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Abstract
Modern imaging systems rely on complicated hardware and sophisticated image-processing methods
to produce images. Owing to this complexity in the imaging chain, there are numerous variables in
both the hardware and the software that need to be determined. We advocate a task-based approach
to measuring and optimizing image quality in which one analyzes the ability of an observer to perform
a task. Ideally, a task-based measure of image quality would account for all sources of variation in
the imaging system, including object variability. Often, researchers ignore object variability even
though it is known to have a large effect on task performance. The more accurate the statistical
description of the objects, the more believable the task-based results will be. We have developed
methods to fit statistical models of objects, using only noisy image data and a well-characterized
imaging system. The results of these techniques could eventually be used to optimize both the
hardware and the software components of imaging systems.

1. INTRODUCTION
Modern imaging systems rely on complicated hardware and sophisticated image-processing
methods to produce images for evaluation. Owing to the complexity of the imaging chain, there
are numerous variables in both the hardware and software that need to be determined. We and
other groups advocate a task-based approach to measuring and optimizing image quality, i.e.,
optimizing imaging systems on the basis of the performance of an observer performing a
specific task.1–3 This type of analysis is especially important in medical imaging, where
systems are inherently task driven, e.g., detection of tumors in images.

Tasks in medical imaging are either detection and classification tasks where the observer is
classifying an image into two or more classes, or estimation tasks where the observer is
attempting to estimate a particular quantity of interest.1,4 In general, the types of observers
that researchers can employ are ideal observers,3 human observers, or anthropomorphic
observers (human-model observers).5,6 The class of ideal observers includes the Bayesian
observer,3,7 which sets a theoretical upper limit on observer performance, and the Hotelling
or ideal linear observer,1 which sets an upper limit on the performance of an observer who
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performs only linear manipulations of the image data. Anthropomorphic observers attempt to
predict the performance of a human observer reading the images for the specified task.

Numerous images are often required for computation of task-based measures of image quality
and are thus infeasible with real patients. Researchers are forced to employ statistical models
from which they can produce as many images as required. The stochastic nature of images is
due to both detector noise and the randomness in the objects being imaged; e.g., patient anatomy
differs greatly from person to person. Much of the current literature in this field has focused
on generating image models that simulate a type of image produced with a particular imaging
system.8,9 Image models cannot be used to optimize imaging hardware, because they are
specific to one imaging system.

It is desirable to have a model that takes both the object variability and the detector noise into
account yet is independent of the imaging system. A statistical description of the objects being
imaged is required, though we can observe objects only through a particular imaging system.
We have developed methods to fit statistical models of objects that use only noisy image data,
a well-characterized imaging system, and knowledge of the statistics of the noise. In this paper
we will describe these methods and test them on a lumpy object model. In the future, we plan
to use the results of these techniques to optimize both the hardware and the software
components of imaging systems.

2. BACKGROUND
Imaging can be mathematically represented by

g = H f + n, (1)

where g is the M × 1 data vector, f is the continuous object being imaged, H is an operator
representing the method in which an imaging system maps a continuous object to discrete data,
and n is the measurement noise. Vectors are denoted by boldface type. (A note to the reader:
Although f is a function, it still can be thought of as a vector in a Hilbert space, thus the vector
notation.) The object f can represent, for example, the three-dimensional distribution of activity
within an organ or the two-dimensional fluence of radiation impinging on a detector system.
The vector g represents the data obtained from an imaging system that may be an image ready
for viewing such as in projection x-ray imaging, or it may need processing before viewing,
such as sinogram data from tomographic imaging systems.

The continuous-to-discrete operator H is often assumed to be linear and can be measured or
modeled for a particular imaging system. We also assume that n is characterized by a known
distribution—typically Poisson for gamma-ray imaging. We observe image data g, and thus it
may be possible to experimentally determine the statistical properties governing g. However,
little is known about the statistical properties of the objects f being imaged.

