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Abstract
Biological networks have so many possible states that exhaustive sampling is impossible. Successful
analysis thus depends on simplifying hypotheses, but experiments on many systems hint that
complicated, higher-order interactions among large groups of elements have an important role. Here
we show, in the vertebrate retina, that weak correlations between pairs of neurons coexist with
strongly collective behaviour in the responses of ten or more neurons. We find that this collective
behaviour is described quantitatively by models that capture the observed pairwise correlations but
assume no higher-order interactions. These maximum entropy models are equivalent to Ising models,
and predict that larger networks are completely dominated by correlation effects. This suggests that
the neural code has associative or error-correcting properties, and we provide preliminary evidence
for such behaviour. As a first test for the generality of these ideas, we show that similar results are
obtained from networks of cultured cortical neurons.

Much of what we know about biological networks has been learned by studying one element
at a time—recording the electrical activity of single neurons, the expression levels of single
genes or the concentrations of individual metabolites. On the other hand, important aspects of
biological function must be shared among many elements1-4. As a first step beyond the analysis
of elements in isolation, much attention has been focused on the pairwise correlation properties
of these elements, both in networks of neurons5-13 and in networks of genes14-16. But given
a characterization of pairwise correlations, what can we really say about the whole network?
How can we tell if inferences from a pairwise analysis are correct, or if they are defeated by
higher-order interactions among triplets, quadruplets, and larger groups of elements? If these
effects are important, how can we escape from the ‘curse of dimensionality’ that arises because
there are exponentially many possibilities for such terms?

Here we address these questions in the context of the vertebrate retina, where it is possible to
make long, stable recordings from many neurons simultaneously as the system responds to
complex, naturalistic inputs17-20. We compare the correlation properties of cell pairs with the
collective behaviour in larger groups of cells, and find that the minimal model that incorporates
the pairwise correlations provides strikingly accurate but non-trivial predictions of the
collective effects. These minimal models are equivalent to the Ising model in statistical physics,
and this mapping allows us to explore the properties of larger networks, in particular their
capacity for error-correcting representations of incoming sensory data.
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The scale of correlations
Throughout the nervous system, individual elements communicate by generating discrete
pulses termed action potentials or spikes21. If we look through a window of fixed time
resolution Δτ, then for small Δτ these responses are binary—either the cell spikes (‘1’) or it
doesn't (‘0’). Although some pairs of cells have very strong correlations, most correlations are
weak, so that the probability of seeing synchronous spikes is almost equal to the product of the
probabilities of seeing the individual spikes; nonetheless, these weak correlations are
statistically significant for most, if not all, pairs of nearby cells. All of these features are
illustrated quantitatively by an experiment on the salamander retina (Fig. 1), where we record
simultaneously from 40 retinal ganglion cells as they respond to movies taken from a natural
setting (see Methods). The correlations between cells have structure on the scale of 20 ms and
we use this window as our typical Δτ.

The small values of the correlation coefficients suggest an approximation in which the cells
are completely independent. For most pairs, this is true with a precision of a few per cent, but
if we extrapolate this approximation to the whole population of 40 cells, it fails disastrously.
In Fig. 1e, we show the probability P(K) that K of these cells generate a spike in the same small
window of duration Δτ. If the cells were independent, P(K) would approximate the Poisson
distribution, whereas the true distribution is nearly exponential. For example, the probability
of K = 10 spiking together is ∼105× larger than expected in the independent model.

The discrepancy between the independent model and the actual data is even more clear if we
look at particular patterns of response across the population. Choosing N = 10 cells out of the
40, we can form an N-letter binary word to describe the instantaneous state of the network, as
in Fig. 1b. The independent model makes simple predictions for the rate at which each such
word should occur, and Fig. 1f shows these predictions as a scatter plot against the actual rate
at which the words occur in the experiment. At one extreme, the word 1011001010 occurs once
per minute, whereas the independent model predicts that this should occur once per three years
(a discrepancy of ∼106×). Conversely, the word 1000000010 is predicted to occur once per
three seconds, whereas in fact it occurred only three times in the course of an hour. The
independent model makes order-of-magnitude errors even for very common patterns of
activity, such as a single cell generating a spike while all others are silent. Moreover, within
the clusters corresponding to different total numbers of spikes, the predictions and observations
are strongly anti-correlated.

