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When yeast cells are grown continuously at high cell density, a
respiratory oscillation percolates throughout the population.
Many essential cellular functions have been shown to be separated
temporally during each cycle; however, the regulatory mechanisms
involved in oscillatory dynamics remain to be elucidated. Through
GC-MS analysis we found that the majority of metabolites show
oscillatory dynamics, with 70% of the identified metabolite con-
centrations peaking in conjunction with NAD(P)H. Through statis-
tical analyses of microarray data, we identified that biosynthetic
events have a defined order, and this program is initiated when
respiration rates are increasing. We then combined metabolic,
transcriptional data and statistical analyses of transcription factor
activity, identified the top oscillatory parameters, and filtered a
large-scale yeast interaction network according to these parame-
ters. The analyses and controlled experimental perturbation pro-
vided evidence that a transcriptional complex formed part of the
timing circuit for biosynthetic, reductive, and cell cycle programs in
the cell. This circuitry does not act in isolation because both have
strong translational, proteomic, and metabolic regulatory mecha-
nisms. Our data lead us to conclude that the regulation of the
respiratory oscillation revolves around coupled subgraphs contain-
ing large numbers of proteins and metabolites, with a potential to
oscillate, and no definable hierarchy, i.e., heterarchical control.

metabolic regulation � respiratory oscillation � temporal structure �
transcriptional regulation � self-organization

As we obtain a greater understanding of systems dynamics, it
is becoming apparent that biological oscillators play critical

roles in the organization of physiology in all time scales, ranging
from milliseconds to years (1, 2). At the end of yeast growth in
batch culture, there is series of cycles in respiratory activity that
occur before the culture entering stationary phase (3). When
continuous culture is initiated, the culture can be maintained in
this oscillatory state [40 min to 5 h; see supporting information
(SI) Fig. 5] for months (4–6). These dynamics result in the
temporal separation of many essential cellular functions, includ-
ing redox biochemistry (7, 8), transcription (9, 10), energetics
(11), chromosome cycle (1), and mitochondrial function (5).
Although respiration is always active, the cellular redox state
cycles between an oxidative phase and reductive phase. It is
known that at least two redox active compounds, acetaldehyde
and H2S, mediate cell–cell communication (12), but little is
known regarding how synchrony is generated within the cell and
how the network is regulated.

A major problem in elucidating the oscillatory mechanism is
the extent to which the cellular network is entrained, i.e., in a
system where the majority of parameters oscillate how does one
pull out core mechanisms. Fortunately, Saccharomyces cerevisiae
has been used extensively as a proving ground for many of the
new low- and high-throughput tools in modern molecular biol-
ogy, leading to yeast having the best characterized cellular
network among all eukaryotes. We combined this information
with our data to address the regulation of oscillatory dynamics.
Initially we used GC-MS data and statistical analyses of tran-
scriptional data to identify the operation of a defined biosyn-
thetic program during the oscillation. We then developed a

simple fast Fourier transform-based algorithm to calculate a
parameters correlation to a sine wave and phase of peak
concentration for data from a number of experimental sources
and the statistical analyses of data (13). The top oscillating
components were visualized by using a reconstructed large-scale
network that encompassed much of the current understanding of
yeast physiology. We then tested one of the most significant
network features that coordinates amino acid biosynthesis, cel-
lular reduction, cell division and respiration, by perturbation.

Results
Previously we have shown that many metabolites oscillate with
a phase relationship to respiration (5, 7, 12). We expanded these
data by using GC-MS to show that this oscillation is metabo-
lome-wide (Fig. 1a). Furthermore, most metabolite concentra-
tions (70%) peak during the transition from the oxidative to
reductive phase (Fig. 1a), in coincidence with the maximum in
NAD(P)H concentration and the maximum DNA synthesis rate
(14). The transcripts whose abundance peaked during the oxi-
dative phase were involved in biosynthesis. Statistically grouping
these transcripts according to ontology (Fig. 1b) revealed that
there was a defined sequence of events or biosynthetic program
between 35° and 120° (Fig. 1b). During the reductive phase of the
cycle transcript, abundance was enriched with transcripts re-
sponsible for respiration, mitochondrial biogenesis, and actin
arrangement. This production was compatible with our previous
observation that mitochondrial cristae oscillate between ortho-
dox (oxidative phase) and a condensed (reductive phase) state
during a respiratory cycle (11). From these data we estimate that
the metabolite concentrations peak 100–150° (12–18 min) after
the peak in transcriptional activation of the pathway.

