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Iron is important in the symbiosis between soybean and its nitrogen-fixing endosymbiont Bradyrhizobium
japonicum, yet little is known about rhizobial iron acquisition strategies. Analysis of outer membrane proteins
(OMPs) from B. japonicum 61A152 identified three iron-regulated OMPs in the size range of several known
receptors for Fe(III)-scavenging siderophores. One of the iron-regulated proteins, FegA, was purified and
microsequenced, and a reverse genetics approach was used to clone a fegA-containing DNA fragment. Sequenc-
ing of this fragment revealed a single open reading frame of 750 amino acids. A putative N-terminal signal
sequence of 14 amino acids which would result in a mature protein of 736 amino acids with a molecular mass
of 80,851 Da was predicted. FegA shares significant amino acid similarity with several Fe(III)-siderophore
receptors from gram-negative bacteria and has greater than 50% amino acid similarity and 33% amino acid
identity with three bacterial receptors for hydroxamate-type Fe(III)-siderophores. A dendrogram describing
total inferred sequence similarity among 36 TonB-dependent OMPs was constructed; FegA grouped with
Fe(III)-hydroxamate receptors. The transcriptional start site of fegA was mapped by primer extension analysis,
and a putative Fur-binding site was found in the promoter. Primer extension and RNA slot blot analysis
demonstrated that fegA was expressed only in cells grown under iron-limiting conditions. This is the first report
of the cloning of a gene encoding a putative Fe(III)-siderophore receptor from nitrogen-fixing rhizobia.

Rhizobia live in the soil or engage in a nitrogen-fixing sym-
biosis with a suitable legume host plant. Each environment
presents unique challenges with respect to the acquisition of
essential nutrients such as iron. Although iron is the fourth
most abundant element in the earth’s crust, it is extremely
insoluble at neutral pH under aerobic conditions and is pre-
dominantly found as precipitated, oxyhydroxide polymers (34,
57). Therefore, as free-living soil microorganisms, rhizobia
must have a way to solubilize iron as well as a way to compete
for this nutrient with other organisms present in the rhizo-
sphere. In planta, iron is likely to be tightly chelated in various
storage forms, because free iron catalyzes the production of
potent oxidants that damage biomolecules (for example, see
reference 80). In addition, iron has been shown to be a patho-
genicity factor (22), so rhizobia must have mechanisms for
accessing iron which is generally unavailable to invading patho-
gens.
As a starting point in the study of rhizobial iron acquisition,

investigators have established that some rhizobial strains can
produce siderophores, Fe(III)-specific ligands with a high af-
finity for iron (reviewed in reference 33; see also references 14,
15, 23, 41, 48, 52, 61, 68, 69, 78, and 82). At present, we can
generalize and say that siderophore production, when present,
is strain specific. That is, there does not appear to be any
particular siderophore made by all rhizobia. For example, Rhi-
zobium meliloti DM4 produces a carboxylate-type siderophore
(76), whereas R. meliloti 1021 produces a dihydroxamate-type
siderophore (62). We can also generalize that the ability to
produce siderophores seems to be more widespread among
rhizobial species than among bradyrhizobial strains. This may
reflect the evolution of bradyrhizobia in the acid soils of the
tropics, where iron is generally more available than in neutral

or high-pH soils. A final generalization we can make is that a
number of rhizobial and bradyrhizobial strains release citric
acid as a siderophore under iron-deficient growth conditions
(15, 36, 48). Many fungi also release hydroxy acids under con-
ditions of iron deficiency (90). Although there is definitely a
competitive advantage to producing siderophores, the ability
to utilize siderophores which are produced by other organisms
can also provide a clear benefit (13). For example, Pseudomo-
nas aeruginosa synthesizes and uses two of its own siderophores
but has also been demonstrated to utilize the heterologous
bacterial siderophores enterobactin, aerobactin, and ferriox-
amine B and a number of siderophores produced by other
pseudomonads (20).
In order to utilize a siderophore, an organism must have a

siderophore-specific iron uptake system composed of four
main components: a high-affinity outer membrane receptor,
the inner membrane-anchored TonB protein, a periplasmic
binding protein, and several inner membrane-associated pro-
teins (reviewed in reference 11). The genes encoding these
proteins are coordinately derepressed under conditions of iron
deficiency and are negatively regulated by the product of the
fur (ferric uptake regulation) gene (reviewed in reference 34).
Gram-negative bacteria selectively control the entry of iron
into the cell at the outer membrane through Fe(III)-sid-
erophore receptors, presumably because the large size of
Fe(III)-siderophore complexes exceeds the limits of the outer
membrane pores (reviewed in reference 37). In Escherichia
coli, cell surface-exposed protein loops of the outer membrane
receptors have been demonstrated to bind specific Fe(III)-
siderophore complexes, which are subsequently internalized
via a nonspecific channel region of the receptor (43, 70). Al-
though there have been a number of reports of iron-regulated
outer membrane proteins (OMPs) in rhizobia (14, 23, 28, 41,
61, 68, 69), most simply state that such proteins were observed
and that they may serve as Fe(III)-siderophore receptors.
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Reigh and O’Connell (68) correlated the presence of specific
iron-repressible OMPs with the production and release of spe-
cific siderophores, suggesting that Fe(III)-siderophore trans-
port in rhizobia may be similar to transport in E. coli and other
gram-negative bacteria.
Our work with the rhizobial soybean endosymbiont Brady-

rhizobium japonicum focuses on strain 61A152, which releases
citric acid as a siderophore under conditions of iron deficiency
(36) and is also able to utilize Fe(III) from two fungal sid-
erophores, rhodoturulate and ferrichrome (63). In order to
more fully characterize iron uptake in B. japonicum 61A152,
we have purified the three major iron-regulated OMPs from
this strain. We report here on the cloning and characterization
of the fegA gene, which encodes one of the iron-regulated
OMPs from 61A152. The fegA gene is iron regulated, has a
presumptive Fur-binding site in its promoter, and encodes a
protein with similarity to hydroxamate-type siderophore recep-
tors. This is the first report of the cloning and sequencing of a
gene encoding a siderophore receptor from any rhizobia.

