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Regulation of gene expression via specific cis-regulatory promoter elements has evolved in cellular organisms as a
major adaptive mechanism to respond to environmental change. Assuming a simple model of transcriptional
regulation, genes that are differentially expressed in response to a large number of different external stimuli should
harbor more distinct regulatory elements in their upstream regions than do genes that only respond to few
environmental challenges. We tested this hypothesis in Arabidopsis thaliana using the compendium of gene expression
profiling data available in AtGenExpress and known cis-element motifs mapped to upstream gene promoter regions
and studied the relation of the observed breadth of differential gene expression response with several fundamental
genome architectural properties. We observed highly significant positive correlations between the density of cis-
elements in upstream regions and the number of conditions in which a gene was differentially regulated. The
correlation was most pronounced in regions immediately upstream of the transcription start sites. Multistimuli
response genes were observed to be associated with significantly longer upstream intergenic regions, retain more
paralogs in the Arabidopsis genome, are shorter, have fewer introns, and are more likely to contain TATA-box motifs in
their promoters. In abiotic stress time series data, multistimuli response genes were found to be overrepresented
among early-responding genes. Genes involved in the regulation of transcription, stress response, and signaling
processes were observed to possess the greatest regulatory capacity. Our results suggest that greater gene expression
regulatory complexity appears to be encoded by an increased density of cis-regulatory elements and provide further
evidence for an evolutionary adaptation of the regulatory code at the genomic layout level. Larger intergenic spaces
preceding multistimuli response genes may have evolved to allow greater regulatory gene expression potential.
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Introduction broader response spectrum may have evolved via an

increased density of regulatory motifs or via an enlarged size

The regulation of gene expression has evolved in cellular
organisms as a major adaptive mechanism to respond to
environmental changes [1-5]. How the apparent diversity of
responses is encoded in an organism’s genome is a central
question in understanding transcriptional regulation induced
by different environmental and extracellular conditions [6-
10]. The induction or repression of particular genes in
response to specific environmental challenges is primarily
controlled by the recognition and binding of transcriptional
regulator proteins (transcription factors) to cis-regulatory
elements constituted by short DNA sequence motif sites
located in the upstream regions of genes [11-13]. Under the
simplest scenario of transcriptional regulation, distinct
external challenges are matched by specific cognate regu-
latory sites in upstream regulatory regions of genes that have
evolved to respond to the particular perturbation. Genes that
are differentially expressed in response to a large number of
different external stimuli (multistimuli response genes) are
therefore expected to contain more distinct cis-regulatory
elements in their upstream regions than are genes that
respond to only few environmental cues. There are two
plausible strategies of how evolution may have shaped the
noncoding, regulatory segments of genomes to encode a
greater capacity of downstream genes to respond to a wider
range of different stimuli by differential gene expression. A
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of regulatory intergenic regions to accommodate more
elements (or both). In analyzing expression patterns of
Caenorhabibditis elegans and Drosophila melanogaster genes in
different developmental and tissue differentiation stages,
Nelson and coworkers [10] observed that indeed there exists a
significant positive correlation between the complexity of a
gene’s expression, that is, to be expressed in a number of
different tissues and developmental stages, and the size of its
flanking noncoding, intergenic sequence, suggesting that
regulatory requirements may have played a significant role
in shaping the architecture of genomes. The association of
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Author Summary

The induction or repression of specific genes has evolved in living
organisms as a mechanism to respond to environmental changes. At
the molecular level, this process is mediated via molecular switches,
so-called regulatory elements, generally located in the genomic
region adjacent to the gene they control, the gene promoter. Upon
environmental change, specific proteins bind to such regulatory
elements, thereby turning on or off the associated genes. As this
molecular response is often specific to the external signal, genes
that respond to a large number of different external stimuli should
harbor more distinct regulatory elements in their promoter regions
than should genes responding only to few environmental chal-
lenges. In analyzing data for the plant Arabidopsis thaliana, we
observed that indeed an increased number of regulatory elements is
associated with a broader range of responses. Several other genome
structural properties, such as gene size, the occurrence of similar
genes in the Arabidopsis genome, and the distance between genes,
were also observed to be correlated with a broader breadth of
response. The results suggest that greater regulatory complexity
appears encoded by an increased density of regulatory elements
and provide further evidence for an evolutionary adaptation of the
regulatory code at the genomic architectural level.

promoters harboring multiple different regulatory sites with
differential responses of their downstream genes to varied
growth conditions has also been conceptualized by Harbison
and coworkers using ChIP-chip yeast data [8]. They distin-
guished four types of motif arrangements in promoters:
single regulators—associated with genes of common func-
tions, repetitive motifs—allowing graded transcriptional
responses, multiple regulators—allowing responses in diverse
conditions, and co-occurring regulators—for physically in-
teracting regulators.

In this study, we test and quantify the strength of the
association of the presence of multiple different regulatory
motifs in promoters with the breadth of differential gene
expression response to external stimuli in Arabidopsis thaliana.
For this purpose we use the available compendium of gene
expression profiling data in the public AtGenExpress
Arabidopsis thaliana gene expression repository (http:/lwww.
arabidopsis.orglinfolexpression/ATGenExpress.jsp) alongside
previously characterized cis-element motifs mapped to up-
stream gene regions. Arabidopsis is an ideal model system for
the investigation of the regulatory code in higher eukaryotic
organisms due to its complete genome sequence [14], the
availability of public domain resources of known cis-elements
in upstream gene regions such as Athena (http://www.
bioinformatics2.wsu.edu/cgi-bin/Athenalcgi/home.pl) [15],
and genome-wide expression profiling data for a large and
diverse collection of treatment-control experiments. These
experiments encompass a wide range of abiotic and biotic
treatments, the application of plant hormones and other
chemical treatments performed, and were designed to enable
comparative studies by using the same technology platform
and reference conditions. We define the property of genes to
be differentially regulated in response to many or few
conditions as their “breadth of response.” It is this quantity
and its relation to gene regulatory motifs and other genome
structural properties that form the main focus of this study.
Rather than internal gene expression regulation during tissue
differentiation and organism development for sets of genes
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with available profiling data in developmental expression
series and literature information as used by [10], the available
Arabidopsis data allow us to assess systematically the differ-
ential gene expression response breadth and for nearly all
genes more directly by measuring gene expression in
response to external stimuli. Furthermore, with the mapping
information of previously characterized regulatory motifs,
albeit the set may likely not be considered complete, to the
Arabidopsis genome at hand, we are able to associate gene
expression complexity directly to cis-elements, their identity,
frequency, and spatial distribution and in conjunction with
genomic layout properties, such as distances between
neighboring genes and gene size. Transcriptional response
programs to external stress have been studied in micro-
organisms, yeast in particular [3]. Studying the association of
regulatory capacity and the breadth of transcriptional
response in a higher, multicellular and multitissue organism
such as Arabidopsis will allow comparison and an assessment of
the generality of the observed mechanisms.