We conclude that weak correlations among pairs of neurons coexist with strong correlations
in the states of the population as a whole. One possible explanation is that there are specific
multi-neuron correlations, whether driven by the stimulus or intrinsic to the network, which
simply are not measured by looking at pairs of cells. Searching for such higher-order effects
presents many challenges22-24. Another scenario is that small correlations among very many
pairs could add up to a strong effect on the network as a whole. If correct, this would be an
enormous simplification in our description of the network dynamics.

Minimal consequences of pairwise correlations
To describe the network as a whole, we need to write down a probability distribution for the
2N binary words corresponding to patterns of spiking and silence in the population. The
pairwise correlations tell us something about this distribution, but there are an infinite number
of models that are consistent with a given set of pairwise correlations. The difficulty thus is to
find a distribution that is consistent only with the measured correlations, and does not implicitly
assume the existence of unmeasured higher-order interactions. As the entropy of a distribution
measures the randomness or lack of interaction among different variables25, this minimally
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structured distribution that we are looking for is the maximum entropy distribution26 consistent
with the measured properties of individual cells and cell pairs27.

We recall that maximum entropy models have a close connection to statistical mechanics:
physical systems in thermal equilibrium are described by the Boltzmann distribution, which
has the maximum possible entropy given the mean energy of the system26,28. Thus, any
maximum entropy probability distribution defines an energy function for the system we are
studying, and we will see that the energy function relevant for our problem is an Ising model.
Ising models have been discussed extensively as models for neural networks29,30, but in these
discussions the model arose from specific hypotheses about the network dynamics. Here, the
Ising model is forced upon us as the least-structured model that is consistent with measured
spike rates and pairwise correlations; we emphasize that this is not an analogy or a metaphor,
but rather an exact mapping.

Whether we view the maximum entropy model through its analogy with statistical physics or
simply as a model to be constructed numerically from the data (see Methods), we need
meaningful ways of assessing whether this model is correct. Generally, for a network of N
elements, we can define maximum entropy distributions PK that are consistent with all Kth-
order correlations for any K = 1, 2, …, N (ref. 27). These distributions form a hierarchy, from
K = 1 where all elements are independent, up to K = N, which is an exact description that allows
arbitrarily complex interactions; their entropies SK decrease monotonically toward the true
entropy S : S1 ≥ S2 ≥ … ≥ SN = S. The entropy difference or multi-information IN = S1 − SN
measures the total amount of correlation in the network, independent of whether it arises from
pairwise, triplet or more-complex correlations31. The contribution of the Kth-order correlation
is I(K) = SK − 1 − Sk and is always positive (more correlation always reduces the entropy); IN is
the sum of all the I(K) (ref. 27). Therefore, the question of whether pairwise correlations provide
an effective description of the system becomes the question of whether the reduction in entropy
that comes from these correlations, I(2) = S1 − S2, captures all or most of the multi-information
IN.

Are pairwise correlations enough?
Figure 2 shows the predictions of the maximum entropy model P2 consistent with pairwise
correlations in populations of N = 10 cells. Looking in detail at the patterns of spiking and
silence of one group of 10 cells, we see that the predicted rates for different binary words are
tightly correlated with the observed rates over a very large dynamic range, so that the dramatic
failures of the independent model have been overcome (Fig. 2a).

With 40 cells, we can choose many different populations of 10 cells, and in each case we find
that the predicted and observed distributions of words are very similar. It would typically take
thousands of independent samples to distinguish reliably between the true distribution of
responses and the maximum entropy model, two orders of magnitude more than for the
independent model (Fig. 2b).