MATERIALS AND METHODS

Materials. Restriction enzymes, T4 DNA ligase, T4 polynucleotide kinase, calf
intestinal alkaline phosphatase, and Klenow fragment of DNA polymerase were
purchased from New England Biolabs (Beverly, Mass.). Nonidet P-40 was from
Calbiochem (La Jolla, Calif.). Taq polymerase was from Perkin-Elmer (Foster
City, Calif.) Avian myeloblastosis virus reverse transcriptase was from Promega
(Madison, Wis.). [a-32P]dCTP, [g-32P]ATP, and [a-35S]dATP were purchased
from Dupont/NEN (Boston, Mass.). Unless otherwise stated, chemicals were
purchased from Sigma Chemical Co. (St. Louis, Mo.).
Strains, plasmids, phage, and growth conditions. Bacterial strains, plasmids,

and phage used in this study are listed in Table 1. E. coli cultures were grown at
378C in Luria-Bertani broth (5) supplemented with 80 mg of ampicillin per ml
when necessary. E. coli cultures grown for lambda plating were supplemented
with maltose (0.2% final concentration) and MgSO4 (10 mM final concentra-
tion), and phage infections were performed according to standard procedures
(5). B. japonicum cells were cultured at 308C with shaking in minimal medium
(filter-sterilized mannitol was added to a 0.2% final concentration after auto-
claving) (36). Cells were initially cultured in minimal medium supplemented with
FeCl3 to a final concentration of 10 mM (from a filter-sterilized stock of 70 mM
FeCl3 in 0.1 N HCl) and then diluted into fresh iron-free minimal medium.
Cultures then either were supplemented with FeCl3 to a final concentration of 10
mM or were not supplemented with iron. After one cycle of growth in iron-free
minimal medium, cells to be subjected to iron starvation were again diluted into
fresh iron-free minimal medium to ensure iron limitation. Precautions were
taken to minimize the iron content of both the culture vessels and the medium.
Glassware was washed with 1 N HCl and then rinsed extensively with distilled
water.
OMP preparation, analysis, and purification. OMPs were isolated from B.

japonicum cells by using the nonionic detergent Nonidet P-40, as originally
described for bacteroids (6). Briefly, bacterial outer membranes are resistant to
solubilization by Nonidet P-40 because of a low protein-to-lipid ratio, while other
bacterial membranes are solubilized. Protein concentrations were estimated with
the BCA assay (Pierce, Rockford, Ill.). Seventy-five micrograms of protein per
lane was run on sodium dodecyl sulfate (SDS)–8.6% polyacrylamide gel electro-
phoresis (PAGE) gels in 13 SDS electrophoresis running buffer (5) at 30 mA
with prestained protein molecular weight standards (Sigma Chemical Co.). After
electrophoresis, the gels were stained with Coomassie brilliant blue and photo-
graphed. Two hundred fifty-microgram quantities of isolated OMPs were loaded
into wells made by a curtain comb in an SDS–8.6% PAGE gel. The gel was run,
and proteins were visualized by negative staining (8). This method allowed
visualization of proteins without permanently fixing them within the gel. Appro-
priate bands were excised, and protein-containing slices of acrylamide were
electroeluted in an Isco electrophoretic concentrator according to the manufac-
turer’s instructions (Isco Inc., Lincoln, Nebr.). Collected fractions were concen-
trated in Centricon 30 microconcentrators (Amicon, Danvers, Mass.) for 15 min
at 6,0003 g. Protein concentrations were determined, and 250 ng of each protein
fraction was run on 8.6% minigels. The gels were silver stained (54), and proteins
were examined for purity. Gel purification and concentration steps were re-
peated until silver staining revealed a single sharp band of the proper molecular
weight.
Preparation of antibodies and immunoblotting. Polyclonal antiserum against

protein 61A2 was raised in rabbits (75), and immunoglobulins were precipitated
with ammonium sulfate and affinity purified (79). Proteins were transferred to
reinforced nitrocellulose (0.45-mm pore size; BA-S 85; Schleicher and Schuell,
Keene, N.H.) by electrophoresis (81). The transfer was performed at a constant
current (400 mA) for 60 min in a buffer containing 25 mM Tris and 192 mM

glycine (pH 8.3) with a Genie electroblotting device (Idea Scientific Co., Min-
neapolis, Minn.). Nitrocellulose sheets were then blocked in 0.15 M NaCl–10
mM Tris (pH 7.5)–25% gelatin (warmed to allow gelatin to go into solution) and
processed for detection of antigen-antibody complexes with alkaline phos-
phatase-conjugated secondary antibodies according to the manufacturer’s in-
structions (Promega).
Amino acid analysis. Purified FegA protein (100 pmol) was electroblotted

onto an Immobilon PSQ polyvinylidene fluoride membrane according to the
manufacturer’s instructions (Millipore, Bedford, Mass.). Initial Edman degrada-
tion analysis was determined with a Model 476 A Gas Phase Protein Sequencer
(Applied Biosystems Inc., Foster City, Calif.) at the Dartmouth College Molec-
ular Biology Core Facility. Data indicated that the protein was blocked at the N
terminus. Consequently, 100-pmol samples of blotted, purified FegA protein
were sent to the Wistar Protein Microsequencing Facility (Philadelphia, Pa.) and
subjected to tryptic digestion followed by high-pressure liquid chromatography
(HPLC) separation. Two of the separated peptides were subjected to Edman
degradation. Sequence data were generated for two peptide fragments. A frag-
ment with a molecular mass of 1,924 Da had the sequence GINFLPYQGTVT
NAPFGK, and a fragment with a molecular mass of 1,764 Da had the sequence
DTANQADLDNQLEYR.
DNA manipulations and PCR. Restriction enzyme digestions, DNA ligations,

transformation of E. coli with plasmid DNA, E. coli plasmid DNA isolation, and
PCRs were performed according to standard procedures (5). Genomic DNA was
isolated according to the method of Adams et al. (2). Genomic DNA of B.
japonicum 61A152 was used as a template for PCR, with degenerate oligonu-
cleotides corresponding to internal peptide fragments of FegA. Primers 1765
reverse [59-G(C/T)TG(G/A)TT(A/G)TCIAG(A/G)TCIGC(C/T)TG-39] and
1924 forward [59-GGCATCAACTTCCTGCCGTA(C/T)CAGGG-39] (synthe-
sized on an Applied Biosystems Inc. DNA/RNA Synthesizer, model 392) ampli-
fied a 307-bp DNA fragment. The amplification protocol used was as follows:
948C, 1.5 min; 658C, 2 min; and 728C, 4 min. This cycle was repeated 25 times and

