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In melanoma, the RAS/RAF/MEK/ERK signalling pathway is an area of great interest, because it regulates tumor cell
proliferation and survival. A varying mutation rate has been reported for B-RAF and N-RAS, which has been largely attributed
to the differential source of tumor DNA analyzed, e.g., fixed tumor tissues or in vitro propagated melanoma cells. Notably, this
variation also interfered with interpreting the impact of these mutations on the clinical course of the disease. Consequently,
we investigated the mutational profile of B-RAF and N-RAS in biopsies and corresponding cell lines from metastatic tumor
lesions of 109 melanoma patients (AJCC stage III/IV), and its respective impact on survival. 97 tissue biopsies and 105 biopsy-
derived cell lines were screened for B-RAF and N-RAS mutations by PCR single strand conformation polymorphism and DNA
sequencing. Mutations were correlated with patient survival data obtained within a median follow-up time of 31 months. B-
RAF mutations were detected in 55% tissues and 51% cell lines, N-RAS mutations in 23% tissues and 25% cell lines,
respectively. There was strong concordance between the mutational status of tissues and corresponding cell lines, showing
a differing status for B-RAF in only 5% and N-RAS in only 6%, respectively. Patients with tumors carrying mutated B-RAF
showed an impaired median survival (8.0 versus 11.8 months, p = 0.055, tissues; 7.1 versus 9.3 months, p = 0.068, cell lines),
whereas patients with N-RAS-mutated tumors presented with a favorable prognosis (median survival 12.5 versus 7.9 months,
p = 0.084, tissues; 15.4 versus 6.8 months, p = 0.0008, cell lines), each in comparison with wildtype gene status. Multivariate
analysis qualified N-RAS (p = 0.006) but not B-RAF mutation status as an independent prognostic factor of overall survival. Our
findings demonstrate that B-RAF and N-RAS mutations are well preserved during short term in vitro propagation and, most
importantly, differentially impact the outcome of melanoma patients.
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INTRODUCTION
Malignant melanoma is associated with genetic heterogeneity and

a complex etiology. In contrast to other skin cancers, melanoma

affects a younger population and has a strong tendency to

metastasize with a consequently extremely poor overall survival. In

the majority of melanomas, the RAS/RAF/MEK/ERK signalling

pathway is constitutively activated either due to oncogenic

mutations in B-RAF and N-RAS genes or through autocrine

growth factor stimulation [1]. RAS proteins are membrane-bound

small G proteins, whereas RAF, MEK, and ERK are cytosolic

protein kinases that form a tiered protein kinase cascade

downstream of RAS. Signalling is initiated, when active RAS

recruits RAF to the plasma membrane for activation through

a complex process requiring lipid and protein binding, conforma-

tional changes, and regulatory phosphorylation and dephosphor-

ylation events. There are three RAF proteins in mammals, A-

RAF, B-RAF, and C-RAF, which can all activate MEK, but

clearly perform distinct functions in vivo as shown by the

phenotypic differences between A-RAF, B-RAF, and C-RAF

knock-out mice.

It has long been known that activating N-RAS codon 61

mutations occur in up to 30% of all cutaneous melanoma cases. In

2002, Davies et al. reported that B-RAF mutations occur at a high

frequency in melanoma; mutations were found in 20 of 34

melanoma cell lines (59%), 12 of 15 short-term cultures (80%), and

six of nine melanoma tumours (67%) [2]. Mutations in the B-RAF

gene are mainly localized in the kinase activation domain with the

majority involving the substitution of valine by acidic or basic

residues at codon 600 [2,3]. This mutation results in a strong

activation of B-RAF, constitutively stimulating the MEK-ERK

signaling pathway. In contrast, A-RAF and C-RAF have not been

found to be mutated because their regulation is fundamentally

different from that of B-RAF. The report by Davies et al.

stimulated a large research effort, which confirmed the originally

reported high frequency of B-RAF mutations in melanoma.

