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The kinetics of biomolecular isomerization processes, such as
protein folding, is governed by a free-energy surface of high
dimensionality and complexity. As an alternative to projections
into one or two dimensions, the free-energy surface can be
mapped into a weighted network where nodes and links are
configurations and direct transitions among them, respectively. In
this work, the free-energy basins and barriers of the alanine
dipeptide are determined quantitatively using an algorithm to
partition the network into clusters (i.e., states) according to the
equilibrium transitions sampled by molecular dynamics. The
network-based approach allows for the analysis of the thermo-
dynamics and kinetics of biomolecule isomerization without reli-
ance on arbitrarily chosen order parameters. Moreover, it is shown
on low-dimensional models, which can be treated analytically,
as well as for the alanine dipeptide, that the broad-tailed weight
distribution observed in their networks originates from free-
energy basins with mainly enthalpic character.

Energy landscape theory provides a framework for the de-
scription of the thermodynamics and kinetics of complex

systems. Since the publication of the seminal ideas almost 40
years ago (1), the energy landscape paradigm has been success-
fully applied to the study of a broad range of systems (2, 3). The
potential energy function of a multibody system such as a protein
is a multidimensional and often very complex surface. At
nonzero temperature, entropic contributions become relevant,
and therefore the free-energy landscape governs the thermody-
namics and kinetics. A common way to investigate and display
the free energy involved in biomolecular isomerization and
protein folding is to study it as a function of one or more order
parameters, i.e., suitably chosen macroscopic quantities that
distinguish the different states of the system (4). States are
associated with local free-energy minima of the projected land-
scape. The depth of the minima is considered proportional to the
stability of the states associated to them, and the barriers
between different minima indicate activation energies between
states. Due to the complexity of the process and the large
number of degrees of freedom involved, order parameters are
often arbitrarily chosen. Moreover, using free-energy projec-
tions for the study of the kinetics requires knowledge of a good
reaction coordinate for the isomerization process, which is a
difficult and unsolved problem (5–11). For this reason, new
approaches based on graph theory have been explored for the
analysis of free-energy landscapes. Recently, Krivov and Karplus
introduced a method based on the disconnectivity graphs (DGs)
for analyzing the unprojected free-energy surface of short
peptides using an equilibrium molecular dynamics (MD) trajec-
tory (12). They have developed the free-energy DG approach by
exploiting an isomorphism between the total rate between two
free-energy minima (considering all possible pathways) and the
maximum flow through a network with capacitated edges, i.e.,
edges directly or indirectly connecting two nodes and having a
certain flow capacity. The mincut and balanced mincut proce-
dures have been used for the analysis of the configuration space
of a tetrapeptide (12) and the folding of a simple hairpin of
protein G (9, 13), respectively. At the same time, energy
landscapes have been represented as complex networks (for a
review about complex networks, see refs. 14–16). In ref. 17, the

transitions of a short lattice polymer have been mapped onto a
network. Doye has applied graph analysis for the study of the
potential energy minima of a Lennard–Jones cluster of atoms
(18). The free-energy landscape of a three-stranded �-sheet
peptide sampled by MD simulations has been represented as a
configuration space network (CSN) where configurations and
direct transitions between them are the nodes and the links of the
network, respectively (19). Recently, a similar approach has been
applied to the investigation of the folding of a set of helical
proteins (20). The network framework has been shown to be very
effective for the visualization and representation of free-energy
landscapes. However, the usefulness of the method for obtaining
a quantitative description of the energy basins and barriers of the
landscape has not been yet investigated.

