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Abstract
Objective: To measure anterior chamber (AC) width and other dimensions relevant to the sizing
of phakic intraocular lenses (IOLs) with a high-speed optical coherence tomography (OCT) system.

Design: Cross-sectional observational study.

Participants: Both eyes of 20 normal volunteers.

Methods: A novel high-speed (4000 axial scans/second) OCT prototype was developed for anterior
segment scanning. The system uses long wavelength (1310 nm) for deeper angle penetration,
rectangular scanning for undistorted imaging, and short image acquisition time (0.125 seconds) to
reduce motion error. Three horizontal cross-sectional OCT images (15.5 mm wide and 6 mm deep)
of the anterior segment were obtained from each eye with real-time image display to guide centration
on the corneal apex. Image processing software was developed to correct for image warping resulting
from index transitions. Anterior chamber dimensions were measured using computer calipers by 3
expert raters (ophthalmologists). Analysis of variance was used to determine interrater, interimage,
right versus left eye, and intersubject standard deviation (SD) of OCT measurements.

Main Outcome Measures: Anterior chamber width (recess to recess), AC depth, and crystalline
lens vault as measured by OCT; external white-to-white (WTW) corneal diameter (CD) as measured
by Holladay-Godwin gauge.

Results: The mean AC width was 12.53±0.47 mm (intereye SD), and the mean corneal diameter
was 11.78±0.57 mm. Optical coherence tomography measurement of AC width has good
repeatability from image to image (SD, 0.134 mm), but there was significant difference between
raters (SD, 0.215 mm). Estimation of AC width from WTW CD by linear regression was relatively
inaccurate (residual SD, 0.41 mm). The mean AC depth was 2.99±0.323 mm (intereye SD), with
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repeatability of less than 0.001 mm (interimage SD), and the mean crystalline lens vault was 0.39
±0.27 mm with 0.023 mm repeatability.

Conclusions: Reproducible OCT AC biometry was demonstrated using a high-speed OCT
prototype. Further improvement in reproducibility may be achieved by automating the measurements
with a computer. Direct OCT AC width measurement may improve sizing of angle-supported AC
IOLs over conventional estimation by WTW CD. The measurement of AC depth and lens vault also
may be useful for other types of phakic AC IOLs.

Interest in the use of phakic intraocular lenses (IOLs) for the treatment of high myopia and
hyperopia is increasing.1 Several approaches have been advocated, including irisfixated
anterior chamber (AC) phakic IOLs,2,3 posterior chamber phakic IOLs,4 and angle-supported
phakic IOLs.5,6 This study focuses on the use of corneal and anterior segment (CAS) optical
coherence tomography (OCT) as a biometric instrument for the measurement of AC
parameters. The intended future application is for accurate sizing of angle-supported phakic
IOLs.

For low to moderate myopia and hyperopia, excimer laser refractive surgery currently is the
accepted procedure of choice. However, for eyes with high ametropia, laser ablation of the
cornea is less attractive because of the risks of induced ectasia and aberrations. Clear lens
extraction is an alternative, but the loss of accommodation and the risk for retinal detachment
are serious concerns in many cases. The placement of a phakic IOL has the benefit of retaining
accommodation. Of the various styles of phakic IOL, angle supported phakic IOLs offer ease
of implantation (relative to iris-fixation IOLs) and less risk of cataract induction (compared
with phakic posterior chamber IOLs). Excellent refractive outcomes for the treatment of high
myopia have been demonstrated.7,8 However, angle-supported phakic IOLs have been
associated with several potential complications,1 many of which arise from poor sizing. Pupil
ovalization, iris atrophy, and iritis9 occurs when the IOL is too large, causing excessive
pressure on the iris root and angle recess by the haptic footplates. Undersized IOLs may become
mobile and may result in endothelial damage, iritis, peripheral anterior synechiae, and
secondary glaucoma.10,11

To reduce the incidence of these complications, accurate AC biometry is necessary. With a
properly sized angle-supported AC IOL, the haptics sit on the scleral spur9,10 or gently within
the angle recess,12 and the IOL vault places it approximately midway between the iris and
cornea. Traditionally, external white-to-white (WTW) corneal diameter (CD) measurement
has served as a surrogate for AC width,9,13 because no practical means of internal AC width
determination was available. Measurement of the external corneal diameter, however, depends
on external limbal landmarks that may not correlate well with internal landmarks (e.g., scleral
spur and angle recess). External measurement also can be biased significantly by pannus, arcus
senilis, and other anatomic variations.