However, this frequency ranges between 30% to 70%, a variation,

that has been largely attributed to the differential source of the

analysed tumor DNA, e.g. fixed tumor tissues or in vitro

propagated melanoma cells. Notably, the variation also interfered
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with the conclusive interpretation of the impact of these mutations

on the clinical course of the disease.

The observation that mutations in B-RAF and N-RAS are

mutually exclusive lead to the hypothesis, that the activation of

either B-RAF or N-RAS results in a similar cellular phenotype

[3,4,5,6,7]. However, recent reports about the association of B-

RAF and/or N-RAS mutations with the prognosis of melanoma

patients revealed contradictory results [5,7,8,9,10], requiring

clarification by further studies, particularly given the varying

frequencies of the reported B-RAF and N-RAS mutations. The

present study is the first to investigate the mutational profile of B-

RAF and N-RAS in both, tumor tissue biopsies and correspond-

ing, biopsy-derived cell lines from metastatic melanoma patients,

in correlation with a putative impact on survival. The analysis

included 97 tumor tissues and 105 cell lines from 109 melanoma

patients with a median follow-up time of 31 months. The study is

reported following the newly established REMARK guidelines

[11].

METHODS

Patients
Patients were enrolled in accordance with the following eligibility

criteria: histologically confirmed melanoma of the skin, mucosa, or

unknown primary; stage III or IV disease according to AJCC [12];

and at least one metastatic lesion accessible for a bioptic

procedure. Patient inclusion was allowed with or without current

systemic treatment. Patients with primary ocular melanomas were

excluded. After a patient’s written informed consent, one biopsy

was obtained from either a solid metastatic lesions or a malignant

effusion. Biopsies from solid lesions were subsequently divided into

three parts: one was immediately frozen down in liquid nitrogen

until further analysis, the second was used for histopathological

confirmation of melanoma, and the third was used for establishing

a permanently growing melanoma cell line. Patient charts were

reviewed for characteristics of the primary tumor (site and

histological type of primary). The patient’s age and disease stage

at the time of biopsy were recorded. Follow-up examinations were

performed at least once every three months. All tumor samples

and clinical data were collected with Institutional Review Board

approval and patient’s informed consent.

Tissues and cell lines
The frozen solid tumor tissue samples were used for DNA isolation

by RNase and proteinase K digestion and subsequent phenol-

chloroform extraction [13]. The biopsy-derived cell lines were

maintained in RPMI 1640 (Life Technologies, Grand Island, NY)

supplemented with 10% fetal calf serum (FCS; Life Technologies),

5 mM L-glutamine, 100 U/ml penicillin and 100 mg/ml strepto-

mycin at 37uC in a humidified 5% CO2 atmosphere. They were

used for analysis not before six to eight culture passages. After

growing until 70 to 80% confluence, the cells were gently detached

using 0.05% ethylenediaminetetraacetic acid (EDTA)/phosphate-

buffered saline (PBS), washed twice, resuspended in 10% FCS/

RPMI and frozen down in liquid nitrogen. DNA was extracted

using the Puregene DNA purification kit (Gentra Systems,

Minneapolis, MN).

Mutation detection by single strand conformation

polymorphism (SSCP)
Fluorescent capillary SSCP technique was used to detect

mutations in exon 15 of the B-RAF gene and exon 2 of the N-

RAS gene. Briefly, the exons were amplified by PCR using

primers labeled with 6-FAM and HEX fluorescent dye (Applied

Biosystems, Foster City, CA) under conditions described earlier

[6,10]. The electrophoresis of the amplified products was carried

out under non-denaturing conditions in a 16-array capillary

sequencer (ABI3100; Applied Biosystems). Mutations were

detected by differential migration patterns compared to fragments

that contained wild type sequences. The analysis of the results was

carried out using the GeneScan software (Applied Biosystems). In

exon 11 of the B-RAF gene and in exon 1 of the N-RAS gene

mutations were screened by ‘radio-active’ SSCP technique. The

DNA fragments were amplified by PCR in presence of [a-32P]

dCTP and the amplified products were electrophoresed on non-

denaturing MDE gels under different conditions as described

earlier [6,10].