The CSN shares a modular structure with most other networks
representing systems as diverse as cell function (21), scientific
collaborations (22), and the World Wide Web (23): some groups
of nodes are more highly connected to each other than to the rest
of the network. To unravel this intriguing property, several
cluster-detection algorithms have been recently developed, each
of them attempting to find a meaningful partition of the network
(24–30). In CSNs characterizing high-dimensional energy land-
scapes with several basins, it is likely that nodes in the same
energy basin are well connected among each other, whereas
nodes in different basins are loosely connected. This argument
suggests that finding the cluster structure of a CSN might reveal
the topography of the underlying free-energy landscape. De-
tecting the cluster structure of a CSN thus opens a way to extract
from the simulations the main features of the free-energy
landscape at a more coarse-grained level, thus reducing the
overall complexity of the problem (9, 10). Because of the
complexity of CSNs, cluster detection is not straightforward
(31). In other words, clusters defined using existing algorithms
might not correspond to free-energy basins but simply to groups
of nodes connected among each other more than average.

The present study was motivated by three main questions: Is
network analysis useful for investigating pathways of molecular
isomerization reactions? In particular, are cluster-detection al-
gorithms able to obtain a quantitatively correct description of the
free-energy basins and barriers? Can a simple analytical model
of stochastic processes be formulated to explain the origin of
broad-tailed weight distributions observed in CSNs? Our results
indicate that the three questions can be answered affirmatively
in the case of the alanine dipeptide. This system is of interest

Author contributions: D.G. and F.R. designed research; D.G., P.D.L.R., and F.R. performed
research; D.G., P.D.L.R., A.C., and F.R. analyzed data; and A.C. and F.R. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS direct submission.

Abbreviations: CSN, configuration space network; MD, molecular dynamics; MCL, Markov
clustering; Q, modularity; DG, disconnectivity graph.

¶To whom correspondence may be addressed. E-mail: francesco.rao@roma1.infn.it or
caflisch@bioc.unizh.ch.

This article contains supporting information online at www.pnas.org�cgi�content�full�
0608099104�DC1.

© 2007 by The National Academy of Sciences of the USA

www.pnas.org�cgi�doi�10.1073�pnas.0608099104 PNAS � February 6, 2007 � vol. 104 � no. 6 � 1817–1822

PH
YS

IC
S

BI
O

PH
YS

IC
S

http://www.pnas.org/cgi/content/full/0608099104/DC1
http://www.pnas.org/cgi/content/full/0608099104/DC1


because it represents the minimal unit that still has the most
relevant degrees of freedom of a polypeptide chain (6).

Results and Discussion
Free-Energy Basins. Low-dimensional models. To illustrate the net-
work approach, it is useful to start with an example where the
surface is known a priori but its representation is not simple. The
multidimensional double-well is defined by the energy function
U(x) � 5 �i�1

D (xi
4 � 2xi

2 � �xi � 1), where � � 0.05 gives an
asymmetry between the minima. This landscape is characterized
by 2D minima, where D is the dimensionality of the system. Given
U(x), the system dynamics is simulated using a Monte Carlo
protocol on a D-dimensional lattice. The CSN obtained with D �
3 and D � 5 is made of 1,752 and 2,815 nodes, respectively. The
Markov clustering (MCL) algorithm (32, 33) with p � 1.2 finds
the 8 (D � 3) and 32 (D � 5) expected clusters (Fig. 1A), where
p is a parameter of MCL tuning the granularity of the clustering
(see Methods and Models). Although these landscapes cannot be
naturally embedded in a bidimensional space, the network
representation illustrates the topography of the surface and its
dynamic connectivity.

In the previous example, energy basins are mainly enthalpic
(because every basin is characterized by a pronounced bottom).
Interestingly, a cluster analysis can detect the presence of
entropic basins, i.e., regions in the free-energy surface without
a single predominant attractor yet separated from the rest of the
configurations of the system. An illustrative example is given by
the Mexican-Hat landscape of Fig. 1B, which is defined in polar
coordinates by the energy function U(r) � 40(r6 � 1.95r4 � r2).
There is a pronounced minimum for r � 0.59 and a shallow
entropic minimum along the solid angle � for r � 0.59. Two

basins are correctly identified by the MCL algorithm [see
supporting information (SI) Text for a quantitative analysis of
the two basins].
Alanine dipeptide. Analysis of the architecture of free-energy
landscapes characterizing biomolecular isomerization sampled
by equilibrium MD simulations is the object of multiple research
efforts (13, 19, 34). The alanine dipeptide is a useful system for
evaluating new methods for reaction coordinate identification
(6, 7, 35). In the united atom representation the blocked alanine
dipeptide is defined by 12 atoms (see Fig. 2 A). The main degrees
of freedom are the dihedral angles � and � of its two rotatable
bonds. In the continuum solvent approximation used here the
projection of the free-energy landscape onto � and � shows four
minima (see Fig. 2B): C7eq, �R, C7ax, and �L.

