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ABSTRACT Biological information-processing systems,
such as populations of sensory and motor neurons, may use
correlations between the firings of individual elements to
obtain lower noise levels and a systemwide performance
improvement in the dynamic range or the signal-to-noise
ratio. Here, we implement such correlations in networks of
coupled integrate-and-fire neurons using inhibitory coupling
and demonstrate that this can improve the system dynamic
range and the signal-to-noise ratio in a population rate code.
The improvement can surpass that expected for simple aver-
aging of uncorrelated elements. A theory that predicts the
resulting power spectrum is developed in terms of a stochastic
point-process model in which the instantaneous population
firing rate is modulated by the coupling between elements.

An important issue in neuroscience is how neurons encode
information (1–8). Here, we consider the problem of encoding
an analog signal in the firing times of a population of neurons.
Several factors must be accounted for in addressing this issue.
First, the firing records of neurons are often noisy and irregular
(8, 9). Second, cortical neurons sometimes fire relatively slowly
compared to many of the signals they may need to encode
(10, 11).

We explore a method for population rate coding by which a
network of coupled noisy neurons can encode relatively high-
frequency signals. We consider a system of N neurons that
receive the same analog input. The relevant output is the
population firing rate FN(t), the number of neuronal firings per
unit time summed across the population. This quantity does
not require averaging over a significant time window, and it can
respond quickly to rapidly changing inputs (12–15). For neu-
rons firing asynchronously, FN is approximately N times the
single-neuron rate. The input signal is encoded in the modu-
lation of the firing times of the neurons in the network. When
the analog input is converted to a train of discrete spike events,
‘‘quantization’’ noise from the errors made in digitization is
unavoidable and limits the fidelity with which the output signal
can be decoded. For N uncoupled, independent neurons, the
quantization noise power grows as N, and the coherent signal
power grows as N2. The system signal-to-noise ratio (SNR),
defined as the ratio of the output signal power to the noise
power, grows as N. The SNR is improved if either the output
signal is increased or the noise is reduced. Some systems are
limited in the maximal signal power that they can process. In
such cases, another important figure of merit is the system
dynamic range (DR), which we take to be the ratio between the
maximum signal power the system can tolerate and the noise
power. For a fixed maximum output signal power, improving
the DR is equivalent to reducing the noise. An example of a
system requiring high DR is the human auditory system, which
processes signals ranging from a soft whisper to a loud jet
engine.

We propose a method to improve the DR and SNR for a
population rate code beyond simple averaging over N inde-
pendent elements. Inspiration for our method comes from the
concept of noise shaping, used in certain electronic analog-
to-digital converters (16). It has been proposed that noise
shaping could be used in a single neuron (17–19); in this paper,
we pursue this question for a network of coupled neurons. Our
approach uses inhibitory coupling between neurons to gener-
ate temporal anticorrelations. In the frequency domain, these
correlations shift the quantization noise power from one part
of the spectrum to another, thereby ‘‘shaping’’ the spectrum
and, more importantly, lowering the noise at the frequencies
of interest. We are able to suppress the quantization noise
power within the signal bandwidth at a rate of N21, and
therefore, for a fixed operating range, increase the usable DR.
We also find that, for sufficiently large coupled networks, the
SNR improves as N2.

Integrate-and-Fire (IF) Network

We model the neuronal network as a population of N IF
oscillators. Each neuron is characterized by a voltage Vi(t) and
fires whenever Vi exceeds a threshold Vth. Each neuron is
coupled to other neurons via a sum over postsynaptic currents
g. Between firings, the dynamics for Vi are given by

dVi

dt
5 2
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tm
2 O

j51

N O
m

Kijg~t 2 tj
m! 1 aiI~t!, [1]

where

g~t9! 5 e2t9yts, t9 . 0. [2]

In Eq. 1, i and j index elements of the network (i, j [ {1, . . . ,
N}), and tj

m, m 5 1, 2, 3, . . . , is the set of firing times of the
jth neuron. After firing, Vi is reset to a random value between
0 and Vthd, where d 5 0.75 for all results shown, with the
exception of Fig. 5. The postsynaptic current g(t9) in Eq. 2
exponentially decays with time constant ts for t9 . 0, and
vanishes for t9 # 0. Other possible postsynaptic current
waveforms include a-functions, which have a finite rise time
before decaying (20–22).