Our results obtained in Arabidopsis lend further support to
the notion that larger intergenic regions may have evolved to
allow broader differential gene expression capacity [10].
Arabidopsis genes showing differential gene expression in
response to a greater range of external stimuli are flanked by
larger intergenic regions. In addition, increased breadth of
gene expression response was observed to correlate with an
increased density of motifs in upstream promoter regions,
most pronounced in segments immediately upstream of the
transcription start site. Among the various cis-elements
analyzed, the TATA-box motif appears to play a unique role.
We observed TATA-box-containing genes to possess a
significantly increased breadth of response and to be
associated with significantly longer upstream intergenic
regions compared to TATA-less genes, thereby possibly
allowing for greater regulatory capacity. Identified correla-
tions of several fundamental genome architectural properties
with the observed breadth of differential gene expression
response are discussed in the context of evolutionary forces
shaping the structure of eukaryotic genomes.

Results

Applying a noise-filtered threshold of 2-fold up-regulation
or down-regulation in 43 treatment-control experiments, we
observed a nearly exponential decrease in the number of
genes with increasing cumulative numbers of experiments
with differential expression (Figure 1). Most genes were found
to be differentially expressed in only few experiments,
whereas only a small number of genes were observed to
respond to many different external stimuli.

Genes involved in stress response, cell growth, and lipid
transport are particularly overrepresented in the set of
multistimuli-sensitive genes (Table 1), whereas the house-
keeping functions, protein catabolism and synthesis, RNA
processing, and DNA repair, as well as uncharacterized genes
with as-of-yet-unknown function, are more associated with
the group of genes with narrow breadth of differential gene
expression response, indicating that they are constitutively
expressed. Genes involved in embryonic development were
also grouped with narrow response genes. However, this may
primarily be explained by the absence of embryonic develop-
ment samples in the analysis. The gene AtEXPAS (At2g40610),
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Figure 1. Semilogarithmic Frequency Distribution of the Number of

Different Experiments in which Genes Were Found to Be Differentially

Expressed Defined Here as the Breadth of Differential Gene Expression

Response

doi:10.1371/journal.pgen.0030011.g001

a member of the a-expansin gene family and involved in cell
wall modification and loosening, was observed to show the
greatest response breadth and was differentially expressed in
22 different experiments.

With the mapping information for 93 previously charac-
terized cis-element motifs to all Arabidopsis upstream gene
regions up to a length of 3,000 nucleotides available from the
Athena database [15] (see Methods), it is now possible to
correlate the breadth of differential gene expression re-
sponse to the number of cis-regulatory elements for all genes.
If a broader differential gene expression response is reflected
and even encoded by an increased number of cis-elements, we
expect a positive correlation. Indeed, very significant positive
correlations can be observed for both the number of total
and unique elements in promoters of defined lengths (Figure
2), i.e., multistimuli response genes harbor more cis-elements
in their upstream regions (higher density of elements) than
do genes with a narrower scope of responses. This positive
correlation was particularly significant and pronounced for
an assumed promoter length of 500 nucleotides immediately
upstream of the presumed site of transcription initiation.
While the significance of the observed correlations was high,
absolute motif counts increased only moderately correspond-
ing to an increase of approximately 13% in the 500
nucleotides immediately upstream over the observed range
of response breadth. For promoter segments farther up-
stream, the significance of the observed correlations was
weaker, in part explained by fewer observations, albeit
detectable, and the relative increase in motif counts smaller
with increasing breadth of response.

The number of experiments with differential expression,
the breadth of response, includes counts for both up-
regulation and down-regulation in treatment-control sam-
ples. When only up-regulation or only down-regulation
responses were considered differential gene expression
events, we observed that the obtained positive correlations
of motif counts with breadth of response was primarily
caused by up-regulation rather than by down-regulation
events for which no significant correlation were obtained to
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the number of upstream motifs in promoter segments of
defined length (Figure S2).

Determining the correct length of gene promoters, i.e., to
assess whether a putative cis-acting regulatory site will exert
an influence on its downstream gene depending upon its
distance from the site of transcription initiation, is difficult
experimentally, even more so if only in silico mapping
information is available. Allowing variable promoter segment
lengths of up to 3,000 nucleotides, but excluding cis-elements
that overlap with neighboring upstream genes and only
considering cis-elements that map to intergenic upstream
regions, the magnitude of the correlation of motif counts to
breadth of response increased significantly (r =~ 0.2 obtained
for motif counts in variable-length promoter segments
[Figure 3] compared to r =~ 0.1 for fixed promoter lengths
[Figure 2]). Genes that are differentially regulated in nine
different experiments (the greatest observed breadth of
response value in the set of experiments analyzed here with
more than associated 100 genes) have 50% more cis-elements
for both overall cis-element counts and unique counts versus
genes with no detectable differential response in the experi-
ments included in this study.

This result suggests that the length of the upstream
intergenic region, too, is positively correlated with the
breadth of differential gene expression response. Such a
positive correlation has already been reported in analyses of
gene expression profiles in different developmental and cell
differentiation stages in C. elegans and D. melanogaster [10].
Indeed, we found a very significant positive correlation of
intergenic upstream sequence length and the breadth of
response (r=0.19, p = 1.2E-89; Figure 4A) also in response to
external stimuli. On average, highly multistimuli response
genes have approximately double the intergenic upstream
space compared to genes with no differential response. This
trend was observed equally strong for both differential up-
regulation or down-regulation events (Figure S3). This
finding prompted us to relate other gene properties to the
breadth of response. The length of downstream intergenic
segments was also found positively correlated with breadth of
response, albeit at a less significant level and smaller
magnitude (r = 0.08, p = 4.6FE—18; Figure 4A) than for the
corresponding upstream segment lengths. Downstream inter-
genic segments are also significantly shorter than upstream
segments. We observed that multistimuli response genes are,
on average, significantly shorter, with shorter gene length (r=
—0.19, p = 1.2E-95 [Figure 4B]) as well as shorter cDNA length
(r=—0.12, p = 2.2E—42 [Figure 4E]) and have shorter 5’ (r =
—0.08, p = 5.8E—16) and, to a lesser degree, 3’ untranslated
regions (r = —0.05, p = 5.1E-9 [Figure 4C]). Commensurate
with shorter gene length, the number of introns was also
observed to be negatively correlated with breadth of differ-
ential expression (r =—0.2, p = 2.3E-110 [Figure 4D]), as was
the mean length of intronic segments (r=—0.2, p =6E—114). In
addition to the analyzed gene size-related parameters,
multistimuli response genes are also more likely to contain
additional paralogs in the Arabidopsis genome than are
narrow-response genes (r = 0.17, p = 9.4E-77 [Figure 4F]
[30% amino acid sequence identity], and r=0.09, p = 3.1E—24
for the more stringent paralog settings of requiring 70%
amino acid sequence identity [see Methods]). Among the
various properties analyzed, the length of the upstream
region and gene length and the associated number of introns
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Table 1. Classification of Genes with High or Low Breadth of Differential Gene Expression Response