Several discretization approaches can be used to define the nodes
of a CSN from an MD simulation (see Methods and Models and SI
Text). For the alanine dipeptide the most natural discretization
consists of partitioning the (�, �) space (Ramachandran-map) into
cells of equal size (see Methods and Models) and labeling every
snapshot visited during the simulation according to its (�, �) value.
Cells are the nodes of the network, and direct transitions between
them observed during the simulation are the links. A 50 � 50
division of the Ramachandran-map gives a network of 1,832 visited
nodes and 54,339 links. The CSN of the alanine dipeptide provides
qualitative insight on the topography and dynamic connectivity of
the landscape (Fig. 2A). The network shows four densely connected
regions that correspond to the free-energy basins of the dipeptide.
Moreover, multiple pathways between basins emerge from the
picture. C7eq is connected to �R by two independent pathways
characterized by different populations, where the statistically more
(less) significant pathway corresponds to decreasing (increasing)
values of �. There are also two independent pathways connecting
C7ax and �L and two pathways between �L and C7eq, one of which
(via increasing �) was observed only once in the five 200-ns
simulations. Notably, there is a striking similarity between the
dynamic connectivity in the alanine-dipeptide CSN (Fig. 2A) and
the optimal free-energy pathways reported in a previous work (see
figure 3 of ref. 35). It is worth noting that the network contains the
dynamic connectivity, whereas the projection of the free energy
onto (�, �) does not illustrate pathways (Fig. 2B).

To obtain a quantitative description of the thermodynamics
and kinetics of the system, the relation between the cluster
structure of the network and the energy basins is investigated in
more detail. The MCL algorithm, with a value of 1.2 for the
granularity parameter p (32, 33), finds four clusters. Each of the
C7eq, �R, C7ax, and �L minimum is grouped into separate
clusters. In Fig. 2C, cells of the (�, �) space are colored
according to the clusters found by MCL. Interestingly, this
cluster structure reflects very well the topography of the energy
landscape, and cluster borders match the saddle points and
isoline of the corresponding free-energy projection (see below
for definition of yellow nodes). This result indicates that network
clusters have the correct (�, �) distributions of the free-energy
basins of the dipeptide. Cluster structure is robust on the change
of the number of cells used for the discretization of dihedral
angles or when cells are directly defined as an array of raw
interatomic distances (see SI Text). Provided that heterogeneous
structures are not grouped to the same nodes, clusters defined
by the MCL algorithm weakly depend on the discretization
procedure. This result indicates that the network framework
allows to identify the stable states of the dipeptide without a
priori knowledge of the relevant coordinates of the system.

MCL results are encouraging and show that network cluster-
ization can give a quantitative description of the free-energy
basins of a complex system. However, correct partition of the
network into free-energy basins is not obvious and might depend
on the algorithm used for the clusterization. Neither the Potts
Hamiltonian algorithm (26) nor a greedy optimization of the

Fig. 1. Energy landscape models. (A) Asymmetric double-well potential
U(x) � 5 �i � 1

D (xi
4 � 2xi

2 � 0.05xi � 1) CSN for D � 3 (Left) and network of
clusters determined by MCL for D � 5 (Right). Line widths are proportional to
the number of transitions. (B) One-dimensional plot of the Mexican-Hat
landscape (Left) and its CSN for D � 2 dimensions (Right). Node size is
proportional to the weight w. Colors are according to the cluster structure
found by the MCL algorithm with granularity parameter p � 1.2 for the two
CSNs, and they show clusters of the same size for the cluster network in D �

5. Node coordinates are automatically generated by the program visone,
which minimizes the number of links intersections for the projection (http:��
visone.info).
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modularity cost-function Q (25) correctly detects the four free-
energy basins (see SI Text). Interestingly, the latter yields a value
of Q � 0.58, which is higher than the one obtained with MCL
(Q � 0.15), indicating that an optimal value of modularity does
not necessarily imply a good detection of free-energy basins (31).