TABLE 1. Bacterial strains, phage, and plasmids used

Strain, phage,
or plasmid Relevant characteristic(s) Source or

reference

Strains
E. coli
DH5a hsdR17 endA1 thi-1 gyrA96 relA1

recA1 supE44 D-lacU169
(f80dlacZDM15)

Gibco-BRLa

XL1-Blue recA1 endA1 gyrA96 thi hsdR17
(rK

2 mK
2) supE44 relA1 l2 lac

[F9 proAB lacIqZDM15 Tn10
(Tcr)]

Stratagene

B. japonicum
61A152 Nitrogen-fixing Glycine max

(soybean) symbiont
Nitragin Co.b

USDA 110d Small colony derivative of USDA
110; nitrogen-fixing soybean
symbiont

35

Phage
Lambda ZAP Apr; l insertion vector used for

making the B. japonicum
61A152 genomic library

Stratagene

Plasmids
pBJ142 Apr, Tcr; contains 7.5-kb

ribosomal DNA operon from
B. japonicum USDA 110d

73

pBluescript SK1 Apr; Plac lacZ9, T7p, T3p, ColE1
origin, f1 origin

Stratagene

pBluescript SK2 Apr; Plac lacZ9, T7p, T3p, ColE1
origin, f1 origin

Stratagene

pfegASK Apr; 5.0-kb BamHI-PstI genomic
clone containing part of fegA
and approx 3.0 kb of sequence
upstream of fegA

This study

pOMPPCR Apr; fegA-containing 5.1-kb EcoRI
genomic clone in SK

This study

a Gaithersburg, Md.
bMilwaukee, Wis.
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was followed by 8 cycles of 948C, 1 min; 508C, 1 min; and 728C, 2 min. MgCl2 (2
mM) gave optimum results for PCR. A Lambda ZAP library, consisting of B.
japonicum 61A152 genomic DNA partially digested with EcoRI and ligated into
l arms, was constructed according to the manufacturer’s instructions (Strat-
agene, La Jolla, Calif.).
Southern and slot blot conditions. Nitrocellulose membranes were used for

plaque and filter lifts, and reinforced nitrocellulose BA-S 85 membranes were
used for Southern blots and RNA slot blots. Filters were treated by sequential
soaking with denaturation (1.5 M NaCl, 0.5 M NaOH) and neutralization (1.5 M
NaCl, 0.5 M Tris-HCl, pH 8) buffers for 2 min each, washing with 23 SSPE (0.36
M NaCl, 0.02 M Na2HPO4, 0.002 M Na2EDTA z 2H2O [pH 7.7])–0.1% SDS,
and UV cross-linking in a Stratalinker (Stratagene). Gels to be used for Southern
analysis were blotted and treated according to standard procedures (5), with the
exception that 203 SSPE was substituted for 203 SSC (13 SSC is 0.15 M NaCl
plus 0.015 M sodium citrate) in all solutions. RNA slot blotting was performed
according to standard procedures (5), using a Minifold II apparatus (Schleicher
and Schuell), except that RNA was denatured in 6.15 M formaldehyde–103 SSC.
DNA probes were labeled by random priming (24). The single 307-bp band
amplified by PCR was purified from an 0.8% agarose gel, labeled, and used as a
probe for the 61A152 Southern blot and for screening the Lambda ZAP library.
Library filters and Southern blots were prehybridized at room temperature,
hybridized at 658C in aqueous hybridization solution (5), and washed at room
temperature in 53 SSPE–0.1% SDS (two times for 15 min each) followed by
0.13 SSPE–0.1% SDS (once for 15 min). To allow for reuse, Southern blots were
stripped in 13 SSPE–0.1% SDS at 908C for 15 min, with four changes of
solution. Low-stringency Southern blots were hybridized at 508C and washed at
room temperature in 53 SSPE–0.1% SDS (two times for 15 min each). RNA slot
blots were prehybridized and hybridized at 428C in 0.01 M PIPES (piperazine-
N,N9-bis(2-ethanesulfonic acid)–0.8 M NaCl–0.01% N-lauroylsarcosine–0.01%
Ficoll 400–0.01% polyvinylpyrrolidone–0.01% bovine serum albumin–200 mg of
hydrolyzed salmon sperm DNA per ml–50% formamide. Membranes were
washed in 0.13 SSC–0.1 mg of sodium PPi–0.5 mg of Sarkosyl per ml four times
for 30 min each at 508C. To allow for reuse, the filters were stripped in slot blot
washing buffer at 908C for 30 min, with two changes of solution. As a control for
RNA loading, slot blots were stripped and reprobed with a 7.5-kb BamHI
fragment encoding 16S and 23S rRNA (73).
Isolation of a clone containing sequences upstream of the fegA gene. Sequence