Direct DNA sequencing
Direct DNA sequencing was used to identify and confirm

mutations detected in the B-RAF and N-RAS genes by SSCP.

For sequencing, PCR products were incubated with ExoSapIT

(USB Amersham, Uppsala, Sweden) at 37uC for 30 min followed

by heating to 85uC for 15 min. The sequencing reactions were

carried out using the BigDye Terminator Cyle sequencing kit

(Applied Biosystems) in a 10 ml volume containing purified PCR

product and a sequencing primer. The temperature conditions set

for sequencing reactions were 96oC for 2 minutes followed by 27

cycles at 96uC for 30 seconds, 54uC for 10 seconds and 60uC for

4 minutes. The reaction products were precipitated with 2-

propanol, washed with 75% ethanol, resuspended in 25 ml water

and loaded onto ABI prism 3100 Genetic Analyzer (Applied

Biosystems). Both, forward and reverse strands were sequenced

separately. Primary sequencing data were analyzed using a se-

Table 1. Patient characteristics.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Patients enrolled 109 (100.0%)

Gender male 59 (54.1%)

female 50 (45.9%)

Age at biopsy (years) median (range) 56 (14–87)

Stage at biopsy (AJCC) III 27 (24.8%)

IV 82 (75.2%)

Site of primary skin 84 (77.1%)

mucosa 2 (1.8%)

occult 14 (12.8%)

n.a. 9 (8.3%)

Type of primary NM 30 (27.6%)

SSM 20 (18.3%)

ALM 7 (6.4%)

LMM 2 (1.8%)

mucosa 2 (1.8%)

amelanotic 2 (1.8%)

occult 14 (12.9%)

n.a. 32 (29.4%)

Patients were enrolled in accordance with the following eligibility criteria:
histologically confirmed melanoma of the skin, mucosa, or unknown primary;
stage III or IV disease; and at least one metastatic lesion accessible for a bioptic
procedure. AJCC, American Joint Committee on Cancer; NM, nodular
melanoma; SSM, superficial spreading melanoma; ALM, acrolentiginous
melanoma; LMM, lentigo maligna melanoma; occult, melanoma of unknown
primary; n.a., not available.
doi:10.1371/journal.pone.0000236.t001..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.

B-RAF and N-RAS in Melanoma

PLoS ONE | www.plosone.org 2 February 2007 | Issue 2 | e236



quence analysis software (Sequence Analysis 3.7; Applied

Biosystems) and comparative analysis was done with the online

MultAlin software (http://www.prodes.toulouse.inra.fr/multalin/

multalin.html).

Statistics
Survival curves and median survival times were, if not otherwise

indicated, calculated from the date of biopsy until either death

from melanoma or last patient contact, respectively, and are

graphically presented using the Kaplan-Meier method for

censored failure time data. The log rank test was used for

comparing survival probabilities. The multivariate proportional

hazards regression of Cox was used to assess the impact of multiple

prognostic factors on survival. The factors tested were mutational

status of B-RAF and N-RAS, gender, disease stage at biopsy, and

site of primary tumor. Statistical analyses were performed using

the statistical packages ADAM (Central Unit for Biostatistics,

German Cancer Research Center Heidelberg, Germany) and SAS

8.1 (SAS Institute, Cary, NC). Differences with a p value ,0.05

were considered statistically significant.

RESULTS
109 metastatic melanoma patients were enrolled into the study

(Table 1); the patient flow is presented in Figure 1. The median

follow-up time was 31 months. Biopsies were obtained from 102

solid metastatic lesions and seven malignant effusions. The solid

lesions included 48% cutaneous or subcutaneous metastases, 45%

lymph node metastases, and 7% organ metastases (brain, liver,

lung, small bowel, urinary bladder and kidney). Routine

histopathology confirmed metastases from melanoma in all cases.