The three clusterization approaches are very different in spirit
with respect to each other and were not developed for any specific
network target. A blind application of a clusterization algorithm
may give unpredictable results, which suggests that a good knowl-
edge of the characteristics of the system under study is fundamental
for a correct interpretation of a network clusterization. MCL is
based on the evolution of random walkers over the network. Hence,
it mimics the natural kinetics thereby detecting ‘‘attractors.’’ In the
MCL algorithm, varying the value of the parameter p changes the
granularity of the clusterization. At p � 1, the network is considered
as one single cluster by construction of the algorithm. Increasing the
value of p results in the splitting of the C7eq and �R basins first
(activation barrier 	F�R3C7eq

‡ 
 3.6 kcal�mol, Table 1) and then C7ax

and �L�	F�L3C7ax

‡ 
 2.8 kcal�mol) as shown in SI Text. Note that
	F‡ is estimated up to an additive constant (see below). Further
increase of the value of p produces the detection of the marginally
stable C5 basin �	FC53C7eq

‡ 
 1.5 kcal�mol, C5 minimum has (�,
�) � (�140, 140)]. Hence, the value of p defines the minimum
activation barrier height detected by the algorithm. This result
indicates that MCL clusterization preserves activation energy bar-

riers, which is a crucial feature for a correct assessment of the
topography of the landscape. Note that p � 1.2 is the minimal value
of the parameter allowing the detection of the four most relevant
states. Although the Potts approach yields almost correct partitions
into basins for 	 � 0.001, its behavior for different values of the
granularity parameter 	 does not reflect the barrier heights of the
landscape (see SI Text for details). Given the nature of the problem,
MCL appears to be most suitable for the detection of free-energy
basins in CSNs.

Hierarchical Organization of Free-Energy Basins. A hierarchical or-
ganization is observed for nodes within free-energy basins. In
fact, the minimum of the basin is defined as the most populated
node of the corresponding cluster while nodes with small weights
can be close to saddles especially in mainly enthalpic basins. The
distribution P(w) of node weights inside the four basins of the
alanine dipeptide detected by the MCL algorithm with p � 1.2
are shown in Fig. 3A. In Methods and Models, broad-tailed weight
distributions were observed for enthalpic basins in low-
dimensional energy surfaces. The alanine-dipeptide basins ap-
pear to follow a power-law w�
 with exponent 
 
 1, which is
consistent with the behavior predicted for the bidimensional
quadratic well. Hence, as a first approximation, the four free-
energy basins of the alanine dipeptide might be reasonably
considered as quadratic wells. On the other hand, in the case of

Fig. 2. Alanine dipeptide free-energy landscape. (A) Plot of the CSN. Node size and link width are proportional to node and link weight, respectively. Node
coordinates are generated by the program visone (http:��visone.info). Configurations lying at the bottom of the four basins are represented in cylinders with
� and � values in parentheses. (B) Free-energy projection on the dihedral angles � and �. Isolines are drawn every 0.3 kcal�mol. (C) Ramachandran-map
representation of the configurations (nodes) used for building the network. Colors are according to the cluster structure found by the MCL algorithm using p �

1.2. Yellow nodes represent unstable configurations identified by introducing noise in the MCL algorithm. For a better visualization of the main saddle between
C7eq and �R basins, unstable nodes are shown in yellow with black in the middle of the circle.

Gfeller et al. PNAS � February 6, 2007 � vol. 104 � no. 6 � 1819

PH
YS

IC
S

BI
O

PH
YS

IC
S

http://www.pnas.org/cgi/content/full/0608099104/DC1


a square well that resembles an entropic basin, all the nodes have
similar weight, and P(w) follows a Gaussian curve peaked
around the mean value of the node weight (see Fig. 3B and SI
Text).