Annotation 2,000 Genes with Highest Breadth of Response 5,000 Genes with Lowest Breadth of Response
Category
FDR p-Value Category FDR p-Value Category
GO Process 4.47E—08 Response to wounding 9.92E-26 Biological process unknown
6.98E—08 Response to abscisic acid stimulus 7.14E-08 Ubiquitin-dependent
protein catabolism
2.69E—05 Response to cold 1.64E-06 Embryonic development
(sensu Magnoliophyta)
4.40E—05 Carbohydrate metabolism 1.30E-03 Intracellular protein
transport
5.92E—-05 Response to jasmonic acid stimulus 4.13E-03 MRNA processing
1.43E—-04 Cell wall loosening (sensu Magnoliophyta) 1.77E-02 Protein modification
1.89E—-04 Lipid transport 3.07E-02 Protein amino acid
glycosylation
3.55E—-04 Toxin catabolism 4.24E-02 ER to Golgi vesicle-
mediated transport
3.56E—04 Response to heat 4.33E-02 Protein transport
3.74E-04 Response to water deprivation 5.94E-02 DNA repair
7.98E—04 Response to salt stress 6.05E-02 RNA processing
8.40E—04 Response to oxidative stress 8.37E-02 Ubiquitin cycle
1.55E-03 Response to auxin stimulus — —
3.17E-03 Response to gibberellic acid stimulus — —
5.97E-03 Response to salicylic acid stimulus — —
7.34E-03 Cell wall modification — —
7.58E—03 Transmembrane receptor protein tyrosine — —
kinase signaling pathway
1.17E-02 Cell wall modification during multidimensional — —
cell growth (sensu Magnoliophyta)
1.81E—-02 Unidimensional cell growth — —
2.91E-02 Trehalose biosynthesis — —
3.90E—02 Hyperosmotic salinity response — —
4.02E-02 Response to pest, pathogen, or parasite — —
4.09E—02 Response to nematode — —
4.11E—-02 Electron transport — —
5.71E—-02 Defense response = —
5.80E—02 Response to desiccation — —
5.96E—02 Sucrose catabolism, using B-fructofuranosidase — —
6.14E—02 Photosynthesis, light harvesting — —
6.56E—02 Response to ethylene stimulus — —
6.62E—02 Chromosome organization and biogenesis — —
(sensu Eukaryota)
6.74E—02 Multidrug transport — —
7.03E-02 Oligopeptide transport — —
7.08E—02 Abscisic acid mediated signaling — —
7.38E—02 Response to mechanical stimulus — —
7.54E—02 Response to chitin — —
7.71E-02 Glucosinolate biosynthesis — —
Gene Family 8.73E—04 Glycoside hydrolase gene families 4.63E—04 Cytoplasmic ribosomal
protein gene family
1.10E—-03 Class Il peroxidase 1.22E-03 Protein synthesis factors
1.94E-03 Cytochrome P450 4.44E—02 Primary pumps (ATPases)
gene families
5.64E—03 Expansins 5.92E—02 ABC superfamily
1.18E—02 GST superfamily 6.17E—02 Core cell cycle genes

Fisher exact test statistics of overrepresented gene categories in the set of the top 2,000 genes sorted by descending breadth of differential gene expression response versus bottom 5,000
genes (left) and vice versa (right) for GO process assignments as well as gene family annotations. Only categories with FDR p-value < 0.1 are listed.

doi:10.1371/journal.pgen.0030011.t001

were found most strongly correlated with breadth of differ-
ential gene expression response. The sum of the intergenic
upstream and downstream distances measuring the size of a
gene’s intergenic flanking region was not observed to be
negatively correlated with the size of the flanked gene (r =
0.014, p=0.14); i.e., genes are not distributed evenly such that
longer intergenic regions follow from shorter genes. Applying
a multiple linear regression approach, we analyzed what level
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of correlation with breadth of response can be achieved by
combining the various and largely independent properties
depicted in Figure 4. Performing a stepwise-forward multiple
linear regression and using nonunique motif counts in the
500-nucleotide upstream regions (motif density), the three
most significant regressors were (1) number of introns (partial
correlation coefficient, f = —0.23), (2) distance to next
upstream gene (B = 0.13), and (3) motif density (f = 0.09),
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Figure 2. Correlation of the Number of cis-Regulatory Elements in Gene Upstream Promoter Regions of Different Length and Position Relative to the
Transcription Start Site with the Breadth of Differential Gene Expression Response

The upper row (A1-A3) shows data for all cis-elements including counts for multiple occurrences of cis-elements. In the lower row (B1-B3), only unique
cis-element counts (see Methods) have been used. Genes were only included if their associated intergenic upstream region was large enough to fully
contain the considered upstream interval, i.e., no overlap of preceding genes and the considered promoter segment was allowed. Shown are the mean
values and the SEM. Correlation coefficients, r, and associated p-values are given for all raw data pairs (individual genes and associated motif counts)
and, in parentheses, for the mean values as they are plotted in the graph. If the shuffled p-value, ps, was not zero, it is reported as well (see Methods).
Mean cis-element counts were only plotted if at least 100 genes were detected at the particular breadth of response. Note: With increasing distance of
the considered promoter region from the transcription start site, fewer genes were considered as intergenic upstream regions were frequently not large
enough (respective gene counts were A1, B1 =8,597; A2, B2 = 6,537; A3, B3 = 2,737).

doi:10.1371/journal.pgen.0030011.g002
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Figure 3. Correlation of the Number of Regulatory cis-Elements in Gene
Upstream Promoter Regions Up to 3,000 Nucleotides in Length or
Truncated at the Next Upstream Gene Boundaries (Variable Promoter
Length) with the Breadth of Differential Gene Expression Response
Plotted are the mean values and associated standard errors of the mean.
Pearson linear correlation coefficients, r, and associated p-values are
given for all raw data pairs (for all genes considered in the analysis).
doi:10.1371/journal.pgen.0030011.g003
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yielding a combined level of correlation of r = 0.28, r* = 0.08
(p < 0.01, n = 6,976 genes with complete information and
upstream intergenic region longer than 500 nucleotides).
Adding more properties (downstream region length, UTR
lengths, etc.) did not result in significantly increased
correlation levels.

We investigated what gene families and functions are
associated with long upstream intergenic segments. By
sorting all Arabidopsis genes according to their upstream
intergenic length and comparing the Gene Ontology (GO)
annotations of a subset of genes with longest upstream
segments to a set of genes with shortest upstream segment
lengths using Fisher exact statistical tests, we found that
transcription factors, transcriptional regulatory functions,
and genes involved in signaling processes are particularly
overrepresented among genes with long intergenic upstream
segments, while ribosomal genes involved in protein biosyn-
thesis and genes involved in other housekeeping functions
such as glycolysis are relatively overrepresented among genes
with short upstream segment lengths, as are genes with
currently unidentified function (Table 2). The found associ-
ation of functional categories with intergenic upstream
distances in A. thaliana agrees well with very similar
observations reported for C. elegans and D. melanogaster [10].