Because it is a random vector, the image data vector is governed by a probability density
function (PDF), denoted pr(g). We could equivalently characterize the randomness in image
data and objects by using the Fourier transform of the PDF or the characteristic function (CF).
It is advantageous to represent the Fourier transform as an expectation over certain complex
exponentials, defined for g as,

Ψg(ρ) = exp ( − 2πig †ρ) g. (2)

Here ρ is the Fourier conjugate of g, g†ρ is the inner product of g and ρ, and · g represents an
expectation over pr(g). The CF of the random process f has a similar definition,
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Ψf (ξ) = exp ( − 2πiξ † f ) f , (3)

where ξ is the infinite-dimensional Fourier conjugate of f. Because f is a random function, we
will call Ψf(ξ) its characteristic functional (CFl).

Channels are often used in signal-detection tasks5,10 to reduce the dimensionality of the image
data vector g for computational purposes while retaining the salient information about the
statistics of the image data. Specifically, Laguerre–Gauss channels have been employed
successfully to approximate the ideal linear observer for complicated signal-detection tasks.
10 A channel is a set of filters that are applied to an image to produce a vector of outputs v,
i.e.,

v = T g = T (H f + n), (4)

where T is the N × M linear channel matrix. The dimension (N) of v is much less than the
dimension (M) of g; typically N is 6 to 15. Although we are not performing signal-detection
tasks in this paper, the use of channels will aid in many of our computations.

3. OBJECT MODELS
In the past, researchers have focused on determining the statistical properties of the images8,
9 or assumed very simple nonrandom objects such as flat backgrounds. Both approaches
essentially ignore the statistics of the objects that generate the images. Object variability,
however, is known to have a substantial effect on observer performance and thus should not
be ignored.5,11 Characterizing the randomness of a continuous object function is difficult. In
order to make the problem of determining the statistics of objects tractable, we will employ
models of objects. We study two object models: lumpy objects11 and clustered lumpy objects.
12

A. Lumpy Objects
The first object model that we consider is the lumpy object model developed by Rolland and
Barrett.11 The lumpy object model is a continuous mathematical phantom designed to
synthesize realistic objects such as those obtained in imaging biological tissue. For example,
it is not uncommon to observe relatively few hot spots when one is imaging with nuclear
medicine. The lumpy object model may be a good representation of such objects. Lumpy
objects are generated by summing a random number of lump functions placed randomly in the
field of view (FOV). Typically Gaussians are used as the lump functions, but other lump
profiles could be used. Mathematically, a lumpy object is represented as

f = f (r) = ∑
n=1

N
Λ(r − cn| a, s), (5)

where r is a spatial coordinate in two or three dimensions, Λ(·) is the lump function, N is the
number of lumps, cn is the center of the nth lump function, a is the magnitude of the lump
function, and s is the width parameter for the lump function.11 The number of lumps N is a
Poisson-distributed random variable with mean N̄ ,  cn is uniformly distributed within the FOV,
and both a and s are held constant. If we assume that the FOV and the lump function Λ(·) are
given, then lumpy objects are characterized by the parameters N̄ ,  a, and s, which we will
represent by the vector θ. Thus the CFl of f is conditional upon the parameter θ. Two examples
of two-dimensional lumpy functions are shown in Fig. 1. The lumpy object model is fairly
simple yet is an important starting point for this work. Note that although the lumps are
Gaussian, the statistics governing this object model as a stochastic process are not Gaussian.
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The random variables N and {cn} fully encompass the randomness of lumpy objects.
Furthermore, as shown by Barrett and Myers,13 we can calculate the CFl for lumpy objects
conditioned on the parameters characterizing the lumpy object model θ by substituting the
definition of a lumpy object [Eq. (5)] into the CFl defined in Eq. (3):

Ψf (ξ| θ)
= exp ( − 2πiξ † f ) f |θ

(6)