Low-weight nodes in mainly enthalpic basins are either sad-
dles, as mentioned above, or ‘‘off-pathway’’ regions of unfavor-
able free energy. Unfortunately, it is not possible to directly
identify saddles from the analysis of the P(w) because the weight
of a node alone cannot define the presence of a saddle. For this
reason, a stochastic algorithm is used in combination with MCL
for the detection of unstable nodes, i.e., nodes that can be
grouped to more than one basin (32). In Fig. 2 unstable nodes
are colored in yellow. Especially for the well sampled transition
C7eq7 �R unstable nodes characterize the saddle regions of the

Ramachandran-map, showing that instabilities detection is able
to determine interbasin transition regions (provided that free-
energy basins are correctly identified) without the use of reaction
coordinates.

Interbasin Transitions. Once every snapshot sampled by the sim-
ulation has been assigned to a free-energy basin (e.g., using
MCL), it is possible to quantitatively illustrate the thermody-
namics and kinetics of the system. At equilibrium, the relative
free energy of a basin is 	Fi � �kBT log(Wi�WC7eq

), where Wi �
�a�i wa is the total weight of basin i and C7eq is used as reference.
In the same way, height of barriers relative to C7eq are estimated
as 	Fi3j � �kBT log(A�wi3j�WC7eq

), where wi3j is the number
of direct transitions between basin i and basin j observed during
the simulation and A is a constant. The exact value of A, which
cannot be fixed unambiguously, depends on the snapshot saving
frequency 1/ts [for example, in the harmonic approximation used
in ref. 12, A � h�(tskBT), where h is the Planck constant]. Here,
A is set to unity, which means that 	Fi3j is estimated up to an
additive constant. 	Fi and 	Fi3j can be used as order param-
eters for the temporal analysis of the evolution of the system, as
in Fig. 4 Lower, where yellow circles represent configurations
that have been identified as unstable nodes (see above). It is
interesting to note that unstable nodes are typically located at the
direct transition between two energy basins. Elsewhere, they
indicate failed barrier crossings. The time series of interbasin
transitions, embedding the system dynamics in one dimension,
provides more useful and less noisy information than the time
series of dihedral angles values (Fig. 4).

Conclusions
A complex-network description and cluster-detection algorithms
are used to obtain unprojected graphical representations of

Fig. 3. Distribution of node weights. (A) The four free-energy basins of the
alanine dipeptide identified by MCL with p � 1.2. Each basin is represented
by a different color, and the solid line is shown to visualize the 1�w behavior,
which is typical of an enthalpic basin. Colors are the same as in Fig. 2. For clarity
a logarithmic binning has been applied to the data. (B) Square well in D � 2
dimensions. Most of the nodes are characterized by the same weight, and P(w)
follows a Gaussian (black line).

Fig. 4. Alanine-dipeptide interbasin transitions. (A) Time series of a trajec-
tory segment of the alanine dipeptide. The dihedral angles � and � are shown
in red. The black line shows the free energy of the basin or barrier visited by
the system at every time step (see text and Table 1 for details) using as a
reference the C7eq basin. Free energies are estimated from the MCL cluster-
ization using p � 1.2. Black vertical spikes correspond to free-energy barriers
whose height is evaluated using the number of interbasin transitions. Yellow
circles show unstable configurations and their 	F value is calculated using the
weight of the most populated cell in C7eq (� � �86.4, � � 136.8) as reference.
(B) A zoom on the time series segment, which is gray in A Lower illustrating a
very fast transition from C7ax to C7eq via �R.

