introduced in the previous

section. While we may perceive the periphery of the proto-

filament (composed of the moderately hydrophobic residues

18–30 of both proteins) to reasonably resemble a cylinder

without a well-defined preferred direction of interaction, the

hydrophilic, disordered residues 1–17 have to be taken into

account as well. To this end, we treat the protofilaments as

smooth cylinders with a protrusion on either side, as indi-

cated in Fig. 4 c. These protrusions represent the locations

of the origin of the hydrophilic chains, and their size is a

function of the degree of flexibility of these chains. Unlike in

the case of totally smooth cylinders, the side chains hinder

the formation of some structures. This is illustrated in Fig. 5.

Here, we show that, although the protrusions do not hinder

FIGURE 4 (a) Conformation of an Ab protein molecule. Dark colors

indicate hydrophobicity, light ones hydrophilicity. (b,c) Two geometries of

protofilaments.
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the formation of the structures we considered in Fig. 2, larger

fibrils, such as those shown in Fig. 3, are likely repressed due

to steric overlap between the protrusions of one cylinder and

the body of another (see Fig. 5 d). Of course, the degree to

which the protrusions hinder the formation of certain struc-

tures depends strongly on the size of the protrusions (and

hence, on the flexibility of the hydrophilic chains). A detailed,

quantitative study to determine what structures may form for

particles of this shape, for different sizes of the protrusions, is

currently in progress.

Eliminating the structures in which steric overlap neces-

sarily plays a role for each protein molecule, we take into

account only the geometries depicted in Fig. 2. It must be

noted that for these structures, too, steric interactions may

play an important role. This is illustrated in Fig. 6. In Fig. 6

a, we show a cartoon of a protofilament. Because the protein

stacks inside a protofilament are intertwined, the side chains

emerge from the rod in a helical pattern. For an (intertwined)

protein fibril to form without steric hindrance, the pitch of the

intertwining has to match that of this helical pattern. This

means that there exist at least two forces that determine the

pitch of the mature fibril: on one hand, the fibril strives for

the energy minimum and the optimal pitch shown in Figs. 2

and 3, while on the other hand, it must also accommodate

the side chains without steric overlap. The latter condition

implies that the optimum pitch we predict from Figs. 2 and 3

may not be the one that is observed experimentally.

Microscopy studies have shown that the pitch in amyloid

fibrils is usually of the order of magnitude of 100 nm.

Goldsbury and co-workers (12,22) have found an axial peri-

odicity of 25–30 nm (corresponding to a pitch of 50–60 nm)

in fibrils that possess a linear density of ;20 kDa/nm, im-

plying that their pitch is probably comparable to that of our

protofilaments. Malinchik and co-workers (25) find a value

of 36–56 nm (a pitch of roughly 70–115 nm) for fibrils with a

diameter of 7–8 nm, which likely contain two protofilaments.

These values differ significantly, which means that, unex-

pectedly, for these twofold fibrils, the axial periodicity is not

determined by the pitch of the protrusions. This implies that

fibrils with the optimum pitch may be formed in this case.

We speculate that this may be due to local deformations in

the protofilament structure that prevent steric overlap to

occur. We imagine this takes place as sketched in Fig. 6 b.

Here we show a cross section of a twofold fibril at two points

along the fibril axis. The left-hand picture shows the con-

formation where the protrusions of the two protofilaments

are furthest apart. In the right-hand picture, steric overlap

would be expected to take place. However, due to a small

local deformation this may be avoided. A similar mechanism

cannot be at work in fibrils that consist of more than two

protofilaments (Fig. 6 c), because a similar local deformation

would result in steric overlap with another protofilament.

Therefore, we tentatively predict that for threefold (and

larger) fibrils, the protrusions dominate the intertwining, and

a helical pitch should be observed that is comparable to that

of the protofilament, i.e., 50–60 nm. As far as we are aware,

the pitch of threefold fibrils has not yet been determined by

microscopy techniques, possibly because of the relatively high

concentrations required for this fibril type to be observed.