We analyzed which gene families and biological processes
are associated with genes with the greater number of cis-
elements in their upstream promoter region. When counting
regulatory elements in upstream segments of up to 3,000
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Figure 4. Correlation of the Length of Intergenic Upstream and Downstream Sequence (Distance to the Next 5’-Upstream Gene), Gene Length, 5'/3'
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A) Intergenic upstream and downstream sequence (distance to the next 5’-upstream gene).

(
(B) Gene length.

(C) 5'/3" UTR length.
(D) Number of introns.
(E) cDNA length.

(F) Number of paralogs with the breadth of differential gene expression response.
Plotted data points correspond to mean values and associated standard errors of the mean. Pearson linear correlation coefficients, r, and associated p-

values are given for all raw data pairs.
doi:10.1371/journal.pgen.0030011.9g004

nucleotides and truncating them at neighboring upstream
genes, i.e., variable promoter length, the GO processes and
gene families characteristic for genes with many motifs
largely coincided with the profile obtained for genes with
long upstream segments (Table 2). Likewise, profiles for genes
with few motifs matched profiles obtained for genes with
short upstream regions. As the motif density was observed to
be relatively constant across intergenic regions (Figure S4),
this agreement is not surprising because motif counts are
positively correlated with intergenic distances. When we
confined the promoter count to upstream regions of 500
nucleotides, i.e., analyzing the density of motifs in 500
nucleotides, only one GO process (response to wounding)
was borderline significant (false discovery rate [FDR] p-value
= 0.09). No other GO process category or gene family
association was found to be significantly correlated with
either high or low motif density (FDR p-value > 0.1 for all
categories and gene families). However, “response to wound-
ing” and “response to cold” were ranked highest among GO
processes associated with high motif density. Several other
response-related categories were also contained among the
top-ranked processes, such as “response to oxidative stress”
(rank 6) and “response to gibberellic acid stimulus” (rank 16)
and, as a single-word category, “response” was very signifi-
cantly associated with high motif density (FDR p-value

5.1E—7), suggesting that higher motif densities are indeed
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associated with genes that are involved in environmental
response pathways.

Well-known stress response elements in plants such as the
ABRE-like, ABF, and DRE binding site motifs [16] are among
the motifs found most frequently in genes with large breadth
of response (Table 3). The occurrence of the TATA-box
motif, a commonly found eukaryotic core promoter element
involved in transcription initiation and usually located
approximately 25 to 30 nucleotides upstream of the tran-
scription start site [17], also appears to be preferentially
associated with multistimuli response genes. Genes with a
putative TATA-box motif present in the 60 nucleotides
upstream of the transcription start site had a significantly
greater breadth of response (mean number of experiments
with differential expression = 3.4, n = 2,002) than did genes
lacking a TATA-box motif in their 60-nucleotide upstream
region (mean number of experiments with differential
expression = 1.9, n = 9,795, p = 5.0E—113). Consistent with
increased intergenic upstream distances for multistimuli
response genes, TATA box-containing genes were also
observed to have longer upstream regions (2,370 nucleotides
versus 1,737 nucleotides for TATA-less genes, p = 3.4E—34).
Motifs reported to control housekeeping genes (TELO-box
promoter motif [18]; hexamer promoter motif [19]) or
implicated to confer tissue-specific expression (LEAFYATAG
[20]) were found to be more associated with genes with
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Table 2. GO Process and Gene Family Annotations Overrepresented in Genes with Long (Left) and Short (Right) Intergenic Distances to

Next Upstream Gene (FDR p-Value < 0.1)

Annotation 2,000 Genes with Longest Intergenic 5,000 Genes with Shortest Intergenic
category Upstream Regions Upstream Regions
FDR p-Value Category FDR p-Value Category
GO Process 4.73E-19 Regulation of transcription 8.75E—-15 Biological process unknown
3.92E-13 Response to auxin stimulus 1.19E-13 Protein biosynthesis
4.64E—11 Regulation of transcription, 9.29E—04 Ribosome biogenesis
DNA dependent
4.95E—07 Protein amino acid phosphorylation 7.15E—03 Metabolism
2.42E—-04 Transmembrane receptor protein tyrosine 1.92E—-02 Intracellular protein transport
kinase signaling pathway
4.03E—-04 Oligopeptide transport 2.50E—02 Biosynthesis
1.80E—03 Response to gibberellic acid stimulus 4.91E—02 Protein transport
5.49E-03 Response to jasmonic acid stimulus 6.07E—02 Ubiquitin-dependent
protein catabolism
7.42E—-03 Unidimensional cell growth 7.93E-02 TRNA aminoacylation for
protein translation
7.72E-03 Response to abscisic acid stimulus 9.77E—02 Electron transport
1.53E-02 Flower development = =
1.98E—02 Gibberellic acid-mediated signaling — —
2.34E-02 Response to cytokinin stimulus — —
4.50E—02 Multidrug transport — —
4.75E—02 Trehalose biosynthesis — —
4.96E—02 Response to ethylene stimulus — —
5.86E—02 Response to salicylic acid stimulus — —
8.67E—02 Cell wall loosening — —
(sensu Magnoliophyta)
8.92E—-02 Response to nematode — —
9.80E—02 Cell wall organization and biogenesis — —
(sensu Magnoliophyta)
Gene Family 1.02E—06 Transcription factor 1.73E-13 Cytoplasmic ribosomal protein
gene family
2.60E—03 Nodulin-like protein family 2.66E—02 Sulfurtransferasese/rhodanese family
8.87E—03 GRAS proteins 2.70E—02 Chloroplast and mitochondria
gene families
9.43E-03 MIP family 4.44E—-02 Acyl lipid metabolism family
1.00E—02 MYB 8.27E—02 Protein synthesis factors
2.91E-02 Organic solute cotransporters 8.62E—02 GST superfamily
9.37E—-02 Receptor kinase-like protein family = =
1.00E—-01 C2H2 zinc finger proteins — —

doi:10.1371/journal.pgen.0030011.t002

narrow range of differential expression response, i.e., their
expression is constitutive or their differential expression
response is very specific.