Table 1. Relative free energies of the four basins and barriers
as determined by the MCL (p � 1.2) clusterization of the
alanine-dipeptide network

Basin/barrier

Basin* 	Fi � Fi � FC7eq,kcal�mol
C7eq 0.0
�R 1.5
C7ax 4.1
�L 5.0

Direct transition† 	F‡, kcal/mol
C7eq 3 �R 5.0
C7eq 3 �L 9.5
�R 3 C7eq 3.6
�R 3 C7ax 7.5
C7ax 3 �R 4.9
C7ax 3 �L 3.7
�L 3 C7eq 4.4
�L 3 C7ax 2.8

*The relative free energy of basin i is evaluated as 	Fi � � kBT log(Wi�WC7eq).
†Activation free energies are computed as the free energy of the barrier minus
the free energy of the starting basin, e.g., 	F�L3C7ax

‡ � F�L3C7ax � F�L � �kBT
log(A�w�L3 C7ax�W�L). The free energy of the barrier is determined by count-
ing the number of direct transitions from one basin to another, and A is set
to unity (see text).
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free-energy surfaces and quantitative analysis of free-energy
basins, respectively. The results of the present study can be
summarized in four main points. First, the network representa-
tion of configuration space sheds light on the topography of
free-energy surfaces as well as the pathways between basins.
Second, one of the three cluster-detection algorithms used in this
work, which implicitly takes into account free-energy barriers,
emerges as the most appropriate to quantitatively estimate the
landscape topography of simple analytical models and the
alanine dipeptide. These results indicate that preserving energy
barrier heights sampled at equilibrium is crucial for defining
basins. Moreover, the failure of the modularity cost-function
commonly used in network cluster-detection algorithms (but
that does not take into account barrier heights) suggests that the
criteria to assess the quality of a clusterization are not a universal
property of complex networks and might depend on the type of
system under study. Third, provided a physically meaningful
clusterization of the CSN, it is possible to compute free-energy
differences for all the states of the system, activation energy
barriers, as well as configurations participating in interbasin
transitions. As a consequence, the free energy of basins and
barriers is used as an order parameter, which, by naturally
embedding the dynamics in one dimension, allows to follow the
chronological evolution of the states of the system. Fourth, it is
shown analytically, and illustrated by the alanine-dipeptide
analysis, that the broad-tailed weight distribution observed in
CSNs originates mainly from the enthalpic nature of the basins;
whereas entropic basins, which lack a predominantly populated
configuration, generate a Gaussian distribution. Finally, network
clusterization has been shown to be an effective approach to the
free-energy landscape dimensionality reduction problem. In the
future, it will be interesting to generalize this analysis tool for
applications to large biomolecules, such as structured peptides
and proteins whose landscapes are characterized not only by
enthalpic but also entropic basins.

Methods and Models
Free-Energy Landscapes from Low-Dimensional Models. A stochastic
process on an energy landscape is simulated by a Monte Carlo
procedure on a D-dimensional lattice with a distance a between
two neighbor sites. At each time step a neighbor site is chosen
randomly and the system evolves according to the Monte Carlo
rules. The trajectory consists of a chronological sequence of the
sites visited during the dynamics (snapshots). This chronological
sequence describes the dynamics at a microscopic level because
only the nearest neighbor sites can be reached at each time step.
Snapshots are taken every M steps. Sites are the nodes of the
network, and two nodes are connected if the system evolved from
one site to the next within M steps. For the systems investigated
in this work snapshots are saved every M � 5 steps. For the
multidimensional double-well the Monte Carlo is performed
on a lattice of size length a � 0.2 and for D � 5 nodes are
defined as boxes of size (3a)D. The total number of snapshots for
D � 3 and D � 5 are N � 105 and N � 3�106, respectively (see
Fig. 1 A). In the case of the Mexican-Hat model in D � 2
dimensions, a � 0.05, and a total of N � 105 snapshots were
saved (see Fig. 1B).

Free-Energy Landscapes from Atomistic MD Simulations. Five Lan-
gevin dynamics simulations with a friction coefficient of 0.15
ps�1 of the alanine dipeptide were performed at 300 K for a total
of 1 �s of simulation time. Snapshots were saved every ts � 0.02
ps (10 MD steps). Every trajectory was started from an extended
configuration of the dipeptide. MD simulations were performed
with the program CHARMM (PARAM19 force field) (36). A
mean field approximation was used to describe the main effects
of the aqueous solvent on the solute (ACE2) (37) with a
nonbonding cutoff of 12 Å.