The malignant effusions originated from ascites (five patients) and

pleura (two patients). Permanently growing melanoma cell lines

could be established from 98 out of 102 solid lesions and from all

seven effusions. DNA of analysis grade could be isolated from 97

out of 102 tissue biopsies and from all 105 biopsy-derived cell lines,

and screened for mutations in exons 11 and 15 of the B-RAF gene

and exons 1 and 2 of the N-RAS gene. Detailed patient

characteristics as well as mutational profiles of tumor tissues and

cell lines are presented in Table 2. Representative data from

SSCP analysis and DNA sequencing are shown in Figure 2.

Mutations in B-RAF and N-RAS genes
Screening of exons 11 and 15 of the B-RAF gene resulted in the

detection of mutations in 53/97 (54.6%) tissue biopsies and 53/

105 (50.5%) biopsy-derived cell lines (Tables 2 and 3). The most

common mutation in the B-RAF gene was T1799A detected in

46/105 (43.7%) cell lines and 47/97 (48.5%) tissue biopsies. This

mutation causes a change from valine to glutamic acid at codon

600 in exon 15 (V600E). Five cell lines carried the GT1798-99AA

mutation at codon 600 (V600K). The only non-600 codon

mutation in exon 15 was G1780A (D594N), found in one single

cell line (Ma-Mel-30). All of the B-RAF mutations in exon 15 were

Figure 1. Schematic presentation of the study flow.
doi:10.1371/journal.pone.0000236.g001
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concordant in cell lines and corresponding tissues except in five

cases: The cell line UKRV-Mel-29 but not the corresponding

tissue sample carried the V600K mutation, whereas the corre-

sponding tissue biopsies but not the cell lines UKRV-Mel-11, Ma-

Mel-104, Ma-Mel-113 and Ma-Mel-121a carried the V600E

mutation. In exon 11 of the B-RAF gene we detected two

mutations, G469R and G469V. The first was found in the cell line

Ma-Mel-48a and its corresponding tissue, whereas the latter was

present in a tissue biopsy with no corresponding cell line available.

Mutations in the N-RAS gene mostly occurred at codon 61 of

exon 2 and were present in 19/97 (19.6%) tissue biopsies and 22/

105 (21.0%) biopsy-derived cell lines (Tables 2 and 3). The cell

line Ma-Mel-53 and its corresponding tissue in addition to the

codon 61 mutation carried a second N-RAS mutation at codon 68

(R68T). Four cell lines (Ma-Mel-31, Ma-Mel-37b, Ma-Mel-79b

and Ma-Mel-53) revealed mutations in exon 2 (Q61R, Q61L,

Q61K and R68T, respectively) that could not be detected in the

corresponding tissue biopsies. One mutation (Q61R) detected in

a tumor tissue was not present in the corresponding cell line Ma-

Mel-02. Mutations in exon 1 at codon 12 and 13 of the N-RAS

gene were detected in four cell lines and three corresponding tissue

samples, respectively. The mutation G12D in the cell line Ma-

Mel-27 could not be detected in the matching tissue biopsy.

Taken together, 73/97 (75.3%) tumor tissue biopsies and 77/

105 (73.3%) biopsy-derived cell lines carried mutually exclusive

mutations in B-RAF or N-RAS (Table 3). Only one cell line (Ma-
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Table 3. Overview on B-RAF and N-RAS mutation status.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tissues Cell lines
97 (100.0%) 105 (100.0%)

B-RAF mutation 53 (54.6%) 53 (50.5%)

Exon 11 2 (2.0%) 1 (1.0%)

G469R 1 (1.0%) 1 (1.0%)

G469V 1 (1.0%) 0 (0.0%)

Exon 15 51 (52.6%) 52 (49.5%)

D594N 1 (1.0%) 1 (1.0%)

V600E 47 (48.5%) 46 (43.7%)

V600K 3 (3.1%) 5 (4.8%)

N-RAS mutation 22 (22.7%) 26 (24.8%)

Exon 1 3 (3.1%) 4 (3.8%)

G12D 1 (1.0%) 2 (1.8%)

G13D 1 (1.0%) 1 (1.0%)

G13R 1 (1.0%) 1 (1.0%)

Exon 2 19 (19.6%) 22 (21.0%)

Q61R 11 (11.3%) 12 (11.4%)

Q61L 1 (.0%) 2 (1.8%)