analysis indicated that the 5.1-kb insert from the initial isolate from the 61A152
genomic library ended at an EcoRI site 110 bp upstream of the fegA gene.
Hybridization analysis using a 32P-labeled 1,561-bp NotI-EcoRI fragment from
within the coding region of the fegA gene as a probe demonstrated that a B.
japonicum 61A152 BamHI-PstI genomic fragment of approximately 5 kb con-
tained sequences upstream of the fegA gene. Consequently, a BamHI-PstI minili-
brary of genomic DNA was constructed. DNA was double digested with BamHI
and PstI, precipitated, and run on an 0.8% agarose gel. DNA in the size range of
4 to 6 kb was cut from the gel, eluted with spin columns, precipitated, resus-
pended in ligase buffer, and ligated according to standard procedures (5) with
similarly cut pBluescript SK1 vector DNA. DNA was transformed into E. coli
DH5a cells, white colonies were struck onto fresh plates, and filter lifts were
performed. Clones were screened for the proper insert by hybridization with the
32P-labeled 1,561-bp NotI-EcoRI fragment from the fegA gene. A clone with a
5-kb insert was identified and partially sequenced. DNA sequence analysis con-
firmed that the fegA gene, including upstream regions, was included within the
clone.
DNA sequencing and computer analysis. Nucleotide sequencing was per-

formed by automated sequencing of both DNA strands of clones with nested
primers on an Applied Biosystems model 373A sequencer (Dartmouth College
Molecular Biology Core Facility), using a Ready Reaction Terminator Cycle
Sequencing Kit with AmpliTaq DNA polymerase FS (Perkin-Elmer). Sequenc-
ing reactions run alongside primer extension reactions were performed with a
Sequenase kit (U.S. Biochemicals, Cleveland, Ohio). Sequence comparisons,
database searches, and manipulations were performed with BLAST (3, 29) and
Genetics Computer Group (GCG) software (27). Parameters used for the
PILEUP program were as follows: gap weight, 3.0; gap length weight, 0.1. The
FegA signal peptidase cleavage site was predicted with the PSORT program
coded by K. Nakai (http://psort.nibb.ac.jp/) with the weight-matrix method (83).
Membrane-spanning regions of FegA were predicted with the program TopPre-
dII, developed by M.-G. Claros, based on the algorithm of von Heijne (85). The
GCG program PILEUP was used to generate the dendrogram on the basis of
sequence similarities of TonB-dependent receptors. Indicated figures were gen-
erated with the programs Adobe Photoshop 3.0 (Adobe Systems, Inc., Mountain
View, Calif.) and Canvas 3.5.3a (Deneba Systems, Inc., Miami, Fla.).
Mapping of the fegA transcription initiation site by primer extension. Ten

picomoles of the oligonucleotide primer 59-GATGCCTGCGGTACCACTGCG
AAA-39 (corresponding to complementary nucleotides 293 to 270 in Fig. 4) were
59 end labeled according to standard procedures (5), except that the amount of
[g-32P]ATP was doubled. Completed labeling reaction mixtures were passed
through Sephadex G-25 mini spin-columns for removal of unincorporated ATP.
Primer extension reactions were performed based on a protocol modified from
reference 38 and carried out as follows. Lyophilized total RNA (10 mg) (16) from
B. japonicum 61A152 was resuspended in 4 ml of annealing mix (2 ml of 1 mM
EDTA, 0.5 ml of 103 annealing buffer [0.5 M Tris-Cl {pH 8.3}, 0.6 M NaCl, 0.1

M dithiothreitol], 1.5 ml of end-labeled oligonucleotide). Annealing mixtures
were heated to 608C for 3 min, placed in a dry-ice–ethanol bath for 1 min, and
allowed to cool on ice until thawed. One microliter of a 2 mM dATP–dCTP–
dGTP–dTTP mix (in 13 reaction buffer [annealing buffer plus 60 mM Mg-
acetate]) and 2 ml of 1:20 avian myeloblastosis virus reverse transcriptase diluted
in 13 reaction buffer were added to annealing mixtures, and extension reactions
were carried out at 478C for 30 min. Completed reactions were desalted on
Sephadex G-50 mini spin-columns. Loading buffer (4 ml) from a U.S. Biochemi-
cals Sequenase kit was added to terminate the reactions, and reactions were run
alongside sequencing reactions on an 8% acrylamide–Tris-borate-EDTA se-
quencing gel (5).
Phosphor image analysis. All radiography and densitometry were performed

with a PhosphorImager model 425E apparatus (Molecular Dynamics, Sunnyvale,
Calif.).
Nucleotide sequence accession number. The nucleotide sequence data re-

ported in this paper have been submitted to GenBank and assigned the accession
number U61401.

RESULTS AND DISCUSSION

Analysis of iron-regulated OMPs. In order to examine OMP
profiles in relation to the iron status of B. japonicum cells,
cultures of strain 61A152 were grown under iron-deficient and
iron-sufficient growth conditions. OMPs were prepared from
the cultures, and proteins were run on SDS-PAGE gels (Fig.
1A). Coomassie blue-stained gels showed that several new
OMPs were present in membrane preparations from B. japoni-
cum 61A152 cells grown under conditions of iron deficiency
compared with cells grown under conditions of iron sufficiency.
As numerous iron-regulated OMPs in the size range of 75 to 85
kDa serve as Fe(III)-siderophore receptors for other bacteria
(56), the three highly expressed 61A152 iron-regulated OMPs
in the 80-kDa size range (61A1 to 61A3 in Fig. 1A) were
presumed to be potential siderophore receptors. Such recep-
tors would serve to import siderophore-bound iron into iron-
starved B. japonicum cells.
The three most highly expressed iron-regulated OMPs,