That the formation of a stable threefold fibril with a pitch

of 50–60 nm is in fact possible within the confines of our

model is shown in Fig. 7. Here, we have plotted the inter-

twining energy versus the pitch of the fibril. We have varied

the values of the Young’s modulus and the binding energy

per unit length, in such a way that the optimum pitch for a

twofold fibril corresponds to the experimental value (25) of

70–120 nm (we have taken here 100 nm). We find that this is

the case for a Young’s bending modulus of 0.2 GPa, and an

interaction energy of –10 kBT/nm. When we compare these

values to our earlier estimate, used in Figs. 2 and 3, it would

seem that we overestimated the Young’s modulus of the fila-

ments somewhat in these figures. If we now look at the pre-

dicted behavior of a threefold fibril, we see that a pitch of

FIGURE 5 Interactions of cylinders with protrusions, linked to the places

where the disordered chain emerges from the protofilament. Panels a, b, and

c show geometries in which there is no steric overlap. Geometry d, however,

is forbidden in our model due to steric overlap.

FIGURE 6 (a) Cartoon depicting a protofilament with protrusions, repre-

senting the locations of the disordered residues 1–17. (b) Cross sections

through a fibril consisting of two protofilaments that demonstrates a possible

mechanism by which steric overlap between protofilaments is avoided. (c)

Cross sections through a threefold fibril. Here, the mechanism described for

twofold fibrils does not apply.
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50–60 nm gives an energy that is lower than the minimum

value for the twofold fibril. Under the proper circumstances

(e.g., at relatively high concentrations) our model indeed

leads us to expect the formation of threefold fibrils (corre-

sponding to a fibril containing six protein stacks) with a pitch

of ;50–60 nm.

Note that in our model as outlined here, we assume that the

protofilaments can be reasonably described as straight rods.

While microscopy images and other recent visualizations

lead us to believe that this is likely true for Ab protein

(12,26), it is not necessarily always the case. When the free

protofilaments possess a finite curvature, we need to adjust

our model accordingly. This can be done by replacing the

term R�2 in Eq. 1 with (1/R–1/R0)2, and by changing the

last term in Eq. 4 from –1 to �l90. Here, R0 ¼ rh;0½11

ðp0=2prh;0Þ2� and l90 � ½11ð2pr=p0Þ2�1=2
give the radius of

curvature and the length of the effective contact line (divided

by the protofilament length) in the curved reference state as a

function of the pitch and radius of the helix described by the

free protofilament. It turns out that, for the regime most

relevant to us (a Young’s modulus of the order of 0.1 GPa),

the observed trends do not change, and the threefold fibril is

still the most energetically favorable species. A more detailed

analysis of the effect of a curved reference state on the

aggregation of protein filaments is in progress.

Of course, protein fibril formation is a very complex pro-

cess, and we cannot expect to capture the full physics of the

aggregation in a simple model. Indeed, as already mentioned

above, Ab protein has been observed to form fibrils with

different structures, dependent on the method of preparation.

Another important aspect of the assembly in this protein is

polymorphism (20). Nevertheless, the intertwining energy

and the steric interaction discussed in this article likely play

an important role in the determination of the final diameter

of the fibrils.

The model introduced in this article can potentially be suc-

cessfully applied to any system in which cylindrical filaments

that display no preferred directionality of interaction com-

bine to form intertwined fibrils. If there is a preferred di-

rection of interaction, then other effects need to be taken into

account. Torsion, for instance, plays a large role in this type

of system. For a full description of aggregation and inter-

twining in these systems, we refer to the work of Nyrkova

et al. (11). A similar description has been applied for DNA

(27), whereas a detailed general mathematical model is pre-

sented by van der Heijden (28). An extension of the work

presented here, in which we quantify the role of the pro-

trusions corresponding to the disordered part of the proteins,

is currently in progress.

CONCLUSIONS

A simple model, comparing the elastic and binding energy

contributions for intertwined cylindrical rods, is outlined. It

predicts that, for a binding energy per unit length that is not

very small, and a bending modulus of the cylinders that is not

very large, an optimum helical pitch appears if two rods are

allowed to intertwine. A generalization of this model that

takes into account bundles of more than two rods shows that

bundles of specific geometries, maximizing the number of

rod-rod contacts, while allowing for a helix of a relatively

small radius, are most likely to form. We apply the model to

Ab amyloid protein fibrillization, treating the protofilaments

that make up the mature fibril as intertwining rods. For this,

we forbid the occurrence of fibrils in which the N-terminus

of the protein, which protrudes from the cylindrical proto-

filament, overlaps other protofilaments. Our work predicts

the formation of threefold fibrils, consisting of six protein

stacks. This corresponds quite well to experimental results.