It is conceivable that in transcriptional regulatory signaling
cascades, early responders evolved a greater sensory capacity
(i.e., respond to many different transcription factors) and
then channel the response to common effector genes. In our
framework, equating sensory potential to the number of cis-
elements, we then expect early responders to be associated
with a greater number of regulatory elements. The 18
AtGenExpress abiotic stress time series datasets (nine for
root and shoot tissue, respectively) allowed testing of this
hypothesis. Comparing genes that are differentially expressed
during the first 3 h after stimulus to genes that respond at
later time points and assuming a fixed promoter length of 500
nucleotides, early-response genes were associated with only
marginally or no increased motif count densities with 3%
(2%) more (nonredundant [nr]-unique) motifs in 500 nucleo-
tide—upstream regions compared to late genes (7.5 versus 7.3,
p = 5.9E-12; 5.8 versus 5.7, p = 3.4E—6 for nr-unique motifs,
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respectively). However, in allowing promoter lengths of up to
3,000 nucleotides and truncating them at neighboring
upstream gene sites (variable maximal promoter lengths),
early genes were observed to harbor 20% (16%) more (nr-
unique) motifs than late genes (34.4 versus 28.5, p = 2.1E-170;
and 13.2 versus 114, p = 1.2E-179 for nr-unique motifs,
respectively). As was observed before, an increased number of
cis-elements for a specific group of genes may originate from
two sources: higher motif density and more different motifs
and, apparently more significantly, longer upstream regions
providing more space for potential regulatory sites. Early-
response genes have, on average, 30% longer intergenic
upstream segments than do late-response genes (2,668
nucleotides versus 2,064 nucleotides, p = 2.9E-115) and are
more likely to contain TATA-boxes (25% versus 19%, Fisher
exact p-value = 1.4E—12). Consistent with a transcriptional
regulatory signaling cascade, genes involved in the regulation
of transcription, signaling, as well as stress response genes are
overrepresented among early-responder genes, whereas
ribosomal genes and genes generally involved in protein
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Table 3. cis-Regulatory Elements (Motifs) Associated with Genes with High (Left) versus Low (Right) Breadth of Differential Gene

Response and vice versa at Significance Level of FDR p-Value <

0.1

2,000 Genes with Highest Breadth of Response

5,000 Genes with Lowest Breadth of Response

FDR p-Value cis-Element FDR p-Value cis-Element

1.74E—18 ABRE-like binding site motif 8.87E—07 TELO-box promoter motif
7.83E—18 ACGTABREMOTIFA20SEM 7.18E—06 Hexamer promoter motif
6.71E—-09 CACGTGMOTIF 7.76E—06 MYB1AT

7.31E-07 ABFs binding site motif 2.60E—05 CCA1 binding site motif
2.36E—-05 AtMYC2 BS in RD22 9.04E—-05 MYB4 binding site motif
2.93E-05 TATA-box motif 2.05E—03 BoxIl promoter motif
5.42E—05 GBOXLERBCS 4.33E-03 LEAFYATAG

4.90E—04 GBF1/2/3 BS in ADH1 6.76E—03 MYB2 binding site motif
1.96E—03 Octamer promoter motif 6.90E—03 GAREAT

2.09E-03 ABREATRD22 7.43E-03 GCC-box promoter motif
5.19E—03 DREB1A/CBF3 8.61E—03 CDA1ATCAB2

5.41E-03 TGA1 binding site motif 1.63E—02 CCA1 motif1 BS in CAB1
7.70E—03 I-box promoter motif 6.56E—02 MYB binding site promoter
1.63E—02 DRE core motif 7.85E—02 T-box promoter motif
1.93E—-02 Z-box promoter motif 7.94E—02 RAV1-B binding site motif
5.55E—02 ABRE binding site motif 8.99E—02 CArG promoter motif
8.29E—-02 Evening element promoter motif 9.28E—02 AGATCONSENSUS

Only motifs located in the 500 nucleotides upstream of transcription start sites have been considered, including counts for repeated occurrences of the same motif.

doi:10.1371/journal.pgen.0030011.t003

biosynthesis, metabolism, and other nonsignaling processes
are more characteristic of late-response genes (Table 4).

Discussion

The objective of our investigation was to test whether there
is a significant relationship between encoded, by way of cis-
regulatory motifs, and actually observed differential
gene expression diversity. Our primary focus has been the
relationship of cis-regulatory motif counts and differential
gene expression using data from A. thaliana. In discussing our
results, we will first consider several technical aspects of this
study and then turn to the biological relevance of our findings.

The currently available data for both data types, cis-
element motifs and differential gene expression, are by their
very nature associated with high levels of noise. The set of cis-
elements for every gene was obtained by computational
mapping of short sequence motifs to upstream gene
promoter regions. Without experimental verification, a large
number of such predicted sites are expected to be false
positives as it is difficult to determine how far upstream the
promoter region actually extends, with the exceptions that
promoters may not overlap with neighboring gene segments,
and where the boundaries of the core-promoters—the site of
constitutive transcription initiation with less differential
regulatory function—are located. Furthermore, alternative
transcription start sites have been reported for up to 50% of
the Arabidopsis genes [21], associated perhaps with separate
regulatory regions. There are also likely to be more, as of yet
unknown, motifs than the 93 that were considered here, as
there are about 1,500 transcription factors encoded in the
Arabidopsis genome [22].

On the expression side, detecting true differential expres-
sion with only few technical and biological replicate samples
is difficult. We applied a simple criterion for calling differ-
ential expression as the objective has not been to identify
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high-confidence gene expression markers for the various
conditions but rather to detect global quantitative trends.

However, the fact that we still observed significant
correlations between both quantities, despite the high noise
levels, suggests that the true correlation between both
quantities may, in fact, be even more significant and of
greater magnitude than estimated in this study. This is
particularly relevant for the investigated correlations be-
tween density of motifs and breadth of response (Figure 2).

On the other hand, high noise levels increase the risk of
artefacts. One such source of artificial distortion of the data
may be the normalization of raw gene expression values. To
test the robustness of the observed correlations of motif
counts to the breadth of differential gene expression
response, we applied two additional normalization techni-
ques (MAS 5.0; Affymetrix proprietary software, http:/lwww.
affymetrix.com) and GCRMA (Affymetrix) [23] and compared
the results to the data obtained from using Robust Microchip
Analysis (RMA; Affymetrix) [24]. Almost identical trends of
motif counts in the 500-nucleotide gene upstream regions to
the breadth of response have been obtained for all three
normalization methods (Figure S5).

In limiting the analysis to genes with expression levels for
which no dependence of the breadth of differential response
on the expression level was noticeable (Figure S1), we applied
additional caution to guard against artefacts. However, the
primary observations and conclusions presented here also
hold when all genes, including the 10,000 genes with low
expression levels in control samples, are used in the analyses.