= exp − 2πi∫ξ(r) ∑n=1
N

Λ(r − cn| a, s)dr {cn},N (7)

Here we have written out the L2 inner product ξ†f explicitly as ∫ξ(r)f(r)dr for a lumpy object.
The expectation is taken with respect to {cn} and N, the random variables that determine a
lumpy object. The centers of the lumps, {cn}, are uniformly distributed, and the number of
lumps N is Poisson distributed. Simplifying the above expression, we have

Ψf (ξ| θ)
= ∏

n=1

N
exp − 2πi∫ξ(r)Λ(r − cn| a, s)dr cn N

(8)

= ΨΛ(ξ| θ)
N

N (9)

= exp ( − N̄ ) ∑
N=0

∞ N̄ N

N ! ΨΛ(ξ| θ)
N (10)

= exp { − N̄ 1 − ΨΛ(ξ| θ) }, (11)

where N̄  is the mean of N and ΨΛ(ξ|θ) is the characteristic functional of one randomly located
lump given by

ΨΛ(ξ| θ) = exp − 2πi∫ξ(r)Λ(r − c| a, s)dr c. (12)

The computation of this function will be discussed in Section 6.

B. Clustered Lumpy Objects
In 1999, Bochud et al.12 extended the lumpy object model to synthesize more complicated
and realistic objects. Their model, known as clustered lumpy objects, clusters the lumps around
certain cluster centers that are uniformly distributed within the FOV. This is represented
mathematically for two-dimensional r as

f = f (r) = ∑
n=1

N
∑
k=1

Kn
Λ( Rφn

(r − cn − Δnk)| α), (13)

where N is the number of clusters, Kn is the number of lump functions in the nth cluster, cn is
the center of the nth cluster, Δnk is the center of the kth lump function in the nth cluster, φn is
the orientation of the lumps in the nth cluster, and α are the parameters characterizing the shape
of the lumps. The rotation of the lumps is represented by the rotation matrix Rφn. Both N and
Kn are Poisson distributed with means N̄  and K̄ ,  respectively. The center of a cluster cn is
uniformly distributed over the FOV, and the lumps within a cluster are Gaussian distributed
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around cn. That is, Δnk is sampled from a radially symmetric Gaussian distribution with width
σΔ. The angle φn is, in general, uniformly distributed between 0 and 2π but may be distributed
differently if desired. Again, assuming that the lump function Λ(·) is known, the parameters
characterizing a clustered lumpy object are N̄ , K̄ ,  σΔ, and α, which we combine to form the
vector of parameters θ.

The function Λ(·) need not be a Gaussian function. Bochud used a two-dimensional asymmetric
lump12 given in polar coordinates as

Λ(r, φ| γ, β, lx, ly)
= exp { − γr β

ly
2 cos (φ)2 + lx

2 sin (φ)2

lx
2ly
2

1/2}. (14)

This type of lump function was chosen because the resultant images approximated the texture
of mammograms. Using this lump function results in seven parameters that characterize this
object model, i.e., θ = { N̄ , K̄ , σΔ, γ, β, lx, ly}. Examples of clustered lumpy objects are shown
in Fig. 2.

To calculate the CFl for the clustered lumpy object model, we rewrite the definition of a
clustered lumpy object [Eq. (13)] as

f = f (r) = ∑
n=1

N
Ω(r − cn, {Δnk}, φn, Kn| α), (15)

where

Ω(r − cn, {Δnk}, φn, Kn| α)
= ∑
k=1

Kn
Λ( Rφn (r − cn − Δnk)| α),

(16)

and {Δnk} is a list of Kn lump centers relative to the cluster center cn. Equation (15) is similar
to a lumpy object model with a more complicated lump function. Thus we will calculate the
CFl of the clustered lumpy model in similar fashion. Beginning with