Q61K 6 (6.3%) 8 (7.8%)

Q61H 1 (1.0%) 0 (0.0%)

R68T 0 (.0%) 1* (1.0%)

B-RAF or N-RAS mutation 73 (75.3%) 77 (73.3%)

B-RAF and N-RAS mutation 1 (1.0%) 1 (1.0%)

No B-RAF or N-RAS mutation 23 (23.7%) 27 (25.7%)

Tumor tissue biopsies and biopsy-derived cell lines from 109 metastatic
melanoma patients were analysed for B-RAF and N-RAS mutations. For details
see Figure 1 and Table 2. *This cell line additionally carries the N-RAS Q61K
mutation.
doi:10.1371/journal.pone.0000236.t003..
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Mel-30) and corresponding tissue carried mutations in both, B-

RAF (D594N) and N-RAS (G13D) genes.

Differential impact of B-RAF and N-RAS mutations

on survival
During a median follow-up time of 31.0 months, 80 (73.4%) out of

109 patients died from melanoma. Patients whose tumor tissue

biopsies revealed a mutation in the B-RAF gene showed

a decreased probability of overall survival from date of biopsy

compared to patients without a B-RAF mutation (median 8.0

versus 11.8 months, p = 0.055; Figure 3A). This correlation of

borderline significance could similarly be detected in patients,

from whose tumor biopsies permanently growing cell lines could

be established (B-RAF mutation compared to wildtype, median

overall survival 7.1 versus 9.3 months, p = 0.068; Figure 3D).

Patients carrying an N-RAS mutation in their tumor tissue

biopsies revealed an improved survival compared to patients

without an N-RAS mutation (median 12.5 versus 7.9 months,

p = 0.084; Figure 3B). This association could be detected to

a stronger extent in patients whose biopsy-derived tumor cell lines

carried an N-RAS mutation compared to those patients without

such mutation (median overall survival 15.4 versus 6.8 months,

p = 0.0008; Figure 3E). Looking at a subgroup of 82 patients who

were in stage IV at the time of tumor biopsy, again patients

harbouring a B-RAF mutation showed a reduced overall survival

compared to patients with wildtype B-RAF (p = 0.043, tissues,

Figure 4A; p = 0.091, cell lines, Figure 4D), whereas patients

holding an N-RAS mutation presented a favorable survival

compared to patients without N-RAS mutation (p = 0.052, tissues,

Figure 4B; p = 0.001, cell lines, Figure 4E).

With regard to overall survival measured from first diagnosis of

melanoma, no significant differences were seen by B-RAF or N-

RAS mutation status, respectively, neither for patients whose

mutation status was determined from tissue specimens, nor for

those, whose mutation status was measured in cell lines (data not

shown). Calculating overall survival starting with the first diagnosis

of metastasis, patients carrying a B-RAF mutation revealed a trend

to a decreased survival compared to patients with wildtype B-RAF

(p = 0.052, tissues; p = 0.072, cell lines), whereas patients carrying

Figure 2. Detection and identification of B-RAF and N-RAS mutations in melanoma cell lines and corresponding tissues by fluorescent capillary
electrophoresis SSCP and DNA sequencing. Migration patterns under non-denaturing conditions of single stranded fragments of exon 15 of the B-
RAF gene with a T1799A mutation at codon 600 in the cell line Ma-Mel-36 (A) and the corresponding tumor tissue (B). Migration patterns for the B-
RAF exon 15 fragments with wild type sequences in the cell line Ma-Mel-37a (C) and the corresponding tumor tissue (D). Panels (E) to (H) show
sequence analyses of the cell lines and tumor tissues given in (A) to (D). Fluorescent capillary electrophoresis patterns for the N-RAS exon 2 sequence
with a CAA.CGA mutation at codon 61 in the cell line Ma-Mel-05 (I) and the corresponding tumor tissue (J). Migration patterns for the N-RAS exon 2
fragments with wild-type sequences in the cell line Ma-Mel-59 (K) and the corresponding tumor tissue (L). Panels (M) to (P) show the confirmation of
the mutations in the cell lines and tissues shown in (I) to (L) by sequence analysis.
doi:10.1371/journal.pone.0000236.g002
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Figure 3. Kaplan-Meier survival estimation for the whole patient population by mutational status. Curves showing the overall survival of 109
metastatic melanoma patients starting from the time point of tumor biopsy. Survival probabilities were compared by the mutational status of B-RAF
in tumor tissue biopsies (n = 97) (A) and biopsy-derived tumor cell lines (n = 105) (D), as well as N-RAS in tumor tissue biopsies (n = 97) (B) and biopsy-
derived tumor cell lines (n = 105) (E). (C) and (F) differentiate patients harbouring B-RAF mutations (n = 52, tissues; n = 52, cell lines), patients
harbouring N-RAS mutations (n = 21, tissues; n = 25; cell lines), and patients without mutations in both genes (n = 24, tissues; n = 27, cell lines).
Statistical differences between groups were calculated using the log-rank test. Vertical bars indicate censored observations.
doi:10.1371/journal.pone.0000236.g003