To define the nodes and links of the CSN of the alanine
dipeptide a discretization of the space is needed. In this way,
every snapshot sampled during the simulation is assigned to a
cell of the discretized configuration space. Cells (i.e., similar
configurations) are nodes of the network and the direct
transitions between them are links. A weight w is assigned to
each node to take into account the free energy of each
conformation and is proportional to the number of snapshots
within a given cell. The weight of a link from node i to node
j corresponds to the number of transitions from site i to j visited
during the simulation. The resulting network is directed,
weighted, and can contain self-loops. A cell of the space is
defined by the dihedral angles � and �. In this discretization
scheme, the (�, �) space is discretized in n � n cells (see
Fig. 2). Further discretization schemes and robustness analysis
are presented in SI Text.

Weight Distribution: Analytical Derivation. The node weight distri-
bution is an important quantity in the understanding of complex
networks, and it has been observed to differ from the one expected
for random graphs (38, 39). In the following, it is shown that the
energy landscape [U(x)] and the weight distribution [P(w)] of the
CSN of U(x) are related by an analytical formula. The weight of a
node is defined as the number of times the configuration is visited
during the simulation. In the continuous approximation and spher-
ical coordinates Pt(w) for w � 0 is written as

Pt�w �
1
Vt
�

0

�

dr � r D�1d�
�w�r, �, t � w, [1]

where Vt is the volume of the space visited in the simulation and
D is the dimension. � is the solid angle in D-dimensional
spherical coordinates and w(r, �, t) is the weight of the node at
position (r, �) at time t. For simplicity, spherical symmetry of
the energy landscape [U(x) � U(r)] will be assumed.

For large enough t, w(r, t) is proportional to the stationary
solution w(r, t) 
 exp[(�U(r)]. Taking U(r) in the units of kBT,
U(0) � 0 and using the properties of the delta function, Eq. 1
becomes

P�w �
C
w �

i�1

n r*i D�1

�U��r*i �
, [2]

with C the appropriate normalizing factor and exp[(�U(r*i)] �
w�w(0) for all possible r*i, i � 1, . . . , n. The first important
remark is the w�1 factor in Eq. 2. This factor does not depend
on the particular shape of the energy landscape or the dimension
D. Thus, any weight distribution is expected to have a power-law
P(w) 
 w�1 multiplied by a modulating factor. In the particular
case of the quadratic well with spherical symmetry, which is often
the lowest order approximation of an energy basin, Eq. 2 reads

P�w �
C
w �ln� w�0

w � 	
D
2 �1

. [3]

It is worth noting that for the case of an entropic basin like a
square well, all the sites have the same weight and P(w) is peaked
around a single value (see Fig. 3B and SI Text for the derivation
and numerical comparisons).

Cluster-Detection Algorithms. In this work, three different net-
work clusterization approaches have been applied: the MCL
algorithm (24, 33), Potts model clustering (26), and modularity
optimization (25). The three algorithm are very different in
spirit and implementation. In the following, the algorithms will
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be shortly introduced; the interested reader will find more
detailed informations in the SI Text as well as in the papers
referenced above.

MCL is based on the behavior of random walkers on the
network. For this reason, it is very convenient to take into
account directed weighted edges and even self-loops. The
algorithm works as follows: (i) start with the transition matrix
A of the network and normalize each column of the matrix to
obtain a stochastic matrix S; (ii) compute S2; (iii) take the pth
power (p � 1) of every element of S2 and normalize each
column to one; and (iv) go back to step ii. After several
iterations MCL converges to a matrix SMCL(p) invariant under
transformations ii and iii. Only a few lines of SMCL(p) have some
nonzero entries that give the clusters as separated basins (there
is in general exactly one nonzero entry per column). Step iii
reinforces the high-probability walks at short time scale at the
expense of the low-probability ones. The parameter p tunes the
granularity of the clustering. If p is large, the effect of step iii
becomes stronger and the random walks are likely to end up
in small ‘‘basins of attraction’’ of the network, resulting in
several small clusters. On the other hand, a small p produces
larger clusters. In the limit of p � 1, only one cluster is
detected. Qualitatively, step iii plays a similar role as decreas-
ing the temperature in simulated annealing, and a small value
of p corresponds to a small rate of decrease. Yet, the similarity
between MCL and simulated annealing has to be investigated
in more detail. In all our examples, a small value of p (p � 1.2)
was used to identify the largest and most significant energy
basins.

