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STATISTICS FROM THE INSIDE

7. Regression and correlation

M J R Healy

Some of the most important statistical analyses
are those which deal with the relationship between
a variate y and another quanitity x which is
recorded on the same items. We may for
example wish to relate the response to a drug (y)
to the dose administered (x); or the head
circumference of a baby (y) to its weight (x). A
possible simple model for a relationship of this
kind is to suppose that we can write

y=a+fx+E (1)

where the 's are random quantities with mean
zero.
To explore the implications of this, I shall

need some notation. Suppose we consider all the
items in the population which have a certain
specific value of x, x=xo say. In our examples,
these would be all the responses to a particular
dose, or all the babies with a particular weight.
These selected items constitute a population in
their own right, a subpopulation as it is called.
This subpopulation will have a mean value and
this in general will depend upon which value of
x we have chosen (mean response will depend
upon dose, mean head circumference will depend
upon weight).
A mathematician's term for a mean is 'expec-

tation' or 'expected value' and the corresponding
notation E(y) is sometimes used to denote the
population mean ofy. Here for the mean of the
subpopulation at x=xo I shall write E(ylx=xo)
where the vertical bar should be read as 'given
that', or in technical language 'conditional
upon'. More simply, I can write E(ylxo). This
mean value of a particular subpopulation is
called a conditional mean, and in principle I can
obtain the conditional mean of y for any given
value of x.

Suppose now that I calculate the conditional
means ofy for a whole set of values of x and that
I plot these means against their x's. Suppose too
that when I do this the result is a straight line
whose equation can be written as

E(ylx)=a+f3x (2)

This is just another way of writing the relation-
ship (1) above. The relationship (2) is called a
regression equation, and a and ,B are the regression
coefficients. The coefficient a is the intercept,
that is the mean of the subpopulation at x=0,
and the coefficient ,B is the slope, the amount by
which the mean ofy increases for a unit increase
in x.
The regression equation (2) is only a partial

description of the population of (x, y) pairs; it
tells us the mean of the subpopulation at any
particular value of x, but we still need to specify

the variability and other properties. As well as a
mean, each subpopulation will have a standard
deviation and in the simplest case we assume
that this standard deviation is constant and does
not depend upon x. This standard deviation
can be written as yvIx to distinguish it from
the unconditional standard deviation ov which
applies to the whole population of y's ignoring
the x's. It is sometimes useful in addition to
assume that each of the subpopulations has a
Normal distribution.
With these assumptions, the usual textbook

formulas or computer programs can be used to
obtain estimates a and b of a and , from sample
data consisting of (x,y) pairs, and also an
estimate sylx of oylx), the conditional standard
deviation which measures the scatter of the y
values around the regression line. From this,
the standard errors of a and b can be obtained.
Simple t tests can then be use to test hypotheses
about a and ,B and to provide confidence
intervals for them. For a reason to be clarified
below, the degrees of freedom in these tests will
be two less than the number of data pairs in the
sample.
With regard to the x's, it is useful to distinguish

two situations.
(1) Consider the example in which children

are treated with one out of (say) four doses of a
drug. What we have is a set of four subpopula-
tions, and each subpopulation carries an x value
which is a quantitative label-here, the dose. In
this type of situtation, the x's are not random
variables; if we think about drawing further
samples of data, these will come from the same
subpopulations with the same values of x. The
x's are better described as values of a variable
rather than of a variate.

(2) Now consider the other example, in which
the head circumference of a baby (y) is regressed
upon its weight (x). Now we have a bivariate
population whose items are the babies and
which has two variates recorded upon each
item, head circumference and weight. Provided
that our assumptions about the y's hold good,
we can use exactly the same model for the
regression of head circumference upon weight,
embodied in equation (2), and we can estimate
the parameters of the model using exactly the
same methods. However, a new feature emerges.
It is now quite reasonable to investigate another
regression equation,

E(x|y)= y+by (3)

This is the regression of weight upon head
circumference, which relates the conditional
means of x to values of y. It is important to
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7. Regression and correlation

realise that this represents a quite different line
from that given by equation (2). If we wish to
know the average head circumference of a baby
of a certain weight, then equation (2) with the
coefficients a and i estimated from a sample
will enable us to do so; if (for some reason) we
wish to know the average weight of babies with
a particular head circumference, the equation
(3) must be used.

Suppose that we have a sample of (x, y) pairs
and that from them we obtain the estimated
version of equation (2),

9=a+bx (3)

where 9 denotes the estimate of the conditional
mean E(ylx). For each actual pair ofobservations
(x,y) we can calculate the residual (y-9), the
discrepancy between the observed value of y
and the estimate of its mean. The estimate of
the variance about the regression line, s2,
is found by forming the sum of squares of the
residuals and dividing this by its degrees of
freedom. It can be shown that there are two
exact relationships between the residuals-the
sum of the residuals is exactly zero, and so is the
sum of the residuals each multiplied by its value
of x. This means that, if you are told all but two
of the residuals (and all the x's), you can
calculate the last two without looking at the
data. This is why the degrees of freedom are two
less than the sample size. The true conditional
standard deviation oyl,j is just the standard
deviation of the true residuals (y-E(ylx)), and
it and its estimate are often referred to as the
residual standard deviation.