Eq. 1 describes the ith neuron as a leaky integrator of the
total source current; this current consists of a driving term I(t)
common to all of the neurons and an interaction term
¥j,m Kijg(t 2 tj

m) due to contributions whenever any neuron in
the population has fired. In our sign convention, Kij . 0
corresponds to inhibitory coupling. For simplicity, for all of the
results shown here, the coupling is all-to-all: Kij 5 K, a
constant. Heterogeneity among the individual neuron rates is
provided by a distribution in the values of the coefficients ai.
The time scales in this coupled-oscillator system are the
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membrane time tm 5 1 s and the synaptic time ts 5 1023 s
(units have been assigned for convenience). The random reset
introduces phase noise into each neuron whenever it fires. We
remark that our model summarized in Eqs. 1 and 2 could
possibly synchronize (23–28), particularly with inhibitory cou-
pling (29–32). However, these synchronization effects are
deliberately suppressed by the strong phase randomization
from the random reset and the distribution in natural oscillator
rates (33, 34).

Numerical Simulation Results

We numerically integrate (35) the above model and record the
firing times of each neuron.\ Fig. 1 shows raster plots of the
firings in a network of N 5 50 neurons. In Fig. 1 a and b, the
network is uncoupled (K 5 0), whereas in Fig. 1 c and d, the
coupling between elements is inhibitory (K 5 50.0 . 0). In
both cases, the input I(t) is a constant I0, and the mean network
firing rate is FN 5 1,000 6 1 Hz. In Fig. 1 b and d, we collapse
the raster plots into network firing records to show the
difference in the summed outputs. In particular, occasional
clumps and gaps are observed in the output of the uncoupled
network (see Fig. 1b), as expected for a set of uncorrelated
elements. However, the record in Fig. 1d for the coupled
network appears to be distributed relatively smoothly in time.

To quantify this, we show in Fig. 2a histograms of the
interspike intervals (ISIs) corresponding to the network out-
puts shown in Fig. 1 b and d. Data are shown for trial durations
of 200 s and using a bin width D 5 0.1 ms. The histogram decays

exponentially in the uncoupled case with a time constant of
approximately 1 ms, consistent with an uncorrelated Poisson
process. In contrast, the histogram of the coupled network is
narrowly distributed about its maximum at 1 ms, which is
consistent with the ‘‘smooth’’ firing record in Fig. 1d.

The difference between coupled and uncoupled networks is
further illustrated by the autocorrelation function a(t) of the
network firing sequences XN(t).** In Fig. 2b, a(t) is plotted for
time shifts t , 5 ms, using a sampling interval of 0.1 ms. For

\The system is integrated using a fourth-order Runge–Kutta routine
(35). Accuracy in the firing sequence is ensured by using an adaptive
step size to handle nearly simultaneous firings. This scheme is not
critical for obtaining our results. The system is integrated for 200 s
after a settling period of 30 s.

**We compute a(t) 5 ^XN(t9)XN(t9 2 t)&, where XN(t) is defined on
a discrete set of times kD, where k indexes the bin intervals. We set
XN(t) 5 1 if there is a firing event between t and t 1 D, and XN(t) 5
0 otherwise.

FIG. 1. Raster plots of the firing events for uncoupled (a and b) and coupled (c and d) networks of N 5 50 elements (Eqs. 1 and 2). The network
heterogeneity ai is uniformly distributed in the interval (1.27, 1.50), corresponding to the bottom and top of a and c, and the overall network firing
rate in both cases is FN 5 1.000 3 103 6 1 Hz. In b and d, the raster plots are collapsed into a collective record for the entire network. The membrane
and synapse times are tm 5 1 s and ts 5 1023 s, respectively. The coupling strength and applied current, respectively, are K 5 0 and I0 5 9.48
(a and b) and K 5 50.0 and I0 5 47.3 (c and d).

FIG. 2. (a) Histogram of ISIs for the collective firing output of the
network (see Fig. 1 b and d) taken for trial durations of 200 s and a bin
width of 0.1 ms. The inverse population rate FN

21 5 1.0 ms is indicated
by the arrow. (b) Autocorrelation of the collective firing record (see
Fig. 1 b and d) taken for 200 s and using a sampling interval of 0.1 ms.
For both a and b, dots (F) and crosses (1) represent data for the
uncoupled and coupled networks, respectively. Lines between points
are drawn to guide the eye.