61A1, 61A2, and 61A3, were purified through a series of suc-

FIG. 1. Iron-regulated OMPs prepared from B. japonicum 61A152. (A) Coo-
massie blue-stained SDS-PAGE gel of OMPs prepared from cultures grown in
the presence (1Fe) or in the absence (2Fe) of 10 mM FeCl3. Seventy-five
micrograms of protein was loaded in each lane. Three proteins which are highly
induced under low-iron conditions are indicated and labeled 61A1 through 61A3.
M, molecular weight standards; sizes (in kilodaltons) are indicated on the left.
(B) Silver-stained SDS-PAGE gel of purified iron-regulated OMPs. Two hun-
dred fifty nanograms of purified protein was loaded in each lane. Lane 1, 61A1;
lane 2, 61A2; lane 3, 61A3. This figure was generated using the programs Adobe
Photoshop and Canvas.
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cessive gel separation and isolation steps (Fig. 1B). We chose
to focus on the iron-regulated OMP protein 61A2, which was
approximately 79 kDa in size. Polyclonal antibodies were gen-
erated against this protein and Western blotting (immunoblot-
ting) was performed (Fig. 2). Included on the blot were OMPs
prepared from B. japonicum USDA 110d, because most of the
genetic and molecular research on B. japonicum is done with
this strain, and it was of interest to see whether an OMP in this
strain would be recognized by the antibody to 61A2. Western
blot staining patterns demonstrated that the 61A2 protein was
not expressed in B. japonicum USDA 110d and was only de-
tected in membrane preparations from iron-deficient cultures
of strain 61A152. This difference between the two strains is
surprising, in light of the fact that transport assays with 55Fe-
labeled Fe(III)-siderophore compounds have demonstrated
that the compounds which can be transported by 61A152 and
USDA 110d are identical (63).
Cloning of the gene encoding 61A2. In order to facilitate the

cloning of the gene encoding the iron-regulated OMP 61A2, a
partial amino acid sequence was determined for the purified
61A2 protein. Initial microsequencing attempts to determine
the N-terminal sequence of 61A2 protein by using Edman
degradation indicated that the protein was blocked at the N
terminus. 61A2 protein was then subjected to tryptic digestion
followed by HPLC separation, and two of the ensuing peptide
fragments were microsequenced. Oligonucleotide primers
were designed based on the amino acid sequence obtained
from microsequencing (primer 1765 reverse was 32-fold de-
generate and primer 1924 forward was 2-fold degenerate).
These primers amplified a 307-bp band when used in PCRs
with B. japonicum 61A152 genomic DNA. Southern blot anal-

ysis of various restriction digests of B. japonicum 61A152
genomic DNA confirmed that the PCR fragment was indeed
amplified from B. japonicum genomic DNA (Fig. 3). The
307-bp PCR product was used to screen a B. japonicum
61A152 genomic library, and a Lambda ZAP clone with a
5.1-kb EcoRI insert was identified. This clone (designated
pOMPPCR) hybridized to the same bands as did the 307-bp
PCR product when used as a probe against a Southern blot of
various restriction digests of B. japonicum 61A152 genomic
DNA (data not shown).
Nucleotide sequence and sequence analysis of the gene en-

coding 61A2. Southern blot analysis of various restriction di-
gests of the pOMPPCR plasmid hybridized with the radiola-
beled 307-bp PCR fragment indicated that the region of
homology between the two was localized to an NcoI-EcoRI
DNA fragment of approximately 2.4 kb. The nucleotide se-
quence was determined for this DNA fragment (Fig. 4), and
only a single open reading frame (ORF) large enough to en-
code the 61A2 protein (corresponding to nucleotides 235 to
2488 in Fig. 4) was found. The methionine beginning at nucle-
otide position 235 is the initiator for the ORF and would lead
to the production of a translation product in agreement with
the size of the 61A2 protein; none of the other Met codons
internal to the ORF would lead to a translation product of
sufficient size. This ORF encodes a protein of 750 amino acids,
and the deduced protein has a calculated molecular mass of
82,241 Da. The deduced amino acid sequence of the ORF
includes sequences identical to those determined by microse-
quencing of the 61A2 protein (amino acids 302 to 319 and 393
to 407 in Fig. 4). The proteolytic enzyme trypsin, which cleaves
specifically on the carboxyl side of arginine or lysine, was used
to generate the peptide fragments of 61A2 for microsequenc-
ing. Accordingly, one of the 61A2 microsequenced peptides is
immediately preceded by an arginine, and the other is pre-
ceded by a lysine. The translational initiation codon of 61A2 is
preceded by a putative ribosome-binding site (222 59-GAAC
AG-39 227 [30]). The N-terminal amino acids of the deduced
protein are characteristic of a gram-negative bacterial leader
peptide (84), and a signal peptidase cleavage site was predicted
to be after alanine 14 (indicated by an arrow in Fig. 4), using
the program PSORT. Cleavage after Ala-14 would lead to a
mature protein of 736 amino acids, with a calculated molecular

FIG. 2. Western blot of B. japonicum OMPs isolated from strains 61A152
and USDA 110d using polyclonal antibodies raised against the 61A2 protein. An
SDS-PAGE gel with OMPs prepared from cultures of each strain grown in the
presence (1Fe) or in the absence (2Fe) of 10 mM FeCl3 was electroblotted onto
nitrocellulose. Antibodies raised against the iron-regulated OMP 61A2 were
used as a probe. Secondary antibodies conjugated to alkaline phosphatase al-
lowed color development on the filter. M, prestained molecular weight stan-
dards; sizes (in kilodaltons) are indicated on the left. This figure was generated
using the programs Adobe Photoshop and Canvas.

FIG. 3. Southern blot of B. japonicum 61A152 genomic DNA restriction
digests hybridized with the radiolabeled PCR product generated from primers
designed from 61A2 protein microsequence data. Total genomic DNA (10 mg)
was cut with various restriction enzymes, separated by electrophoresis in an 0.8%
agarose gel, and blotted onto nitrocellulose. The radiolabeled PCR-generated
product of 307 bp was hybridized with the resulting Southern blot. Approximate
DNA fragment sizes are indicated on the right. E, EcoRI; H, HindIII; P, PstI.
This figure was generated using the programs Adobe Photoshop and Canvas.
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FIG. 4. Nucleotide and deduced amino acid sequences of a 2,538-bp ClaI-NcoI DNA fragment containing the fegA gene. Single-letter codes for the deduced amino
acid sequence are indicated beneath each nucleotide codon. The transcriptional start site is marked with a downturned arrow, and the putative signal sequence cleavage
site is marked with an upturned arrow. Amino acids 302 to 319 and 393 to 407 correspond to peptides determined by protein microsequencing. Potential
membrane-spanning regions are underlined and numbered. A potential ribosome-binding site is overlined, and putative 210 and 235 promoter sequences are double
underlined.
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mass of 80,851 Da, which agrees well with the size of 61A2
predicted by SDS-PAGE.
The gene encoding the 61A2 protein has a G1C content of