Calculating and using the residual standard
deviation carries with it the assumption that the
residuals constitute a random sample and exhibit
no systematic features. Checking this assumption
should be an important part of any regression
investigation. The most useful checks are
graphical. For example, a plot of the residuals
against the values of x should show no excep-
tional features, such as outlying values or
curvilinear trends.
A presentational point arises with the estimated

regression equation (3) above. In this form, the
intercept a represents the mean of the sub-
population ofy's at x=0. If x is a variable such
as weight or stature this may be a quite
meaningless quantity far outside the range of
the actual data. As a result, the estimate a will
be meaningless too, and because of the extra-
polation it will have a very large standard error.
It is preferable to express the equation in the
form

y=a+b (x-X) (4)

where X is a convenient round number some-
where near the centre of the data values. Note
that this does not affect the value of the slope.
A situation that requires a good deal of care is

that in which there are two levels of variation
(see note 6 of this series), such as when
repeated measurements of both x and y are
made upon a number of subjects. Data of this
kind are common when the investigation relates
to the growth of children or the time course of
the response to a drug. It will then be possible
to calculate a regression line for each subject

separately, describing the relationship ofy to x
within the subject, and an average of the within-
subject slopes can be obtained. It will also be
possible to calculate the means of x and y for
each of the subjects and to estimate a between-
subject regression based upon these means. It is
important to realise that the within-subject and
between-subject slopes will generally be quite
different-they may not even have the same
sign. It is possible, for example, to measure
some quantity on a number of newborn babies
and to calculate the regression of this quantity
(as y) on gestational age (as x). But it is quite
unsafe to assume that this between-subject
regression can serve to describe what happens to
a single fetus in utero as its gestational age
increases.

Regression can often be a useful method of
allowing for a factor whose effect upon the main
variate of interest cannot be tightly controlled.
As a simple example, suppose we wish to
compare the head circumferences of male
newborns with those of females. There is no
great difficulty in obtaining samples from the two
populations and the means can be compared by
way of an unpaired t calculation. However, head
circumference at birth is related to gestational
age and it is unlikely that the two samples have
exactly the same mean gestational age. Any
difference that we observed between the two
mean head circumferences may thus be in part a
reflection of a difference in mean gestational
age. Suppose then that we calculate the regres-
sion of head circumference (as y) on gestational
age (as x) for each of the two groups. The two
lines permit us to read off the mean head
circumferences at a particular gestational age
(perhaps 40 weeks), and these two conditional
means can be compared by a modification of the
usual t procedure. This technique has two
advantages. Not only does it compensate for any
imbalance between the gestational ages of the
two samples, it also increases the precision of
the comparison by utilising the standard devia-
tions about the regression lines which will be
smaller than those of the head circumferences
considered in isolation. Note that the technique
is most useful when the two lines are parallel; in
this case the difference between the two condi-
tional means will not depend upon the particular
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Figure I Taken in isolation, themean difference in head
circumference betweengirlsand boys is the verticaldistance
between themeansPandQ. Afteradjustmentforgestational
age, thedifference is that between theparallel regression
lines, RS. The bars at the rightofthediagram are twice the
unconditional andconditional standarddeviations.
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x value that has been chosen. The parallelism
of the regression lines can itself be tested by a
straightforward t calculation using the standard
errors of the two estimated slopes. This method
is sometimes called an analysis ofcovariance, the
quantity x being referred to as a covariate. I have
illustrated it in fig 1, where I have for clarity
exaggerated the difference between the x values
in the two groups.

Closely linked to the idea of regression is that
of correlation. Suppose that both x and y are
random variables and let oy be the variance
of y ignoring the values of x and or21x the
conditional variance of the y's at a particular x
value. Then the correlation coefficient Q is defined
by the equation

Q2= 1- lyX (5)

with e taking the same sign as the regression
slope. This quantity is sometimes called the
Pearson or product-moment correlation, to dis-
tinguish it from other similar quantities. There
appears to be no good historical reason for
adding the name of Bravais, as is sometimes
done.

It can be seen that &2 is a measure of the
information about y that is provided by a
knowledge of x. Our uncertainty about a future
value of y, considered in isolation, can be
measured by the standard deviation ay or its
square, the variance ar2. If we are then told
the corresponding value of x, the variance is
reduced to yX5 so that the percentage
reduction in variance due to the knowledge of
the value of x is just 100e2. Incidentally, this
shows that e2 lies between 0 and 1 so that e
must lie in the range -1 to + 1.
A point which is not made clear by this

definition is that the correlation coefficient is
symmetric as between y and x. This distin-
guishes it sharply from the regression coefficient
and shows that correlation is only relevant when
we are dealing with a bivariate population so
that both x and y are random variables. We
speak of the regression ofy on x (or of x on y),
but of the correlation between x andy.
The correlation coefficient is often described