Ψf (ξ| θ) = exp { − N̄ 1 − ΨΩ(ξ| θ) }, (17)

all that is left to compute is ΨΩ(·). The CFl for Ω can be expressed as

ΨΩ(ξ| θ) = exp { − K̄ 1 − ΨΛ(ξ| c, φ, θ) } c,φ, (18)

where ΨΛ(ξ|c, φ, θ) is the characteristic functional of a single randomly located lump with
cluster center c and angle φ. The form of ΨΛ(·) is similar to Eq. (12) except that we now take
the expectation over Δ instead of c. We are now able to write the final expression for the CFl
of a clustered lumpy object model as

Ψf (ξ| θ) = exp − N̄ (1 − exp { − K̄ 1

− ΨΛ(ξ| c, φ, θ) } c,φ) .
(19)

We will discuss the computation of Ψf (ξ|θ) in Section 6.
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4. TRANSFORMATION THROUGH IMAGING SYSTEMS
Both lumpy and clustered lumpy objects are characterized by the parameters θ. Our goal is to
determine the parameters θ of the object model that best fit a set of image data {gl}. The
difficulty of this problem lies in that we can only observe gl, and yet we wish to determine
parameters that characterize the statistics of the objects f. We are further impeded because we
do not know the PDF of g even though we have a model for f and a known imaging operator
H. Maximum-likelihood estimation is thus not an immediate possibility. A different estimation
approach is required that makes use of the knowledge we do have, namely, the CFl of the
objects.

A complete description of the transformation of an object CFl through an imaging system is
described by Clarkson et al.14 We summarize those results in Subsection 4.A.

A. Noiseless Imaging System
Let us assume that we know the CFl of the object distribution Ψf (ξ | θ). Let us, for now, envision
a noiseless imaging system

ḡ = H f (20)

and analyze the characteristic function of ḡ. (The over-bar notation is used because ḡ can be
thought of as the noise-averaged image for a particular object f.) The characteristic function
of ḡ is

Ψḡ(ρ| θ) = exp ( − 2πiρ †ḡ) ḡ|θ (21)

= ∫p(ḡ| θ) ∏m=1

M
exp ( − 2πiρmḡm)dḡ, (22)

which, by use of our noiseless imaging system [Eq. (20)] and using properties of the adjoint,
can be rewritten as13,14

Ψḡ(ρ| θ) = exp ( − 2πi(H †ρ)
†
f ) f |θ (23)

= Ψ f (H †ρ| θ). (24)

Thus, if the CFl of f is known, then we also know the CF of any linear mapping of f by simply
using the adjoint of the linear operator. Although we do not know the PDF of ḡ,  we do know
Ψḡ(ρ| θ) for either of our object models.

B. Noise
Thus far, we have dealt with noise-free imaging systems that are of little practical value. In
order for the methods developed in this paper to be of practical interest, we must be able to
compute the characteristic function of the image data g = ḡ + n accounting for both object
variability and noise. Two common noise models that researchers employ are Gaussian noise
and quantum or Poisson noise.

The characteristic function for Gaussian noise with covariance K is known to be Gaussian as
well, with the form
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Ψn(ρ| K ) = exp ( − 2π2ρ†Kρ). (25)

Because the noise is independent of the object being imaged, we know that the PDF of g is a
convolution of the PDF of ḡ and the PDF of n, which, using the Fourier-convolution theorem,
yields

Ψg(ρ| θ, K ) = Ψ f (H †ρ| θ)Ψn(ρ| K ). (26)

Poisson detector noise can also be incorporated into this framework. Poisson noise is
conditional upon the mean image, i.e.,

pr(g| ḡ) = ∏
m=1

M
exp ( − ḡm)

ḡm
gm

gm! , (27)

where ḡm denotes the mth component of the M vector ḡ. The PDF of g can then be obtained
by marginalizing over the object ḡ,

pr(g | θ) = ∫pr(g| ḡ)pr(ḡ| θ)dḡ (28)

= ∫pr(ḡ| θ) ∏m=1

M
exp ( − ḡm)