Neurobiology: Mar et al. Proc. Natl. Acad. Sci. USA 96 (1999) 10451



the uncoupled network, a(0) 5 1 and a(t) is essentially 0
thereafter, indicative of uncorrelated firing. With inhibitory
coupling, a(t) is negative immediately after t 5 0, crosses 0 at
t ' 0.8 ms, and then displays decaying oscillations with a
period of approximately 1 ms. This describes a system with
anticorrelated firing. After a neuron fires, the inhibitory
coupling forces the network to wait approximately 0.8 ms
before the next neuron can fire.

Fig. 3 shows power spectra on logarithmic axes for the
uncoupled and coupled networks.†† For these data, we have
included in the applied current I(t) a sinusoidal input signal
term S(t) 5 A sin(2pf0t) with frequency f0 5 100 Hz and
amplitude A 5 2.365. The sinusoidal signal is clearly visible
above the background for both cases and does not display much
broadening or other nonlinear distortion. The inhibition low-
ers the overall firing activity of every neuron. To make a
meaningful comparison between the two cases, we compensate
for this effect by adjusting the dc component I0 of the applied
current to maintain the population rate FN at 1,000 6 1 Hz.

For the uncoupled network, the spectrum is flat over most
of the frequency range shown, consistent with the vanishing
autocorrelation in Fig. 2b. This behavior is a direct result of
asynchronous firing because of the random reset, the hetero-
geneity in ai, and, most importantly, the lack of any interneu-
ron interactions. The decrease in the spectrum below about 15
Hz is caused by the refractory time of the individual neurons
(36, 37).

When the neurons are coupled by inhibition, both signal and
noise power are reduced from their values in the uncoupled
network. As shown in Fig. 3, the noise power is significantly
suppressed over a wide frequency range, up to approximately
fc 5 800 Hz. Immediately below this ‘‘corner’’ frequency, the
noise power varies as f 2 and decreases to a maximum sup-
pression of .13 dB at frequencies ,80 Hz. The power at low

frequencies is transferred partially to frequencies around fc.
This power is visible in Fig. 3 as a small bump near fc and FN.

In Fig. 3, the bandwidth over which the noise is suppressed
is free from peaks (except the input signal at f0) and other
structure. This reflects the absence of synchronization be-
tween the network elements (also visible in Fig. 1c) and
underscores the asynchronous firing nature of the network. We
also show in Fig. 3 a spectrum obtained from a single repre-
sentative neuron in the coupled network. This neuron pos-
sesses an intrinsic rate of 19 Hz (see arrow), near the network
average. The single-neuron spectrum is flat over a wide
bandwidth, except for suppression below 20 Hz because of
refractoriness. The absence of a peak or other feature at f0
implies that this single neuron by itself does not carry any
information at the signal frequency. The noise-shaping and
signal-transmission characteristics are network properties.

Noise shaping is a dynamical effect between neurons firing
near their intrinsic rates. Each neuron’s rate is suppressed
slightly by the mean network activity. The coupling disfavors
short ISIs in the network record and spaces out the firing
events, as shown in Figs. 1 and 2. We emphasize that this
shaping takes place at frequencies both below and above the
firing rates of the individual neurons. The fastest neuron in the
coupled network fires at 28 Hz (see bar in Fig. 3), less than
twice the nominal single-element rate FNyN 5 20 Hz and well
below the corner frequency fc.

To illustrate how the noise-shaping effect varies with pop-
ulation size, we first show in Fig. 4a the dependence of the
population rate FN on N. Both axes are scaled by ts. For these
data, I0 5 47.3, K 5 50.0, and all other network parameters
are the same as in Figs. 1–3. The data for ts 5 0.3, 1, 3, and 10
ms all fall near the same curve, indicating that the maximum
output rate, and hence fc, is directly dependent on the product
Nts. In addition, the inverse synapse time ts

21 specifies an
upper limit on fc. As seen in Fig. 4a, for small N, FNts increases
with N. In this regime, the ISIs are much larger than ts, and FN
scales linearly with N. As the size of the network grows, the ISIs
decrease toward ts. The individual firing rates become increas-
ingly slowed by the synaptic inhibition, and the population rate
increases only slightly thereafter. For our choices of parame-
ters, FN and fc saturate for Nts * 20 ms.