62%, corresponding to the high G1C content of the B. japoni-
cum genome (61 to 65% [42]). A study which compared the
G1C contents of 45 B. japonicum genes showed that genes
involved in nodulation and nitrogen fixation had G1C con-
tents of approximately 58%, whereas genes not directly in-
volved in nodulation and nitrogen fixation had G1C contents
of approximately 65% (67). Codon usage in the 61A2 ORF is
consistent with codon usage seen in B. japonicum genes pre-
viously cloned and examined (the codon table was constructed
by using all 44 B. japonicum structural genes which were on 15
November present in GenBank 1995 [88]).

The deduced amino acid sequence encoded by the 61A2
ORF was compared with sequences in the GenBank, EMBL,
PIR-Protein, and SWISS-PROT databases, by using the
BLASTX program (3, 29), and showed significant similarity to
numerous siderophore receptor proteins. The gene encoding
the iron-regulated OMP 61A2 was therefore designated fegA
[Fe(III)-siderophore-gathering OMP). Similarities between FegA
and proteins encoding receptors for hydroxamate-type sidero-
phores were the most significant and are presented in Table 2.
Predicted features of the FegA protein. A number of struc-

tural features predicted for the FegA protein are similar to
those which have been determined for other bacterial OMPs.
The 10 most C-terminal amino acids in the vast majority of
OMPs analyzed have hydrophobic residues at positions 3 (with
tyrosine preferred), 5, 7, and 9 from the C terminus and have
an aromatic, hydrophobic amino acid at position 1 (77). This
C-terminal region has been demonstrated to form a mem-
brane-spanning b-sheet which is necessary and sufficient for
incorporation of OMPs into the outer membrane (77). The 10
C-terminal amino acids of FegA (RVTASVSYKW) fit the
consensus pattern for a membrane-anchoring b-sheet (Fig. 5).
The FegA protein is predicted to have 22 membrane-spanning,
amphipathic b-sheets (Fig. 4), similar in number to those pre-
dicted for other Fe(III)-siderophore receptor proteins (e.g.,
FepA has 29 [70], FoxA has 30 [7], and FpvA has 26 [64]
regions predicted to form b-sheets). The numerous membrane-
spanning amphipathic b-sheets found in Fe(III)-siderophore
receptor proteins are predicted to form membrane-spanning
b-barrel structures which are seen in outer membrane receptor
proteins (58). In contrast to the hydrophobic b-helix-rich struc-
tures of integral membrane proteins of the cytoplasmic mem-
brane, OMPs are thought to have numerous amphipathic
b-sheets to facilitate their export across the cytoplasmic mem-
brane (58). Once OMPs have moved through the periplasm,
interactions with lipopolysaccharides which are unique to the

TABLE 2. Amino acid similarities and identities among FegA and
related siderophore receptor proteinsa

Protein
% Similarity or identity with:

FegA FhuAb FhuEc FctAd PupAe FoxAf

FegA 35.5 23.9 33.6 24.6 33.2
FhuA 53.7 22.8 38.0 25.6 34.7
FhuE 48.3 45.1 25.6 37.1 23.8
FctA 51.5 56.5 47.5 24.5 36.4
PupA 48.6 47.5 58.5 46.2 25.6
FoxA 55.2 56.0 46.6 54.1 48.7

a Sequences were compared using the GCG program GAP. Non-boldface
values are percent identity; boldface values are percent similarity.
b FhuA is the E. coli Fe(III)-ferrichrome receptor (18).
c FhuE is the E. coli receptor for Fe(III)-coprogen and Fe(III)-rhodoturulic

acid (71).
d FctA is the Erwinia chrysanthemi Fe(III)-chrysobactin receptor (unpub-

lished; GenBank accession no. X87967).
e PupA is the P. putida Fe(III)-pseudobactin receptor (10).
f FoxA is the Y. enterocolitica Fe(III)-ferrioxamine receptor (7).

FIG. 5. (A) Amino acid sequence alignments of regions found in TonB-dependent siderophore receptors and the B. japonicum FegA protein. Proteins aligned are
FctA from Erwinia chrysanthemi (unpublished; GenBank accession no. X87967), FhuA from E. coli (18), FhuE from E. coli (71), FoxA from Y. enterocolitica (7), and
PupA from Pseudomonas putida (10). Sequences were aligned using the GCG programs PILEUP and PRETTY. Numbers to the left of the sequences indicate the
positions of the first residue of the indicated region in the mature (actual or predicted) protein. Asterisks denote residues which are identical in all six proteins; dots
denote conserved amino acids present in all six proteins; and triangles denote hydrophobic residues present in all six proteins. Boldface letters represent residues present
in the same position in four of six proteins. (B) Alignments of the E. coli Fur-binding site consensus sequence (21) and putative Fur-binding sites from B. japonicum
genes fegA and hemA (60). Nucleotides in boldface type are identical between either B. japonicum sequence and the E. coli consensus; nucleotides which are underlined
are identical in fegA and hemA.
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outer membrane are thought to lead to the formation of the
stable b-barrel configuration (74).
Sequence comparisons among receptor proteins dependent