ḡm
gm

gm! dḡ. (29)

By taking the expectation of the complex exponentials over the PDF given above, we arrive
(after some manipulations described by Clarkson et al.14) at

Ψg(ρ| θ)
= ∫pr(ḡ| θ) ∏m=1

M
exp − ḡm + ḡm exp ( − 2πiρm) dḡ,

(30)

which is close to the CF of ḡ [Eq. (22)] except that the term in the exponent is not the same.
We can relate the above expression to the CF of ḡ by defining a nonlinear operator Γ(·) that
maps an M vector to another M vector, by using the following equation for each component
m,

Γ(ρ) m =
− 1 + exp ( − 2πiρm)

− 2πi . (31)

Thus we can relate the CF of g to that of the noiseless CF of ḡ that we previously related to
the CFl of f, i.e.,

Ψg(ρ| θ) = Ψḡ(Γ(ρ)| θ) = Ψ f (H †Γ(ρ)| θ). (32)

In other words, because we know the CFl for our object models, we are able to use H† and a
known nonlinear operator to determine the CF for our noisy image data.

C. Channels
The channel operator, like the imaging system itself, is a linear operator, and thus if one wants
to know the CF for the channel outputs v = Tg = T(H f + n), one needs only the adjoint T†.
That is,
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Ψv(ω| θ) = Ψ f (H †Γ(T †ω)| θ), (33)

where ω is the Fourier conjugate of the channel outputs v.

5. ESTIMATION
One can determine exactly the CF of channel outputs Ψv(ω | θ) by using either of the two object
models discussed. Given a database of L images {gl}, we would like to estimate the parameters
θ that characterize the object model that best fits the data, using channel outputs from these
images vl = Tgl.

A standard maximum-likelihood or Bayesian approach to solving this problem is not
computationally feasible. The likelihood of θ for an ensemble of images {gl} is given by

pr({gl}| θ) = ∏l=1
L

∫d f pr(gl| f )pr( f | θ). (34)

We would have to perform L high-dimensional integrals for a given θ. To optimize θ, we would
have to compute these L integrals repeatedly as part of an iterative search. We present an
estimation technique that relies on characteristic-function analysis to simplify the estimation
of θ.

A. Empirical Characteristic Function
The characteristic function of a random variable or vector is an expectation value of the
complex exponentials, i.e.,

Ψv(ω) = exp ( − 2πiω†v) v. (35)

Hence, given independent data sampled from pr(v) and denoted by vl with l = 1 ... L, the
characteristic function of v can be approximated by the sample average of the complex
exponentials. That is, the empirical characteristic function is given by

Ψ̂v(ω) =
1
L ∑

l=1

L
exp ( − 2πiω†vl). (36)

The empirical characteristic function is an unbiased estimate of the true characteristic function.
We can further derive an expression for the covariance C(ω, ω ′) of this estimate:

C(ω, ω ′) = Ψ̂v(ω)Ψ̂v
*(ω ′) {vl} − Ψv(ω)Ψv

*(ω ′) (37)

= 1

L 2 ∑l=1
L

∑
l ′=1

L
exp ( − 2πiω†vl)

× exp (2πiω ′†v
l ′
) vl,vl ′

− Ψv(ω)Ψv
*(ω ′).

(38)

In the above double summation, there are L terms where l = l′ in which the inner expectation
values become
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exp − 2πi(ω − ω ′)
†
vl vl

= Ψv(ω − ω ′) (39)

and L2 − L terms where l ≠ l′ in which the inner expectation values become

exp ( − 2πiω†vl) vl
exp (2πiω†v

l ′
)
v
l ′

= Ψv(ω)Ψv
*(ω ′). (40)

Equation (40) makes use of the independence of the two distinct samples vl and vl′. Thus our
final expression for the covariance is

C(ω, ω ′) = 1
L Ψv(ω − ω ′) − Ψv(ω)Ψv

*(ω ′) . (41)

By setting ω = ω ′ and noting that Ψ(0) = 1 by definition, we arrive at an expression for the
variance V(ω) of the empirical estimate of the characteristic function,

V (ω) = 1
L 1 − | Ψv(ω)|2 . (42)

Note that the variance of the empirical characteristic function goes to 0 as ω approaches 0, so
for most smoothly varying functions, the variance of the empirical characteristic function is
small near ω = 0.