The success of the pairwise maximum entropy models in capturing the correlation structure of
the network is summarized by the fraction I(2)/IN ≈ 90% (Fig. 2c). This ratio is larger when
IN itself is larger, so that the pairwise model is more effective in describing populations of cells
with stronger correlations, and the ability of this model to capture ∼90% of the multi-
information holds independent of many details (Fig. 2d; see also Supplementary Information):
we can vary the particular natural movies shown to the retina, use an artificial movie, change
the size of the bins Δτ used to define the binary responses, change the number of neurons N
that we analyse, and even shift from a lower vertebrate (salamander) to a mammalian (guinea
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pig) retina. Finally, the correlation structure in a network of cultured cortical neurons32 can
be captured by the pairwise model with similar accuracy.

The maximum entropy model describes the correlation structure of the network activity without
assumptions about its mechanistic origin. A more traditional approach has been to dissect the
correlations into contributions that are intrinsic to the network and those that are driven by the
visual stimulus. The simplest model in this view is one in which cells spike independently in
response to their input, so that all correlations are generated by covariations of the individual
cells' firing rates33. Although there may be situations in which conditional independence is a
good approximation, Fig. 2c shows that this model is less effective than the maximum entropy
model in capturing the multi-information for 232 out of 250 groups of 10 neurons, even though
the conditional independent model has ∼200 times more parameters (see Methods). The
hypothesis of conditional independence is consistently less effective in capturing the structure
of more-strongly correlated groups of cells, which is opposite to the behaviour of the maximum
entropy model. Finally, whereas the maximum entropy model can be constructed solely from
the observed correlations among neurons, the conditionally independent model requires
explicit access to repeated presentations of the visual stimulus. Thus, the central nervous system
could learn the maximum entropy model from the data provided by the retina alone, but the
conditionally independent model is not biologically realistic in this sense.

We conclude that although the pairwise correlations are small and the multi-neuron deviations
from independence are large, the maximum entropy model consistent with the pairwise
correlations captures almost all of the structure in the distribution of responses from the full
population of neurons. Thus, the weak pairwise correlations imply strongly correlated states.
To understand how this happens, it is useful to look at the mathematical structure of the
maximum entropy distribution.

Ising models, revisited
We recall that the maximum entropy distribution consistent with a known average energy
〈E〉 is the Boltzmann distribution, P ∝ exp(−E/kBT), where kB is Boltzmann's constant and
T is temperature. This generalizes, so that if we know the average values of many variables
fμ describing the system, then the maximum entropy distribution is P ∝ exp(−∑μλμfμ), where
there is a separate Lagrange multiplier λμ for each constraint26,28. In our case, we are given
the average probability of a spike in each cell and the correlations among all pairs. If we
represent the activity of cell i by a variable σi = ±1, where + 1 stands for spiking and −1 stands
for silence, then these constraints are equivalent to fixing the average of each σi and the averages
of all products σiσj, respectively. The resulting maximum entropy distribution is

P2(σ1, σ2, …, σN ) = 1
Z exp ∑

i
hiσi + 1

2 ∑
i≠j

Jijσiσj (1)

where the Lagrange multipliers {hi, Jij} have to be chosen so that the averages {〈σi〉, 〈σiσj〉}
in this distribution agree with experiment; the partition function Z is a normalization factor.
This is the Ising model28, where the σi are spins, the hi are local magnetic fields acting on each
spin, and the Jij are the exchange interactions; note that h > 0 favours spiking and J > 0 favours
positive correlations. Figure 3 shows the parameters {hi, Jij} for a particular group of ten cells,
as well as the distributions of parameters for many such groups. Most cells have a negative
local field, which biases them toward silence. Figure 3c and d illustrates the non-trivial
relationship between the pairwise interaction strengths Jij and the observed pairwise
correlations.

We can rewrite equation (1) exactly by saying that each neuron or spin σi experiences an
effective magnetic field that includes the local field or intrinsic bias hi and a contribution from
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interactions with all the other spins (neurons), h i
int = 1

2 ∑ j≠i Jijσj; note that h i
int depends on

whether the other cells are spiking or silent. The intrinsic bias dominates in small groups of
cells, but as we look to larger networks, the fact that almost all of the ∼N2 pairs of cells are
significantly (if weakly) interacting shifts the balance so that the typical values of the intrinsic
bias are reduced while the effective field contributed by the other cells has increased (Fig. 4).