Using fold changes to gauge how an individual parameter
influences a system underestimates the importance of certain
key molecules, such as transcription factors on cell physiology.
Furthermore, it is difficult to integrate data from numerous
experiments to produce a coherent view of complex phenomena.
However, when one has densely populated time series data, one
can use signal-processing techniques to derive dynamics. Here,
we use a simple Fourier technique to derive two measures from
a variety of raw data sets (SI Fig. 6). The peak production time
of the waveform is represented by fast Fourier transform-derived
phase angles (�), where 0° represents the minimum first deriv-
ative of the dissolved oxygen measurements, where one cycle
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typically lasted �40 min. The correlation to sine wave or
oscillation strength (O) for each measured parameter was also
calculated by dividing the amplitude derived by fast Fourier
transformation by the integrated raw data (SI Fig. 7). We
reasoned that if the parameter had a high O, then it was likely
to be coupled more closely to the oscillation regulatory loop, i.e.,
the further the target is away from the oscillating loop, the more
the transcript would deviate from a sinusoidal waveform.

Transcriptional Core Involved in Respiratory Dynamics. Next we
asked what factors regulate the operation of the biosynthetic
program. To approach this question, we reconstructed a network
consisting of transcriptional regulatory and protein interactions
(for details on the construction of this network, see SI Methods)
that was filtered according to the oscillation strength of the

transcript (O � 0.75; 861 transcripts; 33 transcriptional regula-
tors; Fig. 2a and SI Table 1) and the oscillation strength of the
transcription factor activities (O � 0.75; 21 transcriptional
regulators; Fig. 2b) derived from statistical analyses of their
targets. The filtered connected network of 312 nodes and 519
edges showed strongest oscillatory behavior. The network was
further filtered to focus on the core connected transcriptional
regulatory nodes and complexes (33 nodes, 74 edges; Fig. 2c).
This regulatory network consisted of two out-of-phase sub-
graphs whose transcripts were produced in tight temporal win-
dows.

The gene network fanning out from the transcriptional reg-
ulatory network was then analyzed statistically for 2- and 3-node
gene network motifs (15) (see SI Methods and SI Table 1). These
small gene networks, in combination, are thought to regulate

a b

Fig. 1. Metabolic orchestration in oscillatory yeast continuous cultures. (a) The GC-MS analysis of the respiratory oscillation observed during continuous culture
indicates the entire metabolome oscillates. For visualization, the data have been scaled to show the fold change. (Lower) Dissolved oxygen trace (blue) and the
[NAD(P)H] trace (green) for the sample period. (b) (Lower) The respiratory oscillation consists of the cyclic switching between phases of low [oxidative (O), high
oxygen uptake rate] and high [reductive (R), low oxygen uptake rate] oxygen concentrations. (Upper) The transcriptional program was visualized as a heat map
constructed from the statistical analyses of gene functional ontology (13). The values were then plotted against oscillation phase. Biosynthetic processes and
respiratory/stress events were clearly separated during the oscillation (black boxes), occurring (120–180°) out of phase with their respective phenotype of
biosynthetic (a) and respiratory events (b Lower). Both heat maps were ordered according to the phase angle (�) of the measurements’ peak production.
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more complex responses (16). In the top oscillating subgraph of
this network, we identified significant autoregulation, cross-
factor control, feedforward, and mixed-loop control (Fig. 2d)
(17). However the exact physiological meaning of these circuits
can be vague because each motif exhibits a wide range of
dynamics depending on interaction strength and regulation type,
i.e., inhibitor or activator (18). We approached this problem by
constructing a network containing much of our understanding of
DNA, protein, ion, and metabolite interactions in yeast (4,912
nodes, 16,723 edges). We used this network and the oscillation
data to probe for functionality. The resulting oscillatory network
(O � 0.75) comprised 20.8% of all of the nodes in the recon-
structed yeast network (SI Fig. 6).