We believe that OCT is a promising method for accurate anterior segment biometry because
of its high spatial resolution and noncontact nature.14 However, technological development is
needed to adapt OCT for this purpose. Several investigators have reported on the application
of the commercially available OCT retinal scanners such as the OCT1/2 by Carl Zeiss Meditec,
Inc. (Dublin, CA) for anterior segment analysis, including imaging of the cornea15 and
nonpenetrating glaucoma filtration sites.16 The retinal scanner is limited by low speed (1
second per image), low transverse sampling (100 axial scans/image), and narrow depth of scan
(approximately 2 mm in air). The sector scan geometry (expanding fan) of the retinal scanner
when applied to the anterior segment makes accurate width measurement impossible.
Furthermore, the 0.8-μm wavelength used for retinal scanning cannot penetrate the sclera to
visualize angle structures such as the scleral spur and angle recess.17
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We have developed a CAS OCT system that overcame these limitations. This CAS OCT system
uses a longer wavelength (1.3 μm), allowing greater penetration through highly scattering
tissues such as limbus and sclera, thus yielding visualization of angle structures. Furthermore,
because the ocular media absorb approximately 90% of 1.3-μm light before it can reach the
retina, higher power can be used safely, allowing near video-rate imaging. This system was
used previously to demonstrate corneal and anterior segment imaging in a sector scan geometry.
18

For this study, we further improved the CAS OCT system by using a wide-field rectangular
scanning geometry to reduce image distortion.19 Real-time video and OCT display and a slit-
lamp base were added to improve alignment. The improved prototype was tested for
reproducibility of AC biometry in this study.

Subjects and Methods
The study design and procedures were approved by the Institutional Review Board of the
Cleveland Clinic Foundation. The study was compliant with the Health Insurance Portability
and Accountability Act of 1996. Twenty volunteers, age 18 or older and without history of
ocular disease, were recruited from the employees of the Department of Ophthalmology at the
Cleveland Clinic. Anterior segment examination by slit lamp confirmed the normal status of
the eyes. Informed consent was obtained from all volunteers.

Both eyes of each subject were measured with the experimental CAS OCT system. The CAS
OCT prototype uses an infrared superluminescence diode light source at a wavelength of 1310
nm (OptoSpeed, Mezzovico, Switzerland), a coherence length of 40 nm. The OCT beam energy
delivered to the eye was measured to be 2.5 mW. The system performs 4000 axial scans per
second. For this study, each OCT cross-sectional image consisted of 500 axial scans. Thus, the
acquisition time for each image was 0.125 milliseconds. The OCT images were displayed
continuously at 8 frames per second, along with a video image displayed at 60 frames per
second. The scanner was designed to provide a rectangular cross-sectional scan for minimal
image distortion and accurate transverse dimension measurement. We set the image
dimensions to be 15.5 mm wide and 6.0 mm deep (in air). The axial resolution was 19 μm full-
width-half-maximum in tissue (25 μm in air), and the transverse resolution was 54 μm (beam
diameter at focus). Subjects were asked to fixate on a distant, wall-mounted target with the
contralateral eye to maintain straight-ahead gaze. Spectacles or contact lenses, if worn, were
removed before OCT scanning. Imaging was made in normal room lighting. Three horizontal
cross-sectional scans were obtained sequentially by a trained ophthalmic technician. The cross
sections were centered on the corneal apex reflection. The corneal apex is identified easily on
the realtime OCT images by its strong anterior surface reflection.