on the periplasm-spanning TonB protein have identified three
major regions of amino acid conservation, and these regions
have been termed the TonB box (also known as Box I), Box II,
and Box III (modified from reference 51). Amino acids within
the TonB box (Box I) of outer membrane receptor proteins are
hypothesized to contact the TonB protein directly (e.g., see
references 40 and 72); a subsequent conformational change in
TonB is thought to allow internalization of the ligand that is
bound to the receptor. In the majority of TonB-dependent
proteins, the TonB box (Box I) is found near the N terminus of
the receptor (4), within the first membrane-spanning domain
(e.g., see reference 7); the placement of TonB box (Box I)
sequences within membrane-spanning regions of OMPs sug-
gests that TonB interacts with the OMPs within the membrane
channel region. FegA does not have a TonB box (Box I)-like
sequence near the N terminus but does have two regions con-
taining T-X-X-V-X-A, a motif conserved among the majority
of TonB boxes analyzed (66). Both of these potential TonB box
(Box I) sequences are found within putative membrane-span-
ning sequences of FegA (membrane-spanning regions 2 and 7,
which are located 118 and 274 amino acids from the predicted
N terminus of the mature protein, respectively [Fig. 4]). As
more sequence data have become available, the idea of the
invariant N-terminal position for the TonB box (Box I) has
broken down; TonB boxes are found as far as 66 to 70 amino
acids from the N terminus of mature proteins in the TonB-
dependent Fe(III)-siderophore receptors PbuA (53), PupA
(10), PupB (45), and FpvA (64). Therefore, it is likely that one
of the T-X-X-V-X-A regions found within FegA serves as a
TonB box (Box I) for the protein. The functions of the highly
conserved Box II and Box III in TonB-dependent proteins are
currently unknown. FegA shows particularly strong similarity
to Box II and Box III (Box II, amino acids 715 to 724; Box III,
amino acids 184 to 213 [Fig. 5]), which are found in FegA in
positions corresponding to the positions of these boxes in other
TonB-dependent proteins. The presence in FegA of conserved
sequences found in all TonB-dependent proteins suggests that
a TonB-like system is present in B. japonicum.
The amino acid sequence of FegA was aligned to the de-

duced amino acid sequences of all the TonB-dependent recep-
tor proteins within the sequence databases, using the program
PILEUP, and a dendrogram describing total inferred sequence
similarities was generated (Fig. 6). The receptors for trans-
ferrin binding protein 1 (or A) and lactoferrin grouped to-
gether, as did receptors for transferrin binding protein 2 (or B).
The three major subfamilies of siderophore receptors were
apparent as groups in the dendrogram: receptors for hydrox-
amate-containing siderophores (FcuA, PbuA, PupB, FpvA,
PupA, FhuE, FhuA, FctA, and FoxA), receptors for citrate or
citrate-containing siderophores (FecA and RumA), and recep-
tors for catecholate/phenolate-containing siderophores (FyuA,
IrpC, BtuB, FepA, PfeA, BfeA, CirA, IrgA, IutA, and ViuA).
As expected from DNA sequence analysis, FegA grouped most
closely with receptors for hydroxamate-containing sid-
erophores.
Originally, three subfamilies of TonB-dependent receptors

had been defined based on sequence similarities, those for
hydroxamate-, catecholate/phenolate-, and citrate-containing
siderophores. As receptors for more siderophores have been
isolated and studied, the distinctions among some of these
classes have broken down, and new subfamilies have been
designated. Siderophores which do not fit into the original
structural classes often have hybrid structures which contain,

for example, both catecholate and hydroxamate moieties (as
seen in the case of anguibactin). Despite the fact that the
majority of TonB-dependent OMPs with specificity for the
same or similar ligands have sequence similarity, a few studies
have demonstrated that this is not always the case. For exam-
ple, the P. aeruginosa FptA receptor for the phenolate-con-
taining siderophore pyochelin is similar to siderophore recep-
tors for hydrophilic hydroxamates and has no significant
similarity to receptors for hydrophobic phenolate/catecholate-
containing siderophores (4). Similarly, FcuA, the Yersinia en-
terocolitica receptor for the hydroxamate ferrichrome, is most
similar to the Vibrio anguillarum FatA receptor, despite the
fact that the FatA ligand anguibactin has a very dissimilar
structure (44). Thus, despite the fact that FegA consistently
groups with receptors for hydroxamate-type siderophores
based on sequence similarity, the natural ligand(s) for this
receptor remains to be determined.
Isolation of a clone with DNA sequence upstream of the fegA

gene. Because the EcoRI site at the 59 end of the fragment
encoding fegA was only 110 bp upstream of the putative Met
initiation codon, a genomic clone that had more upstream
sequence was isolated from the Lambda ZAP genomic library
(pfegASK). Approximately 1.5 kb of DNA sequence was de-
termined from this clone, including 200 bp overlapping with
the pOMPPCR clone. Because the genes for some outer mem-
brane Fe(III)-siderophore receptors are found in operons en-
coding multiple components of the membrane-periplasm
transport complex (e.g., fhuA [18] and fecA [65]), we examined
DNA sequences flanking the fegA gene. Sequence data span-
ning the region from 1.3 kb upstream of the fegA start site of
translation to 250 bp downstream of the stop codon demon-
strated that fegA is unlikely to be in an operon.
Regulation of fegA. The transcriptional initiation site for

fegA was mapped by primer extension analysis (Fig. 7) using a
primer within the coding region of fegA and total RNA pre-
pared from B. japonicum 61A152 cultures grown in the pres-
ence or in the absence of 10 mM FeCl3. The start site of
transcription is an adenine residue 77 bp upstream from the
methionine start codon. A primer extension product was
present only in reactions performed with total RNA prepared
from cells which had been starved for iron, demonstrating that
fegA is regulated at the level of steady-state mRNA accumu-
lation. Slot blots of total RNA isolated from cultures grown
either in the presence or in the absence of 10 mM FeCl3 were
probed with a radiolabeled 2.0-kb KpnI-BglII DNA fragment
from within the coding region of fegA and confirmed that fegA
expression is regulated by iron at the level of mRNA accumu-
lation, with iron affecting either initiation of transcription or
mRNA stability (data not shown).
Bacterial RNA polymerases have specificity for particular