Transcriptional Regulation of Cellular Reduction. The Cbf1–Met4–
Met28–Met31–Met32 transcription regulatory complex (CMtr
complex for brevity) is a network feature (Fig. 2c, gray box)
where the peak concentrations of MET4, MET28, MET30, and
MET32 transcripts occurred in a narrow temporal window (�4
min). Cbf1p activates this complex by transcription and physical
interaction to regulate sulfur assimilation (19, 20). The tran-
scription factor activity of Cbf1p, Met4p, Met28p, Met31p, and
Met32p peaked �4–8 min after the maximum transcript con-
centration. The gene targets of the CMtr complex produced the
largest amplitude oscillation of the measured transcripts; and the
metabolic products, such as glutathione, hydrogen sulfide, and
S-adenosylmethionine, of the target proteins of this complex are

directly responsible for cellular reduction (21, 22). Therefore we
examined the temporal organization of the sulfate assimilation
pathway resulting from this complex (Fig. 3).

The MET4, MET28, MET30, and MET32 peaked at �40°,
followed by their target transcripts involved in initial sulfate
activation by ATP (MET3, 72°; MET14, 60°; MET16, 53°).
MET10 and ECM17 are responsible for H2S formation, and their
transcript abundance peaked at 82° and 98°, respectively. MET17
catalyzes the formation of homocysteine from homoserine, and
its transcript abundance peaked at 107°. Metabolically, the
concentrations of homoserine, H2S, cystathione, and cysteine
(products of homoserine) peaked at 135°, 178°, 186°, and 189°,
respectively. Gene network analyses revealed that this temporal
switching of transcripts probably occurs through multiple in-
stances of the three nodes’ feedforward control (Fig. 2d). In its
simplest form, the target gene is only transcribed when two
transcription factors are in place, which produces time delay
circuits that were enriched in the CMtr complex; 65% of all
incidences of the feedforward loop emanated from the CMtr
complex.

Translational Control of Amino Acid Biosynthesis Timing. The GC-MS
results presented here show distinct phase relationships between
amino acid concentration and respiratory activity (Fig. 1a),
where the maximum production of all detected amino acids was
between 170° and 240°. The Gcn4p transcriptional activator is
central to amino acid regulation and is involved in MET4

a c

b

d

Fig. 2. Transcriptional regulation of the yeast respiratory oscillation. (a) The transcriptional regulatory core network involved in the regulation of the yeast
respiratory oscillation was derived from the top oscillating transcript concentrations (O � 0.75). (b) Activities of the transcriptional regulators were derived from
the statistical analysis of their target transcripts (O � 0.75). Both heat maps were ordered according to the phase angle (�) of the measurements’ peak production.
A ball-and-stick network representation of the transcriptional regulators shown in a and b. (c) The figure key provides a guide to the network. Colored circles
represent transcript abundance, and squares represent the transcription factor activity. If the transcription factor activity of a node was greater than its transcript
concentration, the square was placed behind the circle, otherwise the square was placed in front of the circle. The nodes are colored according to the phase angle
(�; see Fig. 1b), and the oscillation strength (O) is indicated by the size of the node. The shaded box indicates the CMtr complex, and the shaded circle shows an
area enriched with cross-factor control loops. (d) The gene network motifs (P � 0.01) were scored for quality (Z �7) where the number of nodes was 3. The color
of the circle represents what phase in which the motif is enriched; where autoregulatory units are distributed throughout all phases they are colored black.
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transcription (Fig. 2c) (23). The target-binding motif of Gcn4p
(Fig. 4a), Gcn4p (Fig. 4b), and amino acids had strong oscillatory
profiles (Fig. 1a), the [GCN4]mRNA produced a weak oscillation
(O � 0.33). This apparent discrepancy may be explained by
translational block of the GCN4 mRNA being blocked before
translation (at �ORF4) when intracellular concentrations of
amino acids are high (24). The block relaxes when the intracel-
lular concentration of amino acids decreases; therefore, the
observed oscillation in intracellular amino acid concentrations
creates a strong feedback on this transcriptional regulation
circuitry. The activation of GCN4 translation was not the result
of amino acids in the feed media becoming limited because
extracellular amino acids were always below the limits of detec-
tion, and ammonia was always available for biosynthesis (25).
Furthermore, addition of glutamate, cysteine, and threonine
causes dose-dependent inhibition of respiration and growth (7,
26, 27), which is the opposite of what may be expected if the cell
were limited by amino acids. In addition, the respiratory oscil-
lation was sensitive to low concentrations of rapamycin, resulting
in a switch to reductive phase for 60 h (Fig. 4c). Rapamycin
induces the activators Gcn4p and Gat1p in a target of rapamycin
(TOR) complex 1-dependent manner (24). These observations
confirm that intracellular amino acid signaling plays a critical
role in the regulation of the respiratory oscillation.