We developed image processing software using MatLab (Mathworks Inc., Natick, MA). The
software compensates for index of refraction transitions at the air-tear interface and the
different group indices in air, cornea, and aqueous to correct the physical dimensions of the
images. The corrected images are displayed on a computer screen for computer-aided biometric
measurements by expert raters.

Three ophthalmologists (JAG, MRC, DH) served as expert raters and independently measured
the AC dimensions using computer caliper tools. Each image was displayed on a computer
screen, and the angle recesses on both sides of the cross-sectional scan were marked on the
screen by each rater. The recess-to-recess distance was recorded by the computer. The rater
then identified the posterior corneal surface and the anterior crystalline lens surface along the
anteroposterior (AP) axis perpendicular to the apex. On the OCT images, this AP axis is
visualized as a flare extending from strong anterior corneal apex reflection. The computer then
recorded the AC depth as the AP distance from the corneal endothelium to the lens surface.
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The crystalline lens vault was measured as the AP distance between the anterior lens surface
and the recess-to-recess line.

External white-to-white (WTW) corneal diameter (CD) was measured along the horizontal
meridian in each eye of each subject using a Holladay-Godwin cornea gauge. The gauge is a
hexagonal disk with calibrated semicircles marked on each side. The semi-circles have
diameters between 9.0 and 14.0 mm in 0.5-mm increments. The gauge was held next to the
examined eye so that its edges bisected the cornea horizontally as viewed by the examiner. To
avoid parallax errors, the corneal ruler was held close to the eye being measured, and the rater
closed his nondominant eye. Corneal diameter was determined by finding the semicircle that
best approximated the corneal horizontal diameter. Two ophthalmic technicians were trained
in this technique and independently made these measurements. Corneal diameter was measured
once per rater.

All statistical analyses were performed using SAS.20 Analysis of variance was used to
determine interrater, interimage, right versus left eye, and intersubject standard deviation (SD)
of OCT measurements.

Results
The CAS OCT prototype is shown in Figure 1. A wide-field horizontal cross-sectional image
of the anterior segment generated using this device is shown in Figure 2. The 3 parameters
measured in this study are illustrated in the figure. A close-up of the angle is shown in Figure
3. Both the scleral spur and the angle recess are visible in the OCT image. We chose to measure
the AC width from recess to recess because this would be more relevant to the locations of the
haptic footplates for an angle-supported IOL.

Participant Background Statistics
There were 13 female (65%) and 7 male (35%) subjects. Fifteen subjects (75%) were white, 3
(15%) were Asian, and 2 (10%) were black. On the basis of spherical equivalence, 16 subjects
(80%) were bilateral myopes, 2 (10%) were bilateral hyperopes, 1 (5%) was bilaterally
emmetropic, and 1 (5%) was a split myopic individual and hyperope.

Population Statistics of Biometric Parameters
The AC biometry results are summarized in Table 1 on an eye-by-eye basis. The average of
measurements on each eye were used to calculate these population statistics. The intereye SD
was equivalent to the root-mean-square sum of the intersubject and right versus left eye SD
shown later.

Anterior Chamber Width versus Corneal Diameter
We compared the relationship between AC width and WTW CD using 2 models. The average
of measurements on each eye was used.

The simpler model was similar to the conventional rules for sizing an AC IOL, where a constant
is added to the WTW CD to obtain the IOL length. To estimate the constant offset between
AC width and WTW CD, we calculated the difference and analyzed the statistical distribution.
The mean difference was 0.748±0.439 mm (intereye SD), with a range of -0.314 to 1.843 mm.