Larger networks and error correction
Groups of N = 10 cells are large enough to reveal dramatic departures from independence, but
small enough that we can directly sample the relevant probability distributions. What happens
at larger N? In general, we expect that the total capacity of the network to represent its sensory
inputs should grow in proportion to the number of neurons, N. This is the usual thermodynamic
limit in statistical mechanics, where energy and entropy are proportional to system size28. But
this behaviour is not guaranteed when all elements of the system interact with each other. In
the Ising model, it is known that if all pairs of spins (here, cells) interact significantly, then to
recover the thermodynamic limit the typical size of the interactions Jij must decrease with N
(refs 30, 34). Although we have not analysed very large networks, we see no signs of significant
changes in J with growing N (Fig. 4b, c).

In a physical system, the maximum entropy distribution is the Boltzmann distribution, and the
behaviour of the system depends on the temperature, T. For the network of neurons, there is
no real temperature, but the statistical mechanics of the Ising model predicts that when all pairs
of elements interact, increasing the number of elements while fixing the typical strength of
interactions is equivalent to lowering the temperature, T, in a physical system of fixed size,
N. This mapping predicts that correlations will be even more important in larger groups of
neurons.

We can see signs of strong correlation emerging by looking at the entropy and multi-
information in sub-networks of different sizes. If all cells were independent, the entropy would
be S1, exactly proportional to N. For weak correlations, we can solve the Ising model in
perturbation theory to show that the multi-information IN is the sum of mutual information
terms between all pairs of cells, and hence IN ∝ N(N − 1). This is in agreement with the
empirically estimated IN up to N = 15, the largest value for which direct sampling of the data
provides a good estimate (Fig. 5a), and Monte Carlo simulations of the maximum entropy
models suggest that this agreement extends up to the full population of N = 40 neurons in our
experiment (G. Tkačik, E.S., R.S., M.J.B. and W.B., unpublished data). Were this pattern to
continue, at N ≈ 200 cells IN would become equal to the independent entropy S1, and the true
entropy SN = S1 – IN would vanish as the system ‘froze’. Because we see variable firing patterns
of all the cells, we know that literal freezing of the network into a single state doesn't happen.
On the other hand, networks of N ≈ 200 cells must be very strongly ordered. Interestingly,
experiments indicate that a correlated patch on the retina has roughly this size: the strongest
correlations are found for cells within ∼200 μm of each other, and this area contains ∼175
ganglion cells in the salamander19.

Because the interactions Jij have different signs, frustration (Fig. 3c) can prevent the freezing
of the system into a single state. Instead there will be multiple states that are local minima of
the effective energy function, as in spin glasses34. We find that roughly 40% of all triplets of
cells are indeed frustrated. If the number of minimum energy patterns is not too small, then the
system retains a significant representational capacity. If the number of patterns is not too large,
then observing only some of the cells in the network is sufficient to identify the whole pattern
uniquely, just as in the Hopfield model of associative memory29. Thus, the system would have
a holographic or error-correcting property, so that an observer who has access only to a fraction
of the neurons would nonetheless be able to reconstruct the activity of the whole population.
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We can see suggestions of this error-correcting property by asking directly how much the
knowledge of activity in N cells tells us about whether cell N + 1 will spike (Fig. 5b). Our
uncertainty about the state of one cell is reduced in proportion to the number of cells that we
examine, and if this trend continues, then again at N ≈ 200 all uncertainty would vanish.
Alternatively, we can look for particular kinds of error correction. In our population of 40 cells,
we have found three cells for which the probability of spiking is an almost perfectly linear
encoding of the number of spikes generated by the other cells in the network (Fig. 5c). To the
extent that local field potentials or intrinsic optical signals in cortex reflect the total number of
spikes generated by nearby neurons, this observation is analogous to the statement that the
spiking in single pyramidal cells is correlated with these more collective responses35. By
observing the activity of the ‘check cells’ in Fig. 5c, we can estimate how many spikes are
generated by the network as a whole even before we observe any of the other cells' responses.