We have counted cis-elements in upstream region as they
are presented in the Athena resource regardless of their
mapping orientation (forward or reverse strand). Therefore,
we compared results from using only motifs that map in the
same orientation as the coding strand for a given transcript
and obtained qualitatively identical results. Evidently, abso-
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Table 4. GO Process and Gene Family Annotations Associated with Genes Differentially Expressed Early (3 h or Earlier [Left]) and Late
(After 3 h [Right]) after Abiotic Stress Stimulus in Nine different Abiotic Stress Time Series Experiments and in Root and Shoot Tissue,

Respectively (Table S1)

Annotation Early Responding Genes Late Responding Genes
Category
FDR p-Value Category FDR p-Value Category
GO Process 2.90E—22 Response to abscisic acid stimulus 1.21E-79 Protein biosynthesis
2.62E-19 Regulation of transcription, DNA dependent 3.24E-30 Ribosome biogenesis
6.09E—13 Response to cold 1.53E—11 Nucleosome assembly
1.63E—-08 Response to jasmonic acid stimulus 2.63E—-11 Chromosome organization and biogenesis
(sensu Eukaryota)
6.14E—08 Response to auxin stimulus 5.03E—09 RNA processing
6.30E—08 Response to wounding 3.43E-08 Microtubule-based movement
6.49E—08 Regulation of transcription 1.52E—05 DNA replication
4.21E-07 Response to water deprivation 2.28E—-05 Proteolysis
4.27E-07 Response to salt stress 3.70E—04 DNA replication initiation
4.99E—-07 Ethylene-mediated signaling pathway 4.61E—04 Glycolysis
1.21E—-06 Defense response 7.88E—04 Regulation of progression through
cell cycle
1.66E—06 Response to gibberellic acid stimulus 1.21E-03 Photosynthesis
2.85E—06 Trehalose biosynthesis 1.34E—03 Cellular protein metabolism
6.83E—06 Response to ethylene stimulus 1.80E—-03 rRNA processing
1.02E—05 Response to cytokinin stimulus 2.51E-03 Translational initiation
1.33E-05 Response to water 3.21E-03 Intracellular protein transport
1.47E—05 Response to salicylic acid stimulus 3.49E—03 Ubiquitin-dependent protein catabolism
1.48E—05 Hyperosmotic salinity response 3.95E-03 Ribosome biogenesis and assembly
1.90E—05 Abscisic acid-mediated signaling 5.72E-03 Zinc ion homeostasis
3.42E-05 Toxin catabolism 5.72E—03 Metabolism
3.80E—05 Exocytosis 5.84E—03 Embryonic development
(sensu Magnoliophyta)
5.08E—05 Cold acclimation 6.13E—03 Pentose-phosphate shunt
3.70E—04 Response to heat 6.25E—03 Translational elongation
4.54E—04 Response to desiccation 6.57E—03 Electron transport
5.14E—04 Cytokinin catabolism 6.82E—03 Trichome morphogenesis
(sensu Magnoliophyta)
6.35E—04 Response to chitin 7.36E—03 Photorespiration
2.34E-03 Negative regulation of abscisic 8.08E—03 Nuclear mRNA splicing, via splicecosome
acid-mediated signaling
2.83E-03 Response to stress — —
3.44E-03 Vesicle docking during exocytosis — —
3.48E-03 L-Phenylalanine biosynthesis — —
3.69E—03 Response to cadmium ion — —
7.24E-03 Protein ubiquitination — —
7.65E—03 Induced systemic resistance, jasmonic — =
acid-mediated signaling pathway
9.59E-03 Auxin homeostasis — —
Gene Family 8.51E—07 Plant U-box protein (PUB) class IlI 2.24E-59 Cytoplasmic ribosomal protein gene family
1.49E—05 WRKY transcription factor superfamily 1.47E—08 Kinesins
1.08E—04 Trehalose biosynthesis gene families 1.57E—08 Core cell cycle genes
1.23E—-04 Lateral organ boundaries gene family: class Il 4.32E—-04 Protein synthesis factors
1.78E—04 PP2C-type phosphatases 1.40E—02 Subtilisin-like serine proteases
4.42E—-04 MYB 1.92E-02 Single gene-encoded CBPs
1.76E—03 Patatin-like protein family 4.38E—02 Inorganic solute cotransporters
5.76E—03 GST superfamily 4.59E—02 Other SNAREs
6.11E—-03 AtCIPKs 4.83E—-02 Phosphoribosyltransferases (PRT)
7.88E—03 EF hand-containing proteins: group IIl 7.19E-02 B-1,3-Glucanase family
9.97E—03 Transcription factor 9.85E—02 Lipid metabolism gene families
1.91E-02 Class Il peroxidase — —
2.82E—02 Basic region leucine zipper (bZIP) — —
transcription factor
4.45E—02 Nodulin-like protein family — —
4.71E-02 Response regulator — —
5.89E—-02 Heat shock transcription factors — —
7.12E—02 Receptor kinase-like protein family — —
7.16E—02 HSP70s —_ —
7.37E—-02 CDPKs — —
7.80E—02 EF hand-containing proteins: group IV — —
9.74E—02 Putative glutathione transferase family — —

The chosen significance level was FDR p-value < 0.01 for GO process and FDR p-value < 0.1 for gene family annotations, respectively.

doi:10.1371/journal.pgen.0030011.t004
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lute counts were lower. In addition, there is evidence that cis-
elements can be recognized in both orientations (bidirec-
tional motifs). For example, correlated expression of genes
transcribed in opposite direction that are in close proximity
to one another suggests that cis-elements are shared between
the two genes regardless of direction [25].

Regulatory Capacity Is Encoded by Both Motif Density and
Absolute Motif Counts Correlated to Intergenic Upstream
Space

In this study, we followed the notion that regulatory
capacity is associated with information-bearing properties of
the intergenic region upstream of the transcription start site
of the regulated genes. The simplest and most accessible
measure of information content was to correlate cis-regu-
latory motif counts to the breadth of differential gene
expression response. We found that increased breadth of
response is indeed positively correlated with greater motif
density (Figure 2). While the observed correlations were
highly significant, their magnitude was generally low. The
positive correlation between breadth of response and motif
count was relatively strongest for the first 500 nucleotides
upstream compared to the other investigated regions,
suggesting that this interval may generally be the most
relevant promoter segment to control gene expression. Apart
from greater density, more motifs and generally greater
information content can also arise from more available
intergenic space. Analyzing gene expression profiles in
different developmental and cell differentiation stages in C.
elegans and D. melanogaster, Nelson and coworkers [10]
observed that genes with more complex expression profiles
were indeed associated with larger flanking intergenic
intervals. Genes with regulatory functions were shown to
generally have longer upstream regions, whereas genes
involved in housekeeping functions have shorter upstream
segments. The results reported here for Arabidopsis and
analyzing differential expression data for transcriptional
response to external stimuli confirm these findings. The
requirements for encoding regulatory response complexity to
external environmental challenges also appear to have played
a role in shaping the layout of the Arabidopsis genome. Not
conflicting with this result, we saw that motif density also is
varied in correlation with different complexity of transcrip-
tional response (Figure 2), suggesting that both principal
mechanisms (greater density and/or more space) were
employed by evolution to encode complex transcriptional
response patterns. While both flanking sequences (upstream
and downstream) showed positive correlation of their length
to the breadth of response, we found that in Arabidopsis,
upstream distances were more strongly correlated with
response diversity and were generally longer (Figure 4A)
than downstream intervals, suggesting that the information
content upstream of a gene may be more relevant to the
encoding of regulatory properties than downstream seg-
ments. Apart from transcription factor binding sites, other
mechanisms and motifs, such as histone binding sites,
chromatin structural changes, enhancers, silencers, and
insulators, as well as sites of epigenetic regulation, may also
constitute regulatory elements contained in intergenic seg-
ments that can contribute to more complex regulatory
properties encoded in longer upstream intervals.