as a measure of the association between x and y,
and this is true in the sense described above. It
has to be stressed that it may be a rather
misleading measure. Consider for example a
correlation of0 5-this is the correlation between
the heights of fathers and their adult sons and
sounds quite a high value. Yet knowledge of a
father's height reduces the variance associated
with his son's height by only OOx0-52=25%,
and this translates into a reduction of no more
than 13% in the standard deviation. In the same
vein, the correlation coefficient vividly illustrates
the difference between statistical significance
and practical importance. With a sample of 50
(x,y) pairs, an estimated correlation of 0-35 is
highly significantly differerent from zero, with
p<0-01; but a plot of some actual data points
(fig 2) shows that this degree of association
between the two variates is so weak as to be of
little practical value in most circumstances.

It can be shown quite easily that the correla-
tion coefficient, whether of the sample or the

population, is equal to the geometric mean
of the two regression slopes-in symbols,
0= \/ylx 7t,- It follows that the correlation
is equal to zero only if the regression coefficients
are equal to zero. The test of significance of the
correlation coefficient against zero is thus
exactly the same t test as would be used for
either of the regression slopes, though as usual
confidence limits are likely to be much more
interesting than the result of the test in both
instances.
The method of calculating confidence limits

for a correlation coefficient, which can also be
adapted to compare the values of two correla-
tions, is of some general interest. A formula
exists for the standard error of a sample correla-
tion, but this is not useful for two reasons-the
formula involves the unknown correlation, and
in addition the distribution of the sample coeffi-
cient is liable to be far from Normal. This latter
finding follows from the fact that the sample
coefficient cannot go outside the range -1 to
+ 1; thus if the true value of the correlation is
(say) 0 8, the sample value can be considerably
smaller than this but not very much larger (fig 3
shows the distribution for a true value of 0-8
and a sample of 20 pairs).
Both these difficulties can be avoided by

transforming the sample coefficient (r, say) to a
different mathematical form. The procedure
involves two steps:

(1) Calculate p= /2 (1 +r). This quantity lies
in the range 0 to 1.

(2) Calculate z=log{p/(l-p)} using 'natural'
logarithms to the base e. This quantity is known
as the logit of p and is unlimited in both
directions.
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Figure2 DatapointswithacorrelationofO-35(p<001).
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Figure3 Thedistributionofthesamplecorrelation
coefficient, true value -=0 8, sample size 20.
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It turns out that z is N
close approximation, wi

given by V4/(n-3) whei
Suppose then that we fi
of r=+0-8 in a samp
p=0-9, z=2 197 with
\/07iT =0 485. The !
for z are given by 2 197
3-148. These limits cax

the correlation scale by
p=e/(l +ez) and r=2p-
limits 1-246 and 3 -148, i
and 0 959, and the con

thus 0-553 to 0-918. Th
quantities to make then
tically is useful in many
return to it in a subsequc
For all its prominenc

are in fact rather few si
laboratory medicine in
coefficient is a useful sta
alongside the equation
probably because it has

vided by a computer program; but it is far more
informative to provide the standard error of the

a slope and also the residual standard deviation
A which measures the variability of the data points

about the fitted line. When x is an ordinary vari-
able (such as the dose of a drug in a dose-
response study) rather than a random variate,
the correlation coefficient is usually not a mean-
ingful quantity. It should also be noted that the
correlation coefficient can be heavily influenced
by the presence in a sample of one or two out-
lying points. Figure 4 illustrates this. As it

6 8 10 stands, the sample there has a correlation of
0-61; but if the single point marked A is

outlyingptnnt. removed, this falls to no more than 0-02. As
with most statistical analyses, a plot of the data
is an almost essential part of the interpretive
process.

[ormally distributed to a One situation in which the correlation coeffi-
ith a standard deviation cient has no place whatsoever, and in which
re n is the sample size. regression must be used with caution, is that in
ind a sample correlation which two methods of measuring the same
)le of 20 pairs. Then quantity are to be compared. The null hypo-
a standard error of thesis e=O is obviously silly; nobody would

95% confidence limits suppose that two methods purporting to measure
± 1 96x0 485= 1 246 to the same thing could be completely unrelated.
a be converted back to If one method is a gold standard and the other a
calculating successively new technique, it may be of some interest to
-1. Corresponding to the form the regression of the gold standard (as y)
the values of p are 0777 on the new technique (as x). The standard
Lfidence limits for e are deviation about the regression line then pro-
iis trick of transforming vides information about the range of 'true'
n better behaved statis- values which are consistent with a particular
contexts, and I hope to reading obtained by the new technique. Note
ent article. however that for technical reasons the slope of
e in the textbooks, there the regression is not expected to be equal to 1-0,
ituations in clinical and but to be rather less than this. A full discussion
which the correlation of the method comparison problem would take

itistic. It is often quoted us too far afield at this point; a useful article is
l of a regression line, that by D G Altman and J M Bland, Lancet
been automatically pro- 1986;i:307-17.
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