The more sophisticated 2-parameter model used linear regression. A plot of AC width versus
WTW CD is shown in Figure 4. Linear regression analysis generated the best-fit line shown
in the figure. The root-mean-square residual (SD) for this model is 0.410 mm.
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Anterior Chamber Width Analysis of Variance
As shown in Table 2, the largest component of variance in AC width measurement (67.96%)
was the result of variability in AC width among the 20 subjects (intersubject variance). The
right and left eyes were highly correlated within a subject. The second largest variance
component (15.42%) was the result of systematic differences between the raters (interrater
trend). Variability between the 3 OCT images obtained from each eye accounted for a relatively
small component of the variance (6.03%). This interimage SD (0.134 mm) best represents the
intrinsic variability of the OCT measurement.

Corneal Diameter Analysis of Variance
As shown in Table 3, the largest component of variation in corneal diameter was the result of
variability in corneal diameter among the 20 subjects. There is relatively little difference
between the left and right eyes. The differences between the 3 raters were primarily random
rather than systematic.

Anterior Chamber Depth Variance
As shown in Table 4, the largest component of variance in AC depth was the result of variability
in AC depth between the 20subjects. Variability between left and right eyes and between raters
was very small. The difference between OCT images was not measurable (SD = 0).

Crystalline Lens Vault Variance
As shown in Table 5, the largest component of variance in crystalline lens vault was the result
of variability between the 20 subjects. Variability between left and right eyes and between
raters was small. The interimage variability was very small (SD = 23 μm).

Discussion
We believe this article is the first to describe OCT measurement of AC width and to assess its
reproducibility. We were unable to find any previous report of this in the literature. The
reproducibility from image to image was good (SD = 0.134 mm, or coefficient of variation of
1%). However, when combined with the variability between raters, the total SD goes up to
0.298 mm, which is only fair. Most of the difference between raters was systematic, with 1
rater generally measuring AC width approximately 0.3 to 0.4 mm smaller than that of the other
2 raters. The difference was the result of the identification of the apex of the angle recess, which
can be ambiguous because of relatively low signal from the irisciliary body junction and speckle
noise in the images. The identification of the recess apex could be enhanced by manipulating
the image contrast and brightness. However, we have found the best solution to be a computer
program that automatically locates the recess apices on both side of the AC without any human
operator input. We have developed such software after this study and its performance will be
published separately.

Because there is no noninvasive gold standard for AC width measurement, we were unable to
assess the accuracy of our OCT measurements. However, our results agree well with a set of
intraoperative measurements (Piovella M, et al. Correction of high myopia with foldable
anterior chamber phakic IOL. Poster no. 262 at AAO Annual Meeting, November, 2002;
Orlando, Florida). Piovella et al found a mean WTW CD of 11.7±0.4 mm, and an AC width
as measured by the use of an intraoperative surgical sizer of 12.4±0.3 mm. In our study, the
WTW CD was 11.78± 0.57 mm, and the AC width was 12.53±0.47 mm. Our eyes were slightly
larger, possibly because of the prevalence of myopes in our study population.

Ultrasound imaging21 is another method that could visualize the entire cross section of the AC
from angle to angle. For example, the Artemis 2 (Ultralink LLC, St. Petersburg, FL) ultra-high-
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frequency ultrasound system shows such images (www.arcscan.com). However, we were
unable to find a systematic study of AC width using ultrasound imaging for comparison. A
potential disadvantage of ultra-sound imaging is the need to immerse the eye in fluid with an
eye cup or other holding device. The physical contact is more cumbersome and uncomfortable
and may distort the shape of the eye. Optical coherence tomography does not have this
limitation. However, ultrasound imaging has the advantage of better penetration and
visualization of the posterior chamber. We are able to visualize the entire thickness of the iris
with our OCT prototype, but visualization of the retro-iris lens, ciliary body, and ciliary sulcus
is poor (Figs 2, 3).