gene promoters based on the s subunit of the polymerase
holoenzyme that serves as a recognition factor for transcription
initiation (reviewed in reference 26). In E. coli and other gram-
negative bacteria, s70 is the major promoter recognition factor.
An alternative s factor, s54, which was originally described as
playing a role in the control of genes involved in nitrogen
metabolism, is used in rhizobia for recognition of promoters of
nitrogen fixation genes (26). In published studies, the majority
of B. japonicum genes which have had their promoters mapped
and analyzed have the “212/224”-type promoter sequences
recognized by s54. The region upstream of the fegA gene shows
limited similarity to s70 promoters from E. coli (49) and B.
japonicum (87), and putative 210 and 235 regions are indi-
cated in Fig. 4.
The ferric uptake regulation (Fur) protein is a global regu-

lator which is involved in control of gene regulation in numer-
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ous bacterial species and represses the transcription of a vari-
ety of genes involved in iron uptake (89). When iron is plentiful
in bacterial cells, Fe(II) binds to a Fur homodimer, and the
complex binds to a highly conserved inverted repeat motif in
the promoter regions of iron-regulated genes (the Fur box),
thereby blocking their transcription. Because fegA showed iron
regulation, we looked for a Fur box upstream of the gene.
Overlapping the potential 210 region of the fegA promoter is
a putative Fur box with an imperfect inverted repeat which is
48% identical (when a gap of 1 bp is introduced) to the E. coli
Fur-binding consensus sequence (Fig. 5) (21). The location of
a Fur box overlapping the 210 promoter region has been seen
in numerous genes for Fe(III)-siderophore receptors (e.g.,
irpC [25], fecA [65], fhuE [71], fptA [4], fyuA [66], pfeA [20],
rumA [47], and viuA [12]). The presence of a putative Fur box,

taken together with data demonstrating the regulation of fegA
mRNA accumulation by iron, suggests that there is a system of
iron regulation in B. japonicum cells similar to the Fur system
seen in other bacteria. However, the promoter region of the B.
japonicum hemA gene also has a putative iron box which is
52.6% identical to the E. coli iron box consensus sequence
(Fig. 5) (60). Deletion analysis of the promoter of hemA dem-
onstrated that the region containing the Fur box-like sequence
is not necessary for iron regulation of hemA (59).
Distribution of fegA-like sequences among gram-negative

bacteria. It was of interest to determine whether sequences
similar to the putative B. japonicum Fe(III)-siderophore re-
ceptor-encoding gene fegA could be found in other genera of
gram-negative bacteria. EcoRI restriction digests of genomic
DNA isolated from B. japonicum (strain USDA 110d), a cow-

FIG. 6. Dendrogram showing total inferred sequence similarities among deduced amino acid sequences of TonB-dependent receptors of gram-negative bacteria.
The tree was constructed using the GCG program PILEUP. The sequences compared were as follows: Neisseria meningitidis Tbp1 and Tbp2 (unpublished; GenBank
accession no. Z15130) and LbpA (unpublished; GenBank accession no. X79838); Actinobacillus pleuropneumoniae TbpA (19) and TbpB (32); Haemophilus influenzae
Tbp1 and Tbp2 (50); V. anguillarum FatA (a); Y. enterocolitica FcuA (44), FoxA (7), and FyuA (66); Pseudomonas sp. PbuA (53); P. aeruginosa FptA (4), FpvA (64),
and PfeA (20); P. putida PupA (10) and PupB (45); E. coli FhuE (71), FhuA (18), FecA (65), FyuA (unpublished; GenBank accession no. Z38065), BtuB (39), FepA
(51), CirA (55), and IutA (46); E. chrysanthemi FctA (unpublished; GenBank accession no. X87967); Neisseria gonorrhoeae LbpA (9) and TbpA (17); Yersinia
pseudotuberculosis FyuA (unpublished; GenBank accession no. Z35107); Yersinia pestis FyuA (25);Morganella morganii RumA (47); Salmonella typhimurium BtuB (86);
Bordetella pertussis BfeA (unpublished; GenBank accession no. U13950); Vibrio cholerae IrgA (31) and ViuA (12).

7272 LEVIER AND GUERINOT J. BACTERIOL.



pea Rhizobium sp., Rhizobium leguminosarum, Rhizobium tri-
folii, P. aeruginosa, Pseudomonas stutzeri, and E. coli (DH5a)
were subjected to Southern blot analysis under conditions of
low stringency. The blot was probed with a radiolabeled 2.1-kb
KpnI-BglII fragment from within the coding region of fegA.
Bands of approximately 6.5 and 5.0 kb were detected in DNA
isolated from B. japonicum USDA 110d and in the cowpea
symbiont, respectively (data not shown). No hybridization sig-
nal was observed with genomic DNA from any of the other
bacteria analyzed. B. japonicum USDA 110d and the cowpea
Rhizobium sp. are more closely related to B. japonicum 61A152
than the other organisms analyzed.
Summary. Analysis of the B. japonicum fegA gene suggests

that it belongs among the ranks of a growing number of cloned
genes encoding TonB-dependent Fe(III)-siderophore receptor
proteins. The iron-regulated promoter of the fegA gene should
serve as a valuable tool, and cis analysis of the region will aid
in the study of iron regulation of gene expression in B. japoni-
cum. The presence of a putative Fur box within the promoter
suggests that fegA might be useful in the isolation of a B.
japonicum fur gene. Additionally, because transport assays
have demonstrated that B. japonicum 61A152 has the ability to
use several structurally different Fe(III)-siderophore com-
pounds as iron sources (63), multiple Fe(III)-siderophore re-
ceptors would be expected to be present. On the basis of
molecular mass and regulation by iron, the iron-regulated
OMPs 61A1 and 61A3 would be good candidates for addi-
tional siderophore receptors. Future investigations similar to
the studies with FegA will address the role of these proteins in
the iron metabolism of B. japonicum.
The presence of over a hundred known structures for sid-

erophores and a large variety of Fe(III)-siderophore uptake
systems reflects the importance of iron to bacteria. Studies on
the iron acquisition systems of rhizobia should ultimately lead
to the elucidation of the mechanisms by which these bacteria
secure the iron necessary for carrying out the nitrogen fixation
process.
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