Alternative to our assumption that increased breadth of
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response correlates with increased regulatory capacity, it
might be speculated that because genes that respond to many
different stimuli in a similar manner, they are regulated by a
common regulatory mechanism and therefore should be
expected to be regulated by fewer rather than more cis-
elements. However, data presented by Gasch et al. [3] on the
gene expression response to environmental stress in yeast
and the results presented here indicate that multistress
response genes appear to be controlled by different and
condition-specific regulatory mechanisms.

It has been recognized that often multiple factors are
involved in the initiation of transcription, suggesting a
combinatorial control of transcription initiation [26,27]. A
combinatorial use of the repertoire of cis-regulatory ele-
ments enlarges the regulatory coding capacity tremendously.
Conceptually, the basic premise of this investigation—a
positive correlation between encoded and observed differ-
ential gene response—also applies in the case of combina-
torial control.

Multistimuli Response Genes Are Shorter in Arabidopsis

The correlation between expression level and gene size and
associated properties such as number and length of introns
has been investigated in several studies [28-34]. Surprisingly,
while highly expressed genes were found to be shorter in
animals and to harbor fewer and shorter introns [30], they
appear least compact and relatively largest in plants [33] and
C. elegans [29]. Several evolutionary scenarios such as selection
for economy and genomic design have been discussed to
explain the observed trends [31,34]. Using the AtGenExpress
dataset analyzed in this study, we also observed a general
increase in gene size, intron length, and intron number with
expression level in Arabidopsis, albeit for very highly expressed
genes, the trend was reversed (Figure S7).

The focus of this study has been on the correlation between
breadth of differential genes expression response, not its
absolute level, and genome architectural properties. It can be
assumed that differential gene expression is largely inde-
pendent of expression level with the obvious boundary effects
that lowly expressed genes are more likely to be up-regulated
and highly expressed genes have a greater chance of being
down-regulated as certain expression levels cannot be
exceeded. For medium expression levels, indeed no such
correlation was found in our dataset and deviations at low
levels likely caused by noise (Figure S1).

Interestingly, we observed that properties related to gene
size (gene length, cDNA length, number of introns) are
strongly and negatively correlated with breadth of differ-
ential gene expression response (Figure 4). While this may
reflect a coincidence that informative (involved in regulation
or signaling) gene families are generally smaller, the intrigu-
ing question arises of whether transcriptional efficiency may
have played a role during evolution. Shorter genes with fewer
introns may be produced more economically and thereby
quicker in response to sudden external stimuli. In fact, the
number of introns was the strongest, albeit marginally, of all
properties analyzed to correlate with breadth of response
(Figure 4 and multiple linear regression results). Informative
molecules may also be smaller as they need to diffuse within
the cell or tissues to carry their information to the place of
perception rather than being constituents of larger and more
static cellular machineries. Clearly, comparing our findings in
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Arabidopsis with those in warm-blooded animals will shed
further light on the generality of our observations.

Special Role of TATA-Boxes

Among the cis-regulatory motifs considered in the analysis,
the preferential association of the TATA-box motif—a
commonly found eukaryotic core promoter element involved
in transcription initiation and usually located approximately
25 to 30 nucleotides upstream of the transcription start site
[17]—with multistimuli response genes is of particular
interest. In the gene set studied here, 17% of all genes
contained TATA-box motifs within the first 60 nucleotides
upstream of the transcription start. TATA-box genes were
found associated with stress response and were shown to be
subject to chromatin remodeling factors consistent with their
regulation by nucleosomal mechanisms [35]. The TATA-box
motif was also described recently to confer increased
interspecies gene expression variation of the corresponding
genes [36]. Our observation that TATA-box-containing genes
have longer intergenic upstream regions is consistent with
their chromatin and nucleosomal regulation and also suggests
that the expression of TATA-box genes may evolve at higher
rates, causing increased variation across species because their
upstream regulatory potential is greater and, therefore, more
amenable to change and modulation. Interestingly, presence
of the TATA-box also strongly correlates with a decreased
number of introns in the downstream gene (number of
introns for genes with TATA: 3.7, without: 5.9; p = 1.9E-93). It
is presently not clear whether this correlation indicates a
direct coupling between transcription and splicing [37] or
whether it originates from an indirect correlation via a
common principle shaping the genome, such as possibly the
breadth of response and the role of both properties in
defining it as reported here.

Multistimuli Response Genes Have More Paralogs

Assuming that multistimuli response or “informational
hub” genes play more critical roles than genes that have a
narrower response scope, it can be speculated that failures of
such central genes—by spontaneous disruptive mutations, for
example—may be more detrimental to the organism. There-
fore, functional backup genes may have evolved to safeguard
against such failures. A plausible evolutionary solution would
be to retain copies or paralogs of hub gene in the genome
from gene or segmental duplication events, i.e., genes with
identical or similar function [38,39]. The observed increase of
the number of paralogs with increasing breadth of response is
consistent with the concept of selection for functional
backup (Figure 4F). However, results reported in yeast suggest
that rather than redundancy provided by duplicated genes,
interactions between unrelated genes appear to be respon-
sible for robustness against mutations [40]. Furthermore,
rather than a static robustness provided by “replacement
parts,” a dynamic reprogramming of the transcriptional
regulatory network may be employed during “fail-safe”
scenarios [41].

We saw that multistimuli response genes were generally
associated with environmental response processes (Table 1).
As the number of different external stimuli is large and fine-
tuning the perception as well as signal transduction depend-
ing upon the stimulus will likely be beneficial, it may have
been evolutionarily advantageous to use duplication events to
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evolve genes (paralogs) with shifted and novel response scope,
also explaining a greater number of paralogs for multistimuli
response genes [42].

Alternatively, paralogs may allow a greater dynamic range
of the response to external stimuli. Corresponding dosage
effects and their role in the retention of paralogs have
recently been discussed in the literature [43].

Stress Response Genes Have Greater Breadth of
Differential Response—A Potential Experiment Bias

We observed that genes implicated in the response to
specific stresses (e.g., cold) are also among the genes with a
very broad range of differential gene expression in response
to various environmental changes (Table 1). However, some
of the applied external changes correspond to very similar
environmental cues (salt and osmotic stress, for example) and
common transcriptional response programs will likely be
triggered. Ideally, only very different and unrelated external
stimuli would be used in our analyses, but imposing such
requirements would reduce the number of experiments to
very low numbers. Therefore, it needs to be borne in mind
that the similarity between different external conditions and
the resulting relative overrepresentation of particular types
of external stimuli may cause a bias toward certain gene
functional categories (salt stress response, for example).
Interestingly, when the abiotic stress series was excluded
from the list of experiments (about half of all experiments,
Table S1), general stress response GO categories, including
abiotic stress response, were still overrepresented among the
genes with high breadth of response (“response to wound-
ing,” FDR p-value = 3.7E—7; “response to oxidative stress,”
FDR p-value = 5.5E—4; “response to heat,” FDR p-value =
0.04), suggesting that some stress response genes may truly
display a large and diverse range of differential response.