Traditionally, the sizing of angle-supported AC IOLs is based on measuring the corneal
diameter and adding a constant, such as 1 mm. A recent study showed that both manual
measurements (Holladay-Godwin gauge, surgical caliper) and automated measurements
(Orbscan II, Bausch & Lomb, Rochester, NY; IOL-Master, Carl Zeiss Meditec) provide
comparable average values, but the automated instruments were more reproducible and less
operator dependent. Unfortunately, we did not have an automated instrument for corneal
diameter measurement in this study. However, in this study, we found that the main problem
with using the WTW CD was not poor reproducibility (combined interrater SD = 0.29), but a
lack of correlation between WTW CD and AC width. The difference between WTW CD and
AC width had an SD of 0.44 mm, whereas the intereye SD of AC width was 0.47 mm. Even
with the linear regression model, estimation of the AC width from the WTW CD had an SD
of 0.41 mm. Thus, using the WTW CD information could improve the estimation of AC width
only minimally compared with using the average value. This may explain the high incidence
of sizing-related complications, such as pupil ovalization (iris retraction) and IOL movement
and inflammatory response, in the treatment of high myopia with angle-supported IOLs.6,7

To demonstrate the potential for clinical improvement with better measurements, we calculated
the misfit probability for angle-supported AC IOLs using the various sizing approaches (Table
6). The tolerance for fitting is assumed to be ±0.5 mm, the usual sizing increment for AC IOLs.
Data from this study provide the SD estimates. The one-size-fits-all approach yields a 29%
chance of the IOL being too large or small by 0.5 mm. Using WTW CD and a linear regression
model to estimate the AC width only slightly improves the misfit probability to 22%. Using
OCT and a human grader to measure the AC width manually with a computer caliper, the misfit
probability improves to 9%. If we remove the subjective error of the manual caliper step and
use completely automated computer image processing to locate the angle recesses and measure
the AC width, the misfit probability is estimated to be 0.02%! This extremely low error rate is
the result of the sizing tolerance being more than 6 times wider than the SD (commonly
represented by σ or sigma) of OCT measurements. The improvement conforms to the Six Sigma
goal commonly referred to in the total quality management literature. However, our
calculations assume that OCT measurements do not contain significant systematic error. This
assumption needs to be validated clinically. We suggest that future studies of phakic IOL
implants include direct measurement of AC dimensions by either OCT or ultrasound to
determine if these instruments may help in proper patient selection and IOL sizing and may
reduce complications.

Corneal and anterior segment OCT cannot penetrate into the posterior chamber to measure the
diameter of the ciliary sulcus ring. But even if the ciliary sulcus ring could be visualized
directly, it has a complex geometry and varies significantly with accommodation, making it
difficult to characterize with a single diameter value. The AC width may be a good surrogate
parameter that is more stable than direct measurement of the sulcus ring diameter. Thus, CAS
OCT also may have the potential to improve sulcus-supported phakic IOL sizing.
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There are already multiple instruments that can measure the AC depth precisely. These include
ultrasound A scan and B scan, slit scanning, Scheimpflug photography, and laser
interferometry.22-31 This study shows that OCT also is able to make this measurement very
precisely. The interimage and interrater SD were 0, which means that the variation is less than
our pixel depth (8.8 μm in aqueous). This value is important for estimating the clearance
distance between an IOL and the cornea. We also found that OCT could measure the vault of
the crystalline lens precisely relative to the angle recesses. We could not find a comparable
value in the literature. However, this value may be useful in designing or fitting the optimal
vault of an angle-supported IOL. Similarly, the OCT images could be used to predict the vault
of an iris-fixated IOL. We did not study the lens-iris vault measurement here, because the
relevant measurement landmarks depend on the specific IOL dimensions, of which we do not
have knowledge.

We continue to improve the instrument and method to make OCT useful for AC biometry. The
CAS OCT proto-type used in this study has the following features that are essential for precise
measurement of AC width:

1. Sufficient penetration to visualize angle recess. This was achieved by using the 1.3-
μm wavelength, which is longer than the 0.8-μm wavelength previously used for
ocular OCT.