We next show how adding more neurons to the network
confers beneficial effects for the DR and the SNR. In Fig. 4b,
we show a log–log plot of the quantization noise power P
measured at 100 Hz (F) and 30 Hz (open symbols), as N varies.
For these data, ts 5 1 ms, I0 5 47.3, and A 5 0. Squares
represent P at 30 Hz for K 5 0; as expected, P increases linearly
with N for the uncoupled network. Circles in Fig. 4b show P for
K 5 50. For the coupled network, P decreases approximately
as N21 for large N; in this regime, FNts ' 1, and the coupling
effectively narrows the histogram in Fig. 2a and shapes the
spectrum. The decrease in noise power results in a significant
increase in system DR. However, this improvement does not
extend to arbitrarily large N. For very large values of Nts,
neurons with small ai receive so much inhibition that they are
prevented from reaching threshold and firing.

The network SNR is also enhanced by the coupling. In Fig.
3, the measured SNR is improved by 2.5 dB. In Fig. 4c, we show
the SNR measured for an input signal at f0 5 30 Hz, just above
the fastest individual neuron rate. For N * 15, the SNR
improves approximately as N2, faster than that for simple
averaging. Clearly, there is a large region in parameter space
in which the coupled network significantly outperforms simple
averaging in its DR and SNR.

Theory

The spectrum shown in Fig. 3 can be estimated analytically
by treating the population activity as a modulated stochastic
point process. The spectrum can then be computed rigor-

††For the (one-sided) spectra shown in Fig. 3, the data are partitioned
into 255 overlapping sequences and windowed using a Bartlett
window. The results presented herein are not sensitive to the details
of the Fourier transform segmentation or the choice of window.

FIG. 3. Power spectra for a network of N 5 50 neurons whose
dynamics are given by Eqs. 1 and 2. The top trace is for the uncoupled
network (K 5 0, I0 5 9.48) and the middle trace is for a coupled
network (K 5 50.0, I0 5 47.3). In both cases, the input signal current
is I(t) 5 I0 1 A sin(2pf0t), where f0 5 100 Hz and A 5 2.365. Other
system parameters are as specified in the caption of Fig. 1. In the
coupled case, the lower quantization noise below fc 5 800 Hz
corresponds to larger DR. The measured SNR at f0 is 8.1 dB in the
uncoupled network and 10.6 dB in the coupled network. The scale bar
between 12 and 28 Hz indicates the range of individual neuron firing
rates in the coupled network. The dotted line is the theoretical
prediction from Eq. 7. The bottom trace is the spectrum for a single
representative neuron selected from the coupled network. The mean
firing rate of this neuron is 19 Hz (see arrow).
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ously for certain classes of noise intensity (38, 39; C.C.C. and
W.G., unpublished data). Here we give a simple heuristic
derivation. For an uncoupled network whose elements fire
randomly, the average of the population firing rate FN

depends on the sum of all of the applied currents. With
coupling, FN is modulated, and for a finite N, f luctuates
around the mean. We define the population activity (33) as
F(t) 5 ¥j51

N ¥m d(t 2 tj
m). The time average of F(t) is the mean

population firing rate, because ^F(t)& 5 (1yT) *0
T F(t)dt 5

nyT, where n is the number of firings in the time interval T.
For nearly asynchronous firing as observed in our simula-
tions, we can assume that F(t) represents the population
firing rate, including f luctuations (33).

To calculate the spectrum, we first consider the effects on a
single neuron. In our simulations, tm .. ts, so we consider the
limit of no leakage. Because the coupling Kij 5 K is uniform
and all-to-all, we can simplify the coupling term in Eq. 1. The
dynamics of a single neuron obeys

dVi

dt
. 2K E

0

`

g~t9!F~t 2 t9!dt9 1 ai@I0 1 S~t!# 1 j̃~t!, [3]

where g(t9) is given in Eq. 2, I0 and S(t) are the mean (dc) and
time-varying components of I(t), and j̃(t) is a stochastic
forcing term that mimics the random effects. For nearly
asynchronous firing, the voltage in Eq. 3 grows approximately
linearly with t. The firing rate of neuron i is then proportional
to dViydt. We obtain the population rate by normalizing by the
effective threshold voltage Veff 5 Vth(1 2 dy2)‡‡ and summing
over elements: F(t) . Veff