B-RAF and N-RAS in Melanoma

PLoS ONE | www.plosone.org 9 February 2007 | Issue 2 | e236



Figure 4. Kaplan-Meier survival estimation for stage IV patients only by mutational status. Curves showing the overall survival starting with the
time point of tumor biopsy in 82 metastatic melanoma patients who were in stage IV disease at that time. Survival probabilities were compared by
the mutational status of B-RAF in tumor tissue biopsies (n = 70) (A) and biopsy-derived tumor cell lines (n = 80) (D), as well as N-RAS in tumor tissue
biopsies (n = 70) (B) and biopsy-derived tumor cell lines (n = 80) (E). (C) and (F) differentiate patients harbouring B-RAF mutations (n = 43, tissues;
n = 45, cell lines), patients harbouring N-RAS mutations (n = 12, tissues; n = 15; cell lines), and patients without mutations in both genes (n = 15,
tissues; n = 20, cell lines). Statistical differences between groups were calculated using the log-rank test. Vertical bars indicate censored observations.
doi:10.1371/journal.pone.0000236.g004

B-RAF and N-RAS in Melanoma

PLoS ONE | www.plosone.org 10 February 2007 | Issue 2 | e236



an N-RAS mutation showed a trend towards a favorable survival

compared to patients without N-RAS mutation (p = 0.18, tissues;

p = 0.12, cell lines).

A multivariate analysis using the proportional hazards model of

Cox revealed the disease stage at biopsy as the only factor of

independent prognostic impact on overall survival from date of

biopsy with regard to tissue analysis (p = 0.03; Table 4). B-RAF

and N-RAS mutation status both showed a p = 0.19). Site of

primary (p = 0.27), and gender (p = 0.79) did not show major

influence on survival. The analysis of biopsy-derived tumor cell

lines revealed the N-RAS mutation status as the strongest

prognostic factor (p = 0.006), followed by disease stage at biopsy

(p = 0.02), site of primary (p = 0.14), and B-RAF mutation status

(p = 0.29). Similar data were obtained analysing the subgroup of

82 stage IV patients (Table 4). Additional analyses were

performed dividing the patients into three groups, (i) patients

harbouring B-RAF mutations, (ii) patients harbouring N-RAS

mutations, and (iii) patients without mutations in both genes.

These analyses revealed, that with regard to the entire patient

population (n = 109), patients harbouring B-RAF mutations show

a similar survival as patients without a mutation in B-RAF or N-

RAS, whereas patients carrying an N-RAS mutation present with

a favorable survival (p = 0.11, tissues, Figure 3C; p = 0.004, cell

lines, Figure 3F). This finding could be similarly observed when

looking at the subgroup of 82 patients, whose tumor biopsy was

obtained during stage IV disease (p = 0.087, tissues, Figure 4C;

p = 0.003, cell lines, Figure 4F).