B. Cost Functions
We have yet to discuss potential cost function that could be employed to determine the object
model parameters θ that best fit the available data. One obvious choice would be to apply
weighted least-squares fitting of the characteristic functions. We are further aided by our
knowledge of the variance of the empirical characteristic function as given in Eq. (42). The
weighted least-squares solution is one that minimizes the weighted mean squared error,

Wmse(θ) = ∫ | Ψ̂v(ω) − Ψv(ω| θ)|2
1
L 1 − | Ψv(ω| θ)|2 dω, (43)

where the denominator is an estimate of the variance of the empirical characteristic function
[Eq. (42)]. Dividing by the variance of the empirical characteristic function has the effect of
weighting regions with small variance more than those with large variance. We actually have
a choice in Eq. (43) of using either Ψv(ω | θ) or Ψ̂(ω) in the denominator for the variance
expression.

The aforementioned cost function involves an integral over ω. Another approach to generating
a cost function would be to approximate the inverse Fourier transform of Ψv(ω | θ) to obtain
p̂r(v| θ) and then use maximum-likelihood estimation to choose the θ that maximizes

λ(θ| {v (l)}) = ∑
l=1

L
log p̂r(v (l)| θ) . (44)

This also involves an integral over ω, but this integral turns out to be difficult to approximate.

6. COMPUTATIONAL ISSUES
Each of the cost functions [Eqs. (43) and (44)] requires an integral over ω that we calculate
with Monte Carlo techniques. Monte Carlo techniques require a PDF in the integrand,
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something our cost functions lack. Importance sampling15,16 provides the means to avert this
lack of a PDF by multiplying and dividing by a user-defined PDF. It is advantageous to choose
a PDF that would sample points around the important region of the integrand, i.e., nonzero
values of the integrand. For example, Eq. (43) could be approximated by

Wmse(θ) = ∫ | Ψv(ω| θ) − Ψ̂v(ω)|2
1
L 1 − | Ψv(ω| θ)|2 dω (45)

= ∫ | Ψv(ω| θ) − Ψ̂v(ω)|2
1
L 1 − | Ψv(ω| θ)|2

pr(ω)
pr(ω) dω (46)

~ 1
J ∑

j=1

J | Ψv(ψ j| θ) − Ψ̂v(ω j)|2
1
L 1 − | Ψv(ω j| θ)|2

1
pr(ω j)

, (47)

where ωj is sampled from pr(ω).

The accuracy of the expression in Eq. (47) depends on J and the importance sampler pr(ωj).
Therefore a good choice of pr(ωj) is needed. If we were to assume that the vl were Gaussian
distributed with covariance matrix ∑, then |Ψv(ω)| would be an unnormalized Gaussian with
covariance matrix ∑−1. Furthermore, the maximum of a characteristic function is 1 and occurs
at ν = 0. Thus a reasonable choice for an importance sampler would be a Gaussian with zero
mean and covariance ∑−1. We measure the sample covariance Σ̂for the channel outputs vl and
use Σ̂−1 as the covariance of our Gaussian importance sampler. The vl are not Gaussian
distributed, but this method provides a successful Gaussian sampler; i.e., the ωj’s sampled lie
near the peak of the integrand.