21 ¥i51
N dViydt. Using Eq. 3 in this

expression yields a stochastic equation for the population rate:

F~t! .
N

Veff F I# 2 K E
0

`

g~t9!F~t 2 t9!dt9 1 S# ~t!G 1 j~t!, [4]

where I# and S# (t) are the network-averaged dc and time-
dependent inputs, j(t) is uncorrelated white noise with zero
mean and variance ^j(t)j(t9)& 5 s2d(t 2 t9), and s2 ' FND is
obtained under the assumption that the firings can be modeled
as a Poisson process.§§ The coupling and random reset cause
fluctuations around the mean rate. Let F(t) 5 FN 1 dF(t),
where FN is the mean firing rate and dF(t) is a fluctuation
around FN. Eq. 4 then becomes

FN 1 dF~t! .
N

Veff F I# 2 KtsFN 2 K E
0

`

g~t9!dF~t 2 t9!dt9

1 S# ~t!G 1 j~t!. [5]

From the time-independent terms in Eq. 5, the mean firing rate
is then obtained as

FN 5
NI#

Veff 1 NKts
. [6]

We can define a critical network size Nc 5 Veff(Kts)21, above
which FN begins to saturate. Using the values I# ' 65.5, N 5
50, Veff 5 Vth(1 2 dy2) 5 0.625, K 5 50, and ts 5 1023, we
obtain FN 5 1.05 kHz, in good agreement with the simulations.
We also plot the relation in Eq. 6 in Fig. 4a and see that it
agrees well with the numerical results.

The spectrum of the noise fluctuations is obtained from the
time-varying terms in Eq. 5 as the absolute square of the
Fourier transform of dF(t):

P~f! 5 ^udF~f!u2& 5
s2 1 N2Veff

22Ŝ2~f!

u1 1 NKVeff
21ĝ(f)u2

, [7]

where ĝ(f) 5 1y(ts
21 2 2pif) is the Fourier transform of the

postsynaptic current g in Eq. 2 and f is the frequency. The
coupling kernel ĝ(f) has a cutoff at 2pf 5 ts

21. For sufficiently
large N and K and at sufficiently low frequency NKVeff

21ĝ(f)
.. 1 and the coupling ‘‘shapes’’ the spectrum of both signal
and noise. The theoretically predicted spectrum in Eq. 7 using
the same parameter values as above with D 5 0.1 ms is
compared to the data for the coupled network in Fig. 3. The
dotted line has no free parameters. As shown, the theory
agrees well with the data in matching the corner frequency fc
and also provides a good estimate of the noise-shaping level
below fc. In Fig. 4b, we have plotted the calculated noise power
at f 5 100 Hz (dotted line) and f 5 30 Hz (dashed line), from

‡‡At each firing event, the neuron is reset to a random value between
0 and Vthd. On average, this reduces the potential difference from
the threshold by Vthdy2.

§§The probability of a firing event during an interval of duration D is
FND. In this case, the noise power is the variance in the bin
occupation, or s2 5 FND(1 2 FND). For small D, this approaches
the Poisson result s2 5 FND. For the data in Fig. 3, s2 agrees with
the Poisson prediction to within 1%.

FIG. 4. Dependence of network firing behavior on the population
size N. (a) Population firing rate FN vs. N, where both axes have been
scaled by ts. The network parameters are identical to those in Figs. 1–3,
with the exception of N and ts. 3, F, 1, and h represent data for ts 5
0.3, 1, 3, and 10 ms, respectively. The dotted line is the theoretical rate
obtained from Eq. 6. (b) Log–log plot of measured quantization noise
power P at 100 Hz (F) and 30 Hz (open symbols) vs. N, taken with ts 5
1 ms, I0 5 47.3, A 5 0, and other parameters as in Figs. 1–3. Squares
and circles represent data for uncoupled (K 5 0) and coupled (K 5
50) networks, respectively. (c) Log–log plot of SNR vs. N measured at
f 5 30 Hz for a network with K 5 50 and A 5 2.365. In b and c,
theoretical predictions obtained from Eqs. 6 and 7 for the coupled
networks are shown by a dotted line (f 5 100 Hz) and dashed lines (f 5
30 Hz), respectively.
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Eqs. 6 and 7. As shown, the theory matches the numerical data
well for N * 30.