Potts model clustering maps network communities onto the
magnetic domains in the ground state or local minima of a
modified Potts model Hamiltonian H � ��(i, j)�E Jij
�i,�j

� 	

�s�1
q ns(ns � 1)�2. E is the set of edges, �i are the individual

spins that can take q values, ns is the number of spins that have
value s, and Jij is the weight of the link between node i and j.
The parameter 	 gives the strength of the coupling between
the ferromagnetic and antiferromagnetic parts of the Hamil-
tonian.

Finally, the modularity optimization method is an agglomera-
tive hierarchical clustering method and is based on the maximi-
zation of the modularity Q � �i(eii � ai

2), where eii is the fraction
of edges between nodes of cluster i, ai � �j eji is the fraction
of edges attached to nodes of cluster i, and the sum runs over
all the clusters. By definition, Q can be at maximum equal
to 1.

Node Instabilities. The detection of node instabilities probes the
robustness of a cluster structure and reveals the presence of nodes
that play a role in more than one cluster (26, 40). The idea is to add
noise over the edges of the network and compare the clusters for
different noisy realizations. Here, a modified version of the algo-
rithm introduced in ref. 32, which takes into account link weights
and degree heterogeneity, is applied. Noise was added on each edge
with weight wij as ��ij with probability 0.5 and ��ij with probability
0.5, where �ij � wij [1 � 1��min(ki, kj)] and ki is the number of
edges connected to node i. A node is considered as unstable if it is
grouped �95% of the time to the same cluster.

We thank G. Caldarelli, S. Muff, E. Guarnera, and G. Settanni for
interesting discussions; M. Karplus and S. Krivov for critical reading
of the manuscript; and M. Seeber for the program Wordom used to
analyze the MD trajectories. The simulations were performed on the
Matterhorn cluster. This work was supported by a National Science
Foundation grant (to A.C.) and grants COSIN, DELIS, and OFES-Bern
(to D.G.).

1. Goldstein M (1969) J Chem Phys 51:3728–3739.
2. Frauenfelder H, Sligar SG, Wolynes PG (1991) Science 254:1598–1603.
3. Stillinger FH (1995) Science 267:1935–1939.
4. Du R, Pande VS, Grosberg AY, Tanaka T, Shakhnovich ES (1998) J Chem Phys

108:334–350.
5. Pande VS, Grosberg AY, Tanaka T, Rokhsar DS (1998) Curr Opin Struct Biol

8:68–79.
6. Bolhuis PG, Dellago C, Chandler D (2000) Proc Natl Acad Sci USA 97:5877–

5882.
7. Ma A, Dinner AR (2005) J Phys Chem B 109:6769–6779.
8. Best RB, Hummer G (2005) Proc Natl Acad Sci USA 102:6732–6737.
9. Krivov SV, Karplus M (2006) J Phys Chem B 110:12689–12698.

10. Das P, Moll M, Stamati H, Kavraki LE, Clementi C (2006) Proc Natl Acad Sci
USA 103:9885–9890.

11. Caflisch A (2006) Curr Opin Struct Biol 16:71–78.
12. Krivov SV, Karplus M (2002) J Chem Phys 117:10894–10903.
13. Krivov SV, Karplus M (2004) Proc Natl Acad Sci USA 101:14766–14770.
14. Albert R, Barabási A-L (2002) Rev Modern Phys 74:47–97.
15. Newman MEJ (2003) Siam Rev 45:167–256.
16. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Phys Rep

424:175–308.
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