The term Ψ̂(ω) in Eq. (47) is a straightforward computation. However, we have yet to describe
how one calculates Ψv(ωj | θ). Specifically, the term ΨΛ (·) shown in Eqs. (11) and (18) is
computationally burdensome. For the lumpy object model, the characteristic functional of a
single randomly located lump is given by

ΨΛ(ξ| θ) = ∫p(c) exp ( − 2πi∫drξ(r)Λ(r − c))dc, (48)

where p(c) is the PDF of the lump centers, which, as we described earlier, are uniformly
distributed within the FOV for lumpy objects. Now, replacing ξ(r) with H†Γ (T†ω), we arrive
at

ΨΛ(ω| θ) = ∫p(c) exp ( − 2πi∫ ∑
m=1

M
hm(r)Γ(T †ω)m

× Λ(r − c)dr)dc

(49)

= ∫p(c) exp ( − 2πi ∑
m=1

M
Γ(T †ω)m

× ∫hm(r)Λ(r − c) dr)dc.
(50)

This equation makes use of the adjoint of a continuous-to-discrete operator, i.e.,

Kupinski et al. Page 10

J Opt Soc Am A Opt Image Sci Vis. Author manuscript; available in PMC 2007 January 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



H †x = ∑
m=1

M
hm(r)xm. (51)

Also note that the inner integral in Eq. (50) is equivalent to transferring a lump centered at
position c through the imaging system H and taking the inner product with the M vector Γ
(T†ω). We are aided in this computation because the M vector Γ(T†ωj) is fixed for a given
importance sample ωj. Thus, once we have our importance samples ωj, we can precompute
and store every element of this vector. In practice, we store this information in pieces because
of computer memory limitations. We are still left with computing the outer integral over c. We
again resort to Monte Carlo techniques to approximate this integral by sampling cn uniformly
in the FOV and averaging the integrand at each sampled point.

Similar techniques are applied to compute ΨΛ (·) for the clustered lumpy object model. The
key difference is the increase in the number of random variables to integrate over: the angle
of the lump, the cluster center, and the lump center. Again, Monte Carlo techniques can readily
be employed for this computation because the densities are known for each of these parameters.

7. SIMULATIONS
The goal of our work is to determine parameters that characterize an object model by using
only noisy images of the objects. To validate the methods presented in Section 3, we performed
simulation studies using objects that match the model employed. We ran our simulations in
parallel on five Pentium-based computers running Linux. The computers communicated by
using the Parallel Virtual Machine (PVM) package. The optimization was performed with
APPSPACK, a freely available optimization routine from Sandia National Laboratories.

We began by generating 100 64 × 64 images gl, using the lumpy object model and a simulated
imaging system. We then calculated the channel outputs vl by using a channel operator T. We
calculated Ψv(ω | θ) from our knowledge of Ψf (ξ | θ) for the lumpy object model and our
knowledge of H, T, and the noise. We varied the parameters θ to match the data vi by using
the cost function shown in Eq. (43). Note that this cost function requires the empirical
characteristic function determined from the data Ψ̂v(ω) [Eq. (36)].

The imaging system that we simulated was an idealized parallel-hole collimator system
represented by

ḡm = γ∫hm(r) f (r)dr, (52)

where hm(·) is a Gaussian blur function centered at the mth pixel with a standard deviation of
1.5 pixels and γ is the amplitude of the system, which we set to 40. The images were generated
by sampling a Poisson distribution for the mth pixel with parameter ḡm. For the lumpy object
model with Gaussian lumps, there exists a closed-form expression for the integral in the
imaging equation [Eq. (52)]. Example images used in the simulation are shown in Figs. 3(a)–
3(c).

The filter T that we used consisted of the first three Laguerre–Gauss functions.10 Laguerre—
Gauss functions are circularly symmetric products of a Gaussian with Laguerre polynomials
centered within the FOV. Because the lumps that we used in the lumpy object model are
circularly symmetric and the statistical distribution of their positions is circularly symmetric
and stationary (ignoring boundaries), the Laguerre–Gauss functions are a reasonable choice of
channels to extract the salient statistical information about the object model. As we will show,
we are able to get good estimates of our three object model parameters by using just three
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channels. It should be noted that computing the cost function becomes more and more
computationally burdensome as the number of channels increases.