From Eq. 7, we see that SNR 5 N2Ŝ2(f)y(Veff
2 s2). There are

two regimes for the SNR, depending on whether N . Nc. For
small networks, (N ,, Nc), s2 scales as N and SNR } N,
similar to simple averaging. As N is increased beyond Nc, the
population rate FN, and hence s2, saturates. Then SNR } N2.
This regime is seen in Fig. 4c, in which the dotted line shows
the calculated SNR from Eq. 7. Again, the agreement is
excellent for N . Nc 5 12.5.

Deviations from the theory likely occur because the firing
rates of the individual neurons possess nonlinearities and
correlations that deviate from a pure Poisson process. For
example, the theory does not reproduce the oscillations in the
autocorrelation function (see Fig. 2); in the noise spectrum,
these are manifest as a bump in Fig. 3 near fc. The theoretical
value from Eq. 7 for P(f 5 100 Hz) underestimates the
numerical data for small N (see dots and dotted line in Fig. 4).
In this regime, f is comparable to fc, and the data reflect the
noise power in the nearby bump. We have also ignored the
intrinsic refractory time of the neurons caused by the IF
dynamics. As seen in Fig. 3, and also shown previously (37),
refractoriness alone leads to noise-shaping. We therefore
expect Eq. 7 to overestimate the spectrum at very low fre-
quencies.¶¶ This is also seen in Fig. 4b by comparing theory
(dashed line) and data (circles) for P(f 5 30 Hz) for N # 10.

Summary and Conclusions

Our results demonstrate improved signal encoding through
noise shaping in a network of coupled model neurons. Noise
shaping allows the population to encode signals over a wide
bandwidth with extended DR and improved SNR. By firing
nearly asynchronously, the network can encode signals with
frequencies well above those of the individual elements.
Because coupling lowers the quantization noise power, for a
given SNR, analog signals may be encoded with fewer
neurons. This remains true even when the population firing
rate is unchanged. In our model, the elements interact via a
coupling rule that is local in time and hence is easy to
implement. Noise and heterogeneity in the network help
serve to break up clustering and stabilize the asynchronous
firing state. They may also be used to boost weak signals
above threshold (40–44).

The DR and SNR both improve with increasing N at rates
faster than that of an uncoupled network. The inhibitory
coupling shapes the spectrum and reduces the noise power at
low frequencies; this reduction results directly in an improved
DR. However, the shaping also reduces the signal power
accordingly. The SNR is improved by a different effect: the
inhibition sets a maximum population firing rate that is
determined by the synaptic time scale, the applied current, and
the coupling constant. As the coupled network is increased
beyond a critical N, the background noise power, which is
proportional to FN, saturates while the signal power continues
to grow as N2. This increase in SNR could be observed in any
network in which the inhibitory coupling reduces the popula-
tion rate. These dependences of DR and SNR surpass those of
an uncoupled network, for which the noise power increases
linearly with N.

In our simulations, we have found that the noise-shaping
effect shown in Fig. 3 is robust against element heterogeneity
among the input coefficients ai and against variations in the
coupling coefficients Kij. We have also been able to generate
more complicated noise-shaped spectra, such as a notch at a

given frequency as shown in Fig. 5, by suitable choices for the
postsynaptic current waveform g(t). We also note that shaping
need not be limited to anticorrelations between individual
spikes. For instance, it could take place between neuron bursts.
With different network architectures, it may be possible to
create noise-shaping networks in which the SNR, DR, or other
performance criteria are significantly enhanced beyond what is
shown here.

In biological experiments, noise shaping may be difficult to
detect in the firing records of individual neurons. These
records may look Poisson-like and, except for refractoriness,
display few correlations. In particular, cross-correlations be-
tween pairs of neurons in simulations of the coupled network
do not show significant anticorrelations (data not shown).
Noise shaping arises from the correlations in the aggregate
firings, a collective property of the population. A demonstra-
tion of noise shaping in biological systems would require the
simultaneous recording of the firings from many coupled
neurons (45, 46). Such demonstrations are of interest because
noise shaping or a variant thereof may be at work in biological
systems that operate at frequencies higher than those of the
network elements (11, 47).
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