Discussion
We have seen that the maximum entropy principle provides a unique candidate model for the
whole network that is consistent with observations on pairs of elements but makes no additional
assumptions. Despite the opportunity for higher-order interactions in the retina, this model
captures more than 90% of the structure in the detailed patterns of spikes and silence in the
network, closing the enormous gap between the data and the predictions of a model in which
cells fire independently. Because the maximum entropy model has relatively few parameters,
we evade the curse of dimensionality and associated sampling problems that would ordinarily
limit the exploration of larger networks. The low spiking probabilities, and weak but significant
correlations among almost all pairs of cells, are not unique to the retina. Indeed, the maximum
entropy model of second order captures over 95% of the multi-information in experiments on
cultured networks of cortical neurons. In addition, application of the maximum entropy
formalism of ref. 27 to ganglion cells in monkey retina shows that pairwise correlations in
groups of up to N = 8 ‘ON’ or ‘OFF’ parasol cells, restricted to adjacent cells in each mosaic,
can account for 98% of the observed deviations from statistical independence (E. J.
Chichilnisky, personal communication).

The success of a model that includes only pairwise interactions provides an enormous
simplification in our description of the network. This may be important not only for our
analysis, but also for the brain. The dominance of pairwise interactions means that learning
rules based on pairwise correlations36 could be sufficient to generate nearly optimal internal
models for the distribution of ‘codewords’ in the retinal vocabulary, thus allowing the brain to
accurately evaluate new events for their degree of surprise37.

The mapping of the maximum entropy problem to the Ising model, together with the observed
level of correlations, implies that groups of N ≈ 200 cells will behave very differently than
smaller groups, and this is especially interesting because the patch of significantly correlated
ganglion cells in the retina is close to this critical size19. Because the response properties of
retinal ganglion cells adapt to the input image statistics38,39, this matching of correlation
length and correlation strength cannot be an accident of anatomy but rather must be set by
adaptive mechanisms. Perhaps there is an optimization principle that determines this operating
point, maximizing coding capacity while maintaining the correlation structures that enable
error-correction.

Although we have focused on networks of neurons, the same framework has the potential to
describe biological networks more generally. In this view, the network is much more than the
sum of its parts, but a nearly complete model can be derived from all its pairs.
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METHODS
Retinal experiments

Retinae from the larval tiger salamander (Ambystoma tigrinum) and the guinea pig (Cavia
porcellus) were isolated from the eye, retaining the pigment epithelium, and placed over a
multi-electrode array19. Both were perfused with oxygenated medium: room temperature
Ringers for salamander and 36 °C Ames medium for guinea pig. Extracellular voltages were
recorded by a MultiChannel Systems MEA 60 microelectrode array and streamed to disk for
offline analysis. Spike waveforms were sorted either using the spike size and shape from a
single electrode19 or the full waveform on 30 electrodes18. Recorded ganglion cells were
spaced no more than 500 μm apart, and were typically close enough together to have
overlapping receptive field centres. Our analysis is based on measurements of 95 cells recorded
in 4 salamanders and 35 cells recorded in 2 guinea pigs.

Natural movie clips (‘Nat.’ in Fig. 2) were acquired using a Canon Optura Pi video camera at
30 frames per second. Movie clips broadly sampled woodland scenes as well as man-made
environments, and included several qualitatively different kinds of motion: objects moving in
a scene, optic flow, and simulated saccades19. In spatially uniform flicker (‘FFF’ in Fig. 2),
the light intensity was randomly chosen to be black or white every 16.7 ms. For most
experiments, a 20–30 s stimulus segment was repeated many times; in one experiment, a 16
min movie clip was repeated several times. All visual stimuli were displayed on an NEC
FP1370 monitor and projected onto the retina using standard optics. The mean light level was
5 lux, corresponding to photopic vision.

Cultured cortical networks
Data on cultured cortical neurons were recorded by the laboratory of S. Marom (Technion–
Israel Institute of Technology) using a multi-electrode array, as described in ref. 32. The data
set analysed here is an hour-long epoch of spontaneous neuronal activity recorded through 60
electrodes.