DISCUSSION
The strong concordance between the mutational status of tissues

and corresponding cell lines, showing a differing status for B-RAF

in only 5% and N-RAS in only 6%, respectively, strongly argues

Table 4. Multivariate survival analysis.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

all patients stage IV patients

Variable Hazard ratio 95% CI P Hazard ratio 95% CI P

Tissue biopsies

gender

male 1 0.4 to 1.9 0.79 1 0.5 to 1.7 0.87

female 0.9 1.0

site of primary

skin 1 0.5 to 2.2 0.27 1 0.4 to 2.4 0.99

other 1.1 1.0

stage at biopsy

III 1 1.3 to 4.9 0.03 n.a.

IV 2.0

B-RAF

wt 1 0.8 to 3.1 0.19 1 0.6 to 3.0 0.41

mutation 1.4 1.4

N-RAS

wt 1 0.3 to 1.1 0.19 1 0.2 to 1.7 0.34

mutation 0.6 0.6

Biopsy-derived cell lines

gender

male 1 0.4 to 2.0 0.75 1 0.6 to 1.8 0.91

female 0.9 1.0

site of primary

skin 1 0.6 to 2.5 0.14 1 0.7 to 2.9 0.30

other 1.2 1.4

stage at biopsy

III 1 1.4 to 4.2 0.02 n.a.

IV 2.3

B-RAF

wt 1 0.8 to 3.0 0.29 1 0.7 to 3.3 0.36

mutation 1.3 1.4

N-RAS

wt 1 0.1 to 0.8 0.006 1 0.1 to 0.6 0.002

mutation 0.4 0.3

The prognostic impact of multiple variables was analysed using the multivariate proportional hazards regression of Cox. Overall survival was calculated beginning with
the date of tumor biopsy. wt, wildtype; CI, confidence interval; n.a., not applicable.
doi:10.1371/journal.pone.0000236.t004..
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against the notion that in vitro short term propagation biases the

frequency of mutational events in genes encoding the MAPK

signaling pathway. The finding that these mutations are preserved

throughout in vitro tumor propagation suggests, that they may

influence tumor maintenance. In support of this idea, studies in

a mouse model system have shown, that activated RAS is required

for melanoma maintenance [14]. Moreover, our findings validate

earlier reports using short term propagated melanoma cell culture

for genotypic analysis.

Until recently, it has been anticipated that B-RAF and N-RAS

mutations result in an activation of the RAS/RAF/MEK/ERK

signalling pathway, thus in a comparable cellular phenotype which

would similarly influence the clinical outcome of melanoma

patients. Consequently, the majority of previous reports consid-

ered patients with mutations in B-RAF or N-RAS as one

prognostic group. In this regard, Houben et al. showed mutations

in B-RAF or N-RAS to be associated with an impaired overall

survival in patients with metastatic melanoma [5]. Similarly,

Daniotti et al. studied patient-derived melanoma cell lines and

found a correlation of mutations in either B-RAF or N-RAS with

poor overall survival [8]. However, Dumaz et al. demonstrated

that cAMP suppresses C-RAF activity in melanocytes, and that

this suppression is essential to decrease the oncogenic potential of

C-RAF in these cells [15]. As a result, B-RAF alone is responsible

for signaling to MEK. When N-RAS is mutated, though, cells

switch their signalling from B-RAF to C-RAF, i.e. a fundamental

switch in RAF isoform usage occurs when RAS is mutated in

melanoma. Indeed, in a recent study comparing gene expression

profiles of melanoma cell lines with either mutations in B-RAF or

N-RAS, we found twice as many upregulated genes in cell lines

carrying N-RAS mutations than in those carrying mutations in B-

RAF, with an overlap of only 16% [16]. Pathway analysis of the

affected genes suggested, that the major B-RAF mutation V600E

mainly affects the ERK signaling pathway, whereas mutations in

N-RAS cause perturbation of the expression in genes involved in

the PI3K/AKT apoptotic pathway.