Note that we have run these simulations with the data-matching model in an attempt to verify
our method. In this situation, we therefore have a great deal of prior knowledge about our
objects that we exploit to limit the number of channels used. A more realistic situation is one
in which the model does not perfectly match the data. Of course, it is difficult to verify that the
method works properly if the true parameters θ are not known.

The parameters θ used to generate the 100 images gl were N̄  = 30, a = 1, and s = 5. The method
returned an estimate of θ with parameter N̄  = 26, a = 1.06, and s = 5.23, which are close to the
true values. Using these fitted parameters, we then regenerated random images, using our
simulated imaging system [shown in Figs. 3(d)–3(f )] that are statistically similar to the original
images shown in Figs. 3(a)–3(c). Thus the method was able to determine the parameters that
characterize the stochastic object model by using only channel outputs from 100 noisy and
blurry images.

We reperformed this experiment ten times with different sets of images (100 each time) to
obtain the average estimate of θ as well as the standard deviations of our estimates. The results
of these ten runs in terms of the mean ± the standard deviation were N̄  = 32.0 ± 6.2, a = 1.16
± 0.28, s = 4.67 ± 0.77. Thus the method performs consistently over different sets of images.

8. DISCUSSION AND CONCLUSIONS
We have presented a method for fitting statistical object models to real image data produced
by a well-characterized imaging system. With a statistical object model, one can readily
simulate imaging systems and produce image data to be used in computing task performance.
The method that we have presented addresses directly the variability in the objects being
imaged and accounts for any blur or any degradation that may occur during imaging as well
as the noise in the image data produced.

We presented and discussed our technique as it relates to two specific object models: the lumpy
object model and the clustered lumpy object model. Our method, however, is general. All it
requires is that the characteristic function of the object be computable. We showed that this
condition is met for the lumpy and clustered lumpy object models. There are other object
models based on filter-bank or wavelet analysis that might also be applicable to this technique.

The simulation study performed in this paper was a consistency test. That is, given that the
model matches the data, does the method return parameters that are close to the true parameters?
If one were to apply this technique to real images, then it would be impossible to say what the
correct parameters were. The method for applying this technique to real images is exactly as
presented in this paper. We will address the issues involved with matching statistical object
models to real images in a future publication.

To ease computational complexity, we employed channel operators to reduce the
dimensionality of the image data. Channels have been successfully employed in many signal-
detection5,17 and texture-analysis methods.8 However, we have not addressed the issue of the
ideal or best filters to use for our method. This issue became particularly important when we
applied our method to the clustered lumpy object model, because the lump functions for that
model are asymmetric. It was difficult to determine the lump parameters by using symmetric
Laguerre–Gauss channels. In particular, the parameters lx and ly that characterize the
asymmetry in the lumps were never properly estimated with the Laguerre–Gauss channels.
Channel selection is also an issue with sinogram image data, in which locally supported filters
are not such an obvious choice.
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We would like to compare different object models by measuring the performances of the
corresponding ideal observers on real images of the real objects. The eventual goal of studying
this technique is to perform hardware optimizations by using task-based measures of image
quality. Specifically, we would like to compute ideal-observer performance for an imaging
system by using one of our fitted object models. These topics will be addressed in future
publications.
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Fig. 1.
Examples of two-dimensional lumpy objects with different parameters θ.
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Fig. 2.
Examples of two-dimensional clustered lumpy objects with different parameters θ.
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Fig. 3.
Simulation results for lumpy objects. (a)–(c) Three of the images used to fit the lumpy object
model parameters. (d)–(f ) Three images generated by using the fitted model parameters. The
top row of images are not meant to look exactly like the bottom row of images; they are simply
meant to appear statistically similar.
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