Analysis
Mean spike rates ranged from 0.3 to 4.5 spikes s−1. Spike trains are binned using Δτ = 20-ms
windows (unless otherwise noted) into binary sequences of spiking (1) and non-spiking (0); in
the rare cases where there is more than one spike in a bin, we denote it as ‘1’. Cross-correlation
values were estimated by discretizing the neural response into binary (spike/no spike) variables
for each cell, using Δτ = 20-ms bins, and then computing the correlation coefficients among
these variables. Because the data sets we consider here are very large (∼1 hour), the threshold
for statistical significance of the individual correlation coefficients is well below |C| 0.01.

Information theoretic quantities such as IN depend on the full distribution of states for the real
system. Estimating these quantities can be difficult, because finite data sets lead to systematic
errors40. With large data sets (∼1 hour) and N < 15 cells, however, systematic errors are small,
and we can use the samplesize dependence of the estimates to correct for these errors, as in
ref. 41. For networks of modest size, as considered here, constructing the maximum entropy
distribution consistent with the mean spike rates and pairwise correlations can be viewed as
an optimization problem with constraints. Because the entropy is a convex function of the
probabilities, and the constraints are linear, many efficient algorithms are available42. To test
our models we sometimes need surrogate data without correlations. To remove all correlations
among neurons (Fig. 1), we shift the whole spike train of each cell by a random time relative
to all the other cells. To generate the conditionally independent responses (Fig. 2), we use data
from repeated presentations (trials) of the same movie and shuffle the trial labels on each cell
independently. We then use the joint probability distribution of the cells under conditional
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independence, Pcond-indep(σ1, σ2,…, σN), to compute Icond-indep = S1 – S[Pcond-indep(σ1, σ2,…,
σN)]. Note that the conditionally independent model has NT/Δτ parameters, because each cell
has its own spike rate, potentially different at each moment in time, where T is the duration of
the stimulus movie; in our case NT/Δτ ≈ 104, in contrast to the N(N 1)/2 = 55 parameters of
the maximum entropy model, for N = 10 cells.

The Jensen–Shannon divergence, DJS [p∥q], quantifies the dissimilarity of the distributions p
and q, essentially measuring the inverse of the number of independent samples we would need
in order to be sure that the two distributions were different43.
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Figure 1.
Weak pairwise cross-correlations and the failure of the independent approximation. a,
A segment of the simultaneous responses of 40 retinal ganglion cells in the salamander to a
natural movie clip. Each dot represents the time of an action potential. b, Discretization of
population spike trains into a binary pattern is shown for the green boxed area in a. Every string
(bottom panel) describes the activity pattern of the cells at a given time point. For clarity, 10
out of 40 cells are shown. c, Example cross-correlogram between two neurons with strong
correlations; the average firing rate of one cell is plotted relative to the time at which the other
cell spikes. Inset shows the same cross-correlogram on an expanded time scale; x-axis, time
(ms); y-axis, spike rate (s−1). d, Histogram of correlation coefficients for all pairs of 40 cells
from a. e, Probability distribution of synchronous spiking events in the 40 cell population in
response to a long natural movie (red) approximates an exponential (dashed red). The
distribution of synchronous events for the same 40 cells after shuffling each cell's spike train
to eliminate all correlations (blue), compared to the Poisson distribution (dashed light blue).
f, The rate of occurrence of each pattern predicted if all cells are independent is plotted against
the measured rate. Each dot stands for one of the 210 = 1,024 possible binary activity patterns
for 10 cells. Black line shows equality. Two examples of extreme mis-estimation of the actual
pattern rate by the independent model are highlighted (see the text).
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Figure 2.
A maximum entropy model including all pairwise interactions gives an excellent
approximation of the full network correlation structure. a, Using the same group of 10
cells from Fig. 1, the rate of occurrence of each firing pattern predicted from the maximum
entropy model P2 that takes into account all pairwise correlations is plotted against the
measured rate (red dots). The rates of commonly occurring patterns are predicted with better
than 10% accuracy, and scatter between predictions and observations is confined largely to
rare events for which the measurement of rates is itself uncertain. For comparison, the
independent model P1 is also plotted (from Fig. 1f; grey dots). Black line shows equality. b,
Histogram of Jensen–Shannon divergences (see Methods) between the actual probability
distribution of activity patterns in 10-cell groups and the models P1 (grey) and P2 (red); data
from 250 groups. c, Fraction of full network correlation in 10-cell groups that is captured by
the maximum entropy model of second order, I(2)/IN, plotted as a function of the full network
correlation, measured by the multi-information IN (red dots). The multi-information values are
multiplied by 1/Δτ to give bin-independent units. Every dot stands for one group of 10 cells.
The 10-cell group featured in a is shown as a light blue dot. For the same sets of 10 cells, the
fraction of information of full network correlation that is captured by the conditional
independence model, Icond–indep/IN, is shown in black (see the text). d, Average values of I(2)/
IN from 250 groups of 10 cells. Results are shown for different movies (see Methods), for
different species (see Methods), and for cultured cortical networks; error bars show standard
errors of the mean. Similar results are obtained on changing N and Δτ; see Supplementary
Information.