Discussion
Once external noise has been minimized by using the precisely
controlled conditions of continuous growth in a fermentor, the
culture autosynchronizes physiology, to reveal a temperature-
compensated oscillation (28). In this work we show the coordi-
nation of the oscillator includes core transcriptional regulation.
Major outputs of the biosynthetic program were a global oscil-
lation in amino acid biosynthesis (Fig. 1a), cellular reduction (7),

and S phase initiation (9). The biosynthetic transcriptional
program initiated during the oxidative phase (Fig. 1b) and our
subsequent network analysis strongly suggest that the transition
from oxidative to reductive phases of a cycle relies on small
multiple-input gene feedforward motifs. In combination, these
motifs produce time delays in transcription (Fig. 2).

The CMtr complex, whose activity peaks in the oxidative
phase (Fig. 2c), produced a burst of cellular reduction tracked by
sulfide and NAD(P)H concentrations. Critically, S phase initi-
ation is regulated by the CMtr complex through production of
the F box protein Met30p (29). Temporally, the Skp1/Cullin/F-
box/Met30 ubiquitin ligase complex (SCFMet-30) complex acts
before the G1 cyclins. A major function of this protein is to
generate negative feedback by the deactivation of the Met4p
through polyubiquitination, resulting in a down-regulation of
S-adenosylmethionine, the major methyl donor in the cell, thus
providing a strong oscillatory potential. The CMtr complex is
conserved in eukaryotes and may constitute a more general
redox state checkpoint in the chromosome cycle (30).

The oscillation in Gcn4p concentration and rapamycin sensi-
tivity indicated that the CMtr complex was regulated by TOR
complex 1 (24), which senses intracellular amino acid levels. The
precise timing of amino acid biosynthesis involved a regulatory
feedforward loop that contains the activators of amino acid
biosynthesis Gln3p and Gat1p. The dynamics of this subgraph
was recently explored in a computational model of amino acid
synthesis regulation (31) and utilizes strong autoregulation with
a strong potential to oscillate. Our data therefore indicated that
Gcn4p and its translational regulation were major coordinating
transcriptional regulators of the transition from oxidative to
reductive phases.

Fig. 3. Network derived for sulfur assimilation from the top oscillating (O
�0.750) transcripts and metabolites. The figure key provides a guide to the
network. The gene descriptions are listed in SI Table 1. SLF, sulfate; LLCT,
cystathione; HSER, homoserine; OASER, o-acetylhomoserine; OBUT, 2-oxobu-
tanoate; AC, acetate.

a

b

c

Fig. 4. The dynamics of the Gen4p during the yeast respiratory oscillation.
(a) The [GCN4] transcript showed a weak oscillation (O � 0.325); however, the
involvement of the Gcn4p in the regulation of the respiratory oscillation in
yeast was predicted by a strong oscillatory response of the TGACTCA consen-
sus motif gene targets (O � 1.2). (b) The Gcn4p oscillated during the respira-
tory oscillation in phase with the TGACTCA consensus motif targets and out of
phase with H2S production rate (qH2S) and respiratory quotient (qR). (c) The
oscillatory dynamics were sensitive to rapamycin perturbation (200 nM).