2. High speed to reduce motion artifact (8 image frames per second).

3. Rectangular scanning geometry to reduce image distortion.

4. Wide-field scanning optics (15.5 mm) and deep axial scan range (6 mm) to cover the
entire AC in 1 image frame.

5. Image processing (dewarping software) to correct image distortion resulting from
index transitions.

Based on the experience learned in this study, we believe the following improvements will
enhance the accuracy of OCT biometry further:

1. Completely automated software for biometric measurements to remove human error.

2. Averaging of several image frames to reduce speckle noise.

3. Internal fixation target to better establish gaze direction during imaging.

4. Control of accommodation with the internal fixation target.

We believe that with these additional features, high-speed CAS OCT will become an accurate,
dependable, and versatile tool for AC biometry and measurements of the cornea and anterior
segment in general.
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Figure 1.
One of the authors (MRC) demonstrating the use of the corneal and anterior segment optical
coherence tomography (OCT) prototype. The OCT hardware is contained within the black box
on top of the slit lamp. The OCT image is displayed on the monitor on the right, and the charge-
coupled device video is on the monitor on the left.
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Figure 2.
Horizontal optical coherence tomography section of the anterior segment after computational
correction for index transitions. The anterior chamber (AC) width is measured angle recesses.
Anterior chamber depth is the anteroposterior (AP) distance from the corneal endothelium to
the lens apex. Lens vault (not drawn) is the AP distance between the lens apex and the recess-
to-recess line.
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Figure 3.
Optical coherence tomography image of the iridocorneal angle demonstrating the scleral spur
and angle recess.
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Figure 4.
Plot of the optical coherence tomography (OCT) anterior chamber width versus white-to-white
corneal diameter by eye. Each point is the average of measurements obtained from each eye.
The linear regression line and equation are shown.
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Table 1
Population Statistics for Anterior chamber Measurements

Mean (mm) Intereye Standard Deviation
(mm) Range (mm)

AC width* 12.53 0.47 11.48-13.54
Corneal diameter† 11.78 0.57 10.83-12.83
AC depth* 2.99 0.32 2.34-3.50
Crystalline lens vault* 0.39 0.27 -0.16-0.97

AC = anterior chamber.

*
Measured by optical coherence tomography

†
Measured by Holladay-Godwin gauge.
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Table 2
Anterior Chamber Width Variance Components

Variance Components Variance (mm2) % Variance Standard Deviation (mm)

Intersubject 0.2037 67.96 0.451
Eye (right vs. left) 0.0073 2.45 0.086
Interrater trend 0.0462 15.42 0.215
Interrater random 0.0244 8.15 0.156
Interimage 0.0181 6.03 0.134
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Table 3
Corneal Diameter Variance Components

Variance Components Variance (mm2) % Variance Standard Deviation (mm)

Intersubject 0.3034 72.88 0.551
Eye (right vs. left) 0.0261 6.28 0.162
Interrater trend 0.0157 3.77 0.125
Interrater random 0.0710 17.06 0.267
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Table 4
Anterior Chamber Depth Variance Components

Variance Components Variance (mm2) % Variance Standard Deviation (mm)

Intersubject 0.1041 95.54 0.323
Eye (right vs. left) 0.0027 2.45 0.052
Interrater random 0.0022 2.01 0.047
Interrater trend 0 0 0
Interimage 0 0 0
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Table 5
Crystalline Lens Vault Variance Components

Variance Components Variance % Variance Standard Deviation (mm)

Intersubject 0.0684 87.39 0.261
Eye (right vs. left) 0.0041 5.21 0.064
Interrater random 0.0038 4.85 0.062
Interrater trend 0.0015 1.88 0.038
Interimage 0.0005 0.67 0.023
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Table 6
Estimated Probability of Anterior Chamber Intraocular Lens Misfit

Sizing Method Standard Deviation (mm) P Value Deviation > 0.5 mm

One size fits all 0.47 28.74%
WTW linear regression 0.41 22.26%
OCT manual 0.298 9.34%
OCT automated 0.134 0.02%

OCT = ocular coherence tomography; WTW = white-to-white corneal diameter.

Ophthalmology. Author manuscript; available in PMC 2007 January 30.