Schneidman et al. Page 11

Nature. Author manuscript; available in PMC 2007 January 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Pairwise interactions and individual cell biases, as in equation (1). a, Example of the
pairwise interactions Jij (above) and bias values (or local fields) hi (below) for one group of
10 cells. b, Histograms of hi and Jij values from 250 different groups of 10 cells. c, Two
examples of 3 cells within a group of 10. At left, cells A and B have almost no interaction
(JAB = −0.02), but cell C is very strongly interacting with both A and B (JAC = 0.52, JBC =
0.70), so that cells A and B exhibit strong correlation, as shown by their cross-correlogram
(bottom panel). At right, a ‘frustrated’ triplet, in which cells A and B have a significant positive
interaction (JAB = 0.13), as do cells B and C (JBC = 0.09), but A and C have a significant
negative interaction (JAC = −0.11). As a result, there is no clear correlation between cells A
and B, as shown by their cross-correlogram (bottom panel). d, Interaction strength Jij plotted
against the correlation coefficient Cij; each point shows the value for one cell pair averaged
over many different groups of neighbouring cells (190 pairs from 250 groups), and error bars
show standard deviations.
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Figure 4.
Interactions and local fields in networks of different size. a, Greyscale density map of the
distribution of effective interaction fields experienced by a single cell h i

int versus its own bias
or local field hi (see the text); distribution formed over network configurations at each point
in time during a natural movie for n = 1,140 3-cell groups (top panel) and n = 250 10-cell
groups (bottom panel). Black line shows the boundary between dominance of local fields versus
interactions. b, Mean interactions Jij and local fields hi describing groups of N cells, with error
bars showing standard deviations across multiple groups. c, Pairwise interaction in a network
of 10 cells Jij

(10) plotted against the interaction values of the same pair in a sub-network

containing only 5 cells Jij
(5). Line shows equality.
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Figure 5.
Extrapolation to larger networks. a, Average independent cell entropy S1 and network multi-
information IN, multiplied by 1/Δτ to give bin-independent rates, versus number of cells in the
network N. Theoretically, we expect IN ∝ N(N − 1) for small N; the best fit is IN ∝
N1.98±0.04. Extrapolating (dashed line) defines a critical network size Nc, where IN would be
equal to S1. b, Information that N cells provide about the activity of cell N + 1, plotted as a
fraction of that cell's entropy, S(σi), versus network size N; each point is the average value for
many different groups of cells. Extrapolation to larger networks (dashed line, slope = 1.017 ±
0.052) defines another critical network size Nc, where one would get perfect error-correction
or prediction of the state of a single cell from the activity of the rest of the network. c, Examples
of ‘check cells’, for which the probability of spiking is an almost perfectly linear encoding of
the number of spikes generated by the other cells in the network. Cell numbers as in Fig. 1.
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