In addition, we can tentatively predict the pitch of these

threefold amyloid fibrils, given the pitch of twofold fibrils.

The authors are grateful to Adam E. Cohen, Jaap Jongejan, Jon Laman, and

Maarten Wolf for useful discussions.

The authors thank the Netherlands Organization for Scientific Research for

funding (grant No. 635-100-012, program for Computational Life Sci-

ences). The authors declare that they have no conflicting financial interests

with regard to the publication of this manuscript.

REFERENCES

1. Serpell, L. C. 2000. Alzheimer’s amyloid fibrils: structure and as-
sembly. Biochim. Biophys. Acta. 1502:16–30.

2. Petkova, A. T., Y. Ishii, J. J. Balbach, O. N. Antzutkin, R. D. Leapman,
F. Delaglio, and R. Tycko. 2002. A structural model for Alzheimer’s
b-amyloid fibrils based on experimental constraints from solid state
NMR. Proc. Natl. Acad. Sci. USA. 99:16742–16747.

3. Tycko, R. 2004. Progress towards a molecular-level structural under-
standing of amyloid fibrils. Curr. Opin. Struct. Biol. 14:96–103.

4. Guo, J. T., R. Wetzel, and Y. Xu. 2004. Molecular modeling of the
core of Ab amyloid fibrils. Proteins Struct. Funct. Bioinformat. 57:
357–364.

5. Rochet, J. C., and P. T. Lansbury. 2000. Amyloid fibrillogenesis: themes
and variations. Curr. Opin. Struct. Biol. 10:60–68.

FIGURE 7 Intertwining energy versus pitch for a Young’s bending modulus

of 0.2 GPa, and an interaction energy of –10 kBT, for twofold and threefold

fibrils. The pitch for a twofold fibril is chosen so as to be in the experimen-

tally observed regime. The dashed box indicates the regime of 50–60 nm.

1162 Gestel and de Leeuw

Biophysical Journal 92(4) 1157–1163



6. Thirumalai, D., D. K. Klimov, and R. I. Dima. 2003. Emerging ideas
on the molecular basis of protein and peptide aggregation. Curr. Opin.
Struct. Biol. 13:146–159.

7. Khurana, R., C. Ionescu-Zanetti, M. Pope, J. Li, L. Nielson, M.
Ramirez-Alvarado, L. Regan, A. L. Fink, and S. A. Carter. 2003. A
general model for amyloid fibril assembly based on morphological
studies using atomic force microscopy. Biophys. J. 85:1135–1144.

8. van Gestel, J., and S. W. de Leeuw. 2006. A statistical-mechanical
theory of fibril formation in dilute protein solutions. Biophys. J. 90:
3134–3145.

9. van Gestel, J., P. van der Schoot, and M. A. J. Michels. 2001. Helical
transition of polymer-like assemblies in solution. J. Phys. Chem. B.
105:10691–10699.

10. Nyrkova, I. A., A. N. Semenov, A. Aggeli, M. Bell, N. Boden, and
T. C. B. McLeish. 2000. Self-assembly and structure transformations
in living polymers forming fibrils. Eur. Phys. J. B. 17:499–513.

11. Nyrkova, I. A., A. N. Semenov, A. Aggeli, and N. Boden. 2000.
Fibril stability in solutions of twisted b-sheet peptides: a new kind of
micellization in chiral systems. Eur. Phys. J. B. 17:481–497.

12. Goldsbury, C., P. Frey, V. Olivieri, U. Aebi, and S. A. Müller. 2005.
Multiple assembly pathways underlie amyloid-b fibril polymorphisms.
J. Mol. Biol. 352:282–298.

13. Pallitto, M. M., and R. M. Murphy. 2001. A mathematical model of the
kinetics of b-amyloid fibril growth from the denatured state. Biophys.
J. 81:1805–1822.

14. Lührs, T., C. Ritter, M. Adrian, D. Riek-Loher, B. Bohrmann, H. Döbeli,
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