2244 � www.pnas.org�cgi�doi�10.1073�pnas.0606677104 Murray et al.

http://www.pnas.org/cgi/content/full/0606677104/DC1


Although we have focused on the regulation of the biosyn-
thetic program, the majority (�90%) of the mRNA species
concentrations peaked during the reductive phase (9). The major
oscillating cohort in this phase (�1,500 genes) had no defined
function (Fig. 1b). This poor functional classification may be
partly explained by the utilization of glucose-repressed growth
conditions where mitochondrial activity was greatly reduced for
the majority of yeast studies (3). The core regulatory network
coexpressed with this event includes an array of transcriptional
regulatory hubs that were highly interconnected (Fig. 2c, gray
circle). At its core are four transcription regulators (Fig. 2c)
implicated in the regulation of complex phenotypic responses.
The Phd1p is implicated in pseudohyphal regulation (32). Sok2p
is implicated in sporulation and long-term yeast adaptation (33).
Cin5p and Msn4p have a more general stress-sensing role (34).
Msn4p activity by localization in the nucleus is influenced by
protein kinase A (PKA) (35), and it has been suggested that
Sok2p and Phd1p are involved in the regulation of cAMP
metabolism (32, 36). In addition the cyclic mobilization of
glycogen and oscillation in cAMP concentrations observed
during oscillatory dynamics during growth on glucose media,
supplies evidence that the PKA pathway is involved in the
regulation of the oscillation (6). It is an attractive theory that
cyclic mobilization of the reserve carbohydrate glycogen regu-
lated by PKA in a cAMP-dependent manner, thus controlling
energy metabolism, is the central oscillatory loop. However, the
oscillation persists during growth on respiratory carbon sources,
such as ethanol and acetaldehyde (37), whereas glycolytic activ-
ity was abolished. This persistence provides strong evidence that
respiratory dynamics, not fermentative dynamics, are critical for
oscillation. Also, although cAMP and glycogen oscillated when
the cells were grown on glucose, no oscillation was observed in
these metabolites when the cells were grown on ethanol media
(38 and D.B.M., unpublished data). This finding does not rule
out a role for the PKA pathway in controlling the respiratory
oscillation because the TOR complex 1 and PKA signaling
pathways cross-talk (39), and the PKA pathway can be phos-
phorylated independently of cAMP (40). The mechanistic elu-
cidation of these transcriptional regulators is needed to elucidate
their role during oscillatory dynamics.

Biological networks have been layered into genome, transcrip-
tome, proteome, and metabolome, and these networks are then
modularized. Within the cellular context, this hierarchy is at best
misleading because intrinsic network fluctuations are quickly
communicated throughout the highly interconnected network by
molecular interactions, thus the network forms a complex heter-
archy (41). The regulatory loops described here have the po-
tential to oscillate, but in isolation they may never show stable
oscillation. The regulation of the oscillatory dynamics by met-
abolic control of enzymes and the modification of proteins were
not examined in detail in this work, but this omission does not
preclude their contribution. Indeed, a purely metabolic compu-
tational model has been shown to reproduce limited aspects of
the respiratory oscillation (42). Rather, it is only when metabolic,
translational, transcriptional, and protein control are placed
within a coupled network context that the depth of the cellular
dynamics we observe can be explored. From this work, we
conclude that regulation of the oscillator is not the result of a
central oscillator, but rather it emerges from numerous sub-
graphs with the potential to oscillate, i.e., stable periodicity arises
from arrays of small genetic feedforward loops, coupled together
by metabolic and protein feedback loops to provide a temporal
program (such as the events we described in biosynthesis). It has
been postulated that this type of control is involved in circadian
regulation (43), and it may be general strategy for the robust
maintenance of cellular processes in eukaryotes against envi-
ronmental perturbation. Indeed, there is already evidence from

other eukaryotic systems such as the zebrafish development
clock (44) and Protista (14) that this is the case.