These observations should have important implications for the

analysis of the prognostic relevance of B-RAF and N-RAS

mutations as well as the development of therapeutic strategies to

treat this life-threatening disease [17]. Many of the newly

developed targeted therapeutics are multikinase inhibitors, but

nevertheless exert affinities of different strength to different

kinases. Sorafenib (BAY 43-9006), a multikinase inhibitor recently

tested in metastatic melanoma with significant efficacy, has a much

stronger affinity to RAF compared with that to RAS, whereas

farnesyl transferase inhibitors interfere with the translocation of

RAS but not RAF to the cell membrane. With regard to this issue,

we distinguished between B-RAF and N-RAS mutations in regard

to their influence on survival of metastatic melanoma patients.

Surprisingly, this analysis revealed that patients carrying B-RAF

mutations had an impaired survival, whereas patients with N-RAS

mutations were characterized by a favorable prognosis, each in

comparison with the wildtype gene status. Moreover, multivariate

data analysis showed that N-RAS but not B-RAF mutation status

was an independent prognostic factor.

The mechanisms how N-RAS mutations contribute to an

improved survival of melanoma is not yet fully understood.

However, it could be speculated to be related to the differences in

the downstream effectors between RAS and RAF. As mentioned

above, it has been presumed until recently, that the primary

function of RAS was simply to facilitate RAF activation. However,

the discovery of other proteins that are effectors of RAS function

suggested, that oncogenic activities of RAS are mediated by both

RAF-dependent and RAF-independent signalling. Notably, fur-

ther complexity arose with the identification of RAS effectors (e.g.

RASSF1-2 or NORE1) with putative tumor suppressor, rather

than oncogenic functions [18]. Our previous analysis of gene

expression profiles of melanoma cell lines with either mutations in

B-RAF or N-RAS revealed substantial differences including

expression of tumor suppressor genes and oncogenes [16]. In this

respect, it is important to note, that Demunter et al. described an

N-RAS mutation at codon 18 in melanoma tissues, that was

associated with a favorable disease outcome [19]. However, this

particular mutation was not detected in the tumor material

analyzed in our present study. Nevertheless, the association of

oncogenic mutations with a favorable prognosis is not without

a precedent. In bladder cancer, FGFR3 mutations have been

associated with a prolonged survival and tumors carrying these

mutations constitute a favorable disease category [20]. A

completely different explanation may rely on the different

immunogenicity of mutated B-RAF and N-RAS or the respective

induced effector molecules, as it has been recently suggested for

the seemingly paradoxical association of a bcl-2 over-expression

with an improved prognosis in cancer patients [21].

The negative impact of B-RAF mutations on survival was

slightly more apparent in the analysis of tissues than in the analysis

of cell lines. In contrast, N-RAS mutations were associated with

a favorable prognosis, though statistical significance was reached

only in results from cell lines. One of the possible reasons might be

that we did not succeed in establishing a cell line from every tissue

biopsy, resulting in an unintended selection bias, which might favor

the establishment of cell lines carrying N-RAS mutations. This is

supported by our observation that in five cases mutations in the N-

RAS gene were present in tumor cell lines but not in the

corresponding tissue samples. Another unbalanced parameter was

based on the inclusion of malignant effusions, from which only cell

lines but no corresponding tissues could be derived. This fact might

have created a bias between the patient populations from whom

tumor cell lines and/or tissues could be analysed, which is of

particular relevance because melanoma patients presenting

malignant effusions are known to show an extremely poor

prognosis. Our study population included seven cell lines derived

from malignant effusions, all of which were negative for N-RAS

mutations. This observation might explain the differences seen

between N-RAS mutated and wildtype cell lines towards prognosis.

Taken together, we demonstrate that the mutational status of B-

RAF and N-RAS are well preserved during short term in vitro

propagation, and, most importantly, that B-RAF and N-RAS

mutations differentially impact the outcome of melanoma patients.

These findings should be considered in conjunction with

therapeutic strategies under current investigation, using B-RAF

and N-RAS as molecular targets [22], e.g. considering the

observation that inhibitors of N-RAS like farnesyltransferase

inhibitors might not be effective in melanoma therapy [23].

Future clinical trials in this field should be accompanied by

a focused molecular workup of patient material in order to provide

further insights into the impact of mutational profiles on the

prognosis and therapy response of melanoma patients.
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