Materials and Methods
Culture Techniques and Online Measurements. S. cerevisiae strain
IFO 0233 was maintained, precultured, and grown continuously
on semidefined glucose medium as described previously (5) (for
details, see SI Methods and SI Fig. 5). Continuous partial
pressure of oxygen (PO2

) and partial pressure of carbon dioxide
(PCO2

) off-gas measurements were carried out by using an
Enoki-III analyzer (Figaro Engineering, Osaka, Japan). The
partial pressure of hydrogen sulfide (PH2S) in the off-gas was
measured continuously by using an electrode-based gas monitor
(HSC-1050HL; Gastec, Ayase-City, Kanagawa, Japan). O2 up-
take rates (qO2

), CO2 production rates (qCO2
), and H2S produc-

tion rates (qH2S) were derived from these measurements (SI
Methods). Instruments were calibrated according to the manu-
facturer’s instructions. NAD(P)H was measured as described
previously (7), except data were acquired by using a fast-
acquisition USB-pod (PMD-1608; Measurement Computing,
Norton, MA). Pulse additions (1 ml) of rapamycin (Wako
Chemicals, Osaka, Japan) were carried out by syringe/sterile
filtering (Teflon 0.2-�m pore; Millipore, Tokyo, Japan) a diluted
stock solution (1 mg/ml ethanolic solution). Injections were
carried out three times, and the data used show a representative
perturbation. Respiratory quotient (qR) was defined as qCO2

/qO2
.

Measurements of CO2, O2, and H2S were phase-delayed by 10.2
min to account for the measurement lag caused by the fermentor
headspace (�2 liters) and were accomplished by pulse-injecting
a known concentration of the gas in question into the air supply
line and subtracting the peak maxima from the time of addition.

Metabolite and Protein Measurements. The metabolite data set
used previous work (5, 7, 12, 21, 22, 25, 27, 28, 37, 38), and
GC-MS analyses (SI Methods) of intracellular metabolites were
used to construct the metabolite data set. All Western blots were
carried out according to the manufacturer’s instructions (Atto,
Bunkyo-ku, Tokyo, Japan). Antibodies for Gcn4p were supplied
by Santa Cruz Biotechnology (Santa Cruz, CA), and the reac-
tions for antibody detection of proteins were carried out accord-
ing to the manufacturer’s instructions (Atto).

Statistical Analyses. The analyses were carried out on each mi-
croarray time point (13). Generation of T scores used t tests to
analyze for differences between groups of genes and global
expression on the YS98 chip (Affymetrix, Santa Clara, CA).
Before analysis, the data were scaled by dividing the transcript
abundance values by the mean abundance for each experiment.
All of the data were imported into MS Excel worksheets (SI
Table 1). Small gene networks containing 3- and 4-node motifs
were analyzed for significance and quality (15). The P value and
the Z score were calculated by comparing the frequency of all
occurrences of the target motif in a target network with the
frequency values of the motif 1,000 random permutations of the
target network. The resulting network motifs were imported into
MS Excel worksheets (SI Table 1).

Signal Processing. All calculations were carried out in MATLAB
(version 6.5.1). The Affymetrix data set used was described
previously by Klevecz et al. (ref. 8; Gene expression Omnibus,
GSE2583). The use of the discrete Fourier transform to
calculate oscillation strength from raw unscaled periodic data
captured the correlation to a sine wave, therefore avoiding
skewing data patterns inherent in traditional of normalization
and preserving intensity information lost by scaling of high-
throughput data and allowing the integration of data sets.
These data included measurements of metabolites, low noise
Affymetrix transcript profiles (9), and derived statistical anal-
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ysis of transcription factor activity (13), online measurements,
and in this study GC-MS. Therefore, we summarized wave-
forms by two measures: the time of maximum production (�)
and its correlation to a sine wave (O). The detailed methods
used are shown in the SI Methods and SI Fig. 6. On the network
graphs (Figs. 2 and 3), � is represented by colored fills where
light magenta represents 0° and light green indicates 180° (�20
min after the minimum first derivative).

Visualization. All graphs were constructed by using Sigmaplot 8.0
(Hulinks, Tokyo, Japan). To visualize the transcript and metab-
olite data, the data were first scaled to each experiment. Two

independent experiments were used for the transcription data,
one containing 10 microarrays and one containing 22 microar-
rays (the blue and green scatter plot in Fig. 1b Lower, respec-
tively). Publicly available databases were downloaded and con-
verted to Cytoscape (45) format before visualization (SI
Methods).
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