Characteristic Sequence Signatures in Longer Upstream
Regions of Multistimuli Response Genes?

If, as observed, longer upstream regions are associated with
greater gene expression complexity of downstream genes, the
question emerges of whether there are characteristic
sequence motifs in longer regions that are not found in
short intergenic upstream segments. Such motifs may help
identify and elucidate new regulatory elements and even
mechanisms, DNA structural properties, and their influence
on gene regulation, for example. Recent reports that large
fractions of the nontranslated segments of genomes are
functionally important based on analyses of mutation rates
[44] and the greater-than-expected occurrences of specific
sequence patterns in noncoding DNA segments associated
with genes involved in signaling and transcription regulation
processes [45] strongly encourage the pursuit of further
research in this direction.

As sessile plants cannot evade changing and adverse
environments, they may rely more strongly on elaborate
transcriptional response programs and may thus serve as
ideal model systems for the study of the regulatory code in
the genomes of higher organisms.

Materials and Methods

Gene expression data. Gene expression information was obtained
from AtGenExpress. Profiling data based on the ATH1 Affymetrix
GeneChip microarray platform [46] from the abiotic stress, biotic,
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nutrient, hormone, and chemical treatment-control series have been
used. A detailed list of the 43 experiments, included samples, and a
brief description of the various conditions, is available in Table S1.
Gene expression data normalization. Raw expression data files were
obtained for treatment and associated control samples. All samples
associated with a particular treatment-control experiment were
preprocessed and normalized together using the Affy-package [47]
available in the Bioconductor software suite [48]. Raw expression level
data were normalized applying three different methods: RMA [24],
GCRMA [23], and MAS 5.0 (Affymetrix). Unless noted otherwise, results
are based on RMA normalization as the default normalization method.
Differential expression criteria and probe selection, breadth of
response. Genes were considered differentially expressed if |mt —
mc| > 1 and s > 0.5 where s = |my — m¢|/(G + 6¢) and myp, m denote
the mean logarithm-base-2 transformed expression levels for
associated gene probes across the available treatment (t) and control
(c) replicate samples, and o, O¢ are the associated standard
deviations of the log-2 expression levels. The first condition
corresponds to a threshold of minimally 2-fold up-regulation/down-
regulation of treatment expression levels relative to the levels in the
associated control samples. The second criterion was introduced as a
simple statistical significance measure similar to a simplified ¢-test. By
normalizing to the standard deviation, rather than the standard error
as done in the ¢-test, the risk of biasing the results to experiments
with more repeats was reduced. The test metric s was introduced by
Golub et al. [49] in their seminal study on cancer classification based
on gene expression. To test whether the results are robust with
regard to the chosen threshold values, other, more stringent,
parameter values were applied. Qualitatively similar results were
obtained (Figure S6). All mitochondrial and chloroplastidial gene
probes were discarded. Only probes that map uniquely to annotated
genes and with available cis-regulatory motif information have been
considered. To ensure independence of the frequency of detected
differential expression events on the absolute expression level and to
avoid possible normalization artefacts, we examined for all gene
probes the number of experiments in which a gene probe was
observed to be differentially expressed as a function of the median
rank of this probe across all control samples in the dataset and
compared the results for all three normalization methods (Figure S1).
For probe ranks greater than 10,000, no significant influence of the
absolute expression level on the frequency of differential expression
was observed. Therefore, we discarded the 10,000 probes with lowest
median rank across all control samples from the analysis. Analyses
using all probes have also been conducted and confirm the presented
results. Applying the above criteria, 11,797 Arabidopsis genes were
used in the expression data analysis using their unambiguously
mapping array probes, i.e., every probe mapped to only one gene and
every gene mapped to only one probe. Mapping information was
obtained from The Arabidopsis Information Resource (TAIR) [50] and
the ATH1-chip annotation file provided by Affymetrix. We define the
term “breadth of response” for every gene as the cumulative number
of treatment-control experiments in which the gene was found to be
differentially expressed.
cis-Regulatory elements. Transcription factor binding site location
information was obtained from the Athena promoter annotation
resource [15]. In Athena, transcription factor site coordinates are
obtained by sequence mapping of consensus motif sequences
imported from the Plant cis-acting regulatory DNA elements (PLACE)
[61] and Arabidopsis Gene Regulatory Information Server (AGRIS) [52].
The dataset contained mapping information for 93 different and
previously characterized binding site motifs in the 5" upstream gene
segments of up to 3,000 nucleotides in length associated with genes
and corresponding probes present on the ATH1 microarray platform.
Construction of sets of an nr-unique cis-regulatory elements.
Mapping the 93 Athena motifs to gene promoter regions results in
several redundancies and motif overlaps that were eliminated in
order to construct truly unique sets of motifs and corresponding
motif counts associated with every gene. Motifs were sorted
alphabetically for every gene and assessed for uniqueness in
consecutive order. Motifs whose mapping location either fully or
only partially overlaps with already accepted motifs were not
included in the unique set of motifs. Thus, redundancy was
eliminated based on motif sequence information. The obtained set
of unique cis-elements comprised a total of 76 different motifs, i.e., 17
motifs were excluded as they always overlapped with other motifs.
For example, the motif DREBIA/CBF3 (consensus sequence
“RCCGACNT?”) contains the DRE core motif (consensus sequence
“RCCGAC”). Thus, the DREB1A/CBF3 element was never included as
a separate motif in the unique set as it always contains the DRE core
motif which is sorted alphabetically before it. Multiple occurrences of
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the same motif at different locations in gene promoters were
collapsed to only single counts in the nr-unique cis-element set.

Correlation analysis and significance levels. The strength and
magnitude of the association of the various investigated gene
properties to the number of experiments in which gene probes were
observed differentially regulated (breadth of response) was quantified
using linear regression and the linear Pearson correlation coefficient,
r. Two types of correlation statistics have generally been computed:
(1) the correlation of all value pairs for all probes and (2) for mean
values only, for example, the mean number of cis-regulatory elements
for genes differentially expressed in n different experiments. A
minimum of at least 100 probes was required for mean values to be
included in the latter, thus excluding mean values of lesser
confidence. The significance of the correlation was assessed using
standard p-value calculation for correlation coefficients based on the
t-statistic with ¢t = r X sqrt[(N — 2)/(1 — )], and corresponding two-
tailed p-values were computed from the ¢-distribution where N is the
number of value pairs to be correlated. In addition to this parametric
significance testing, a nonparametric method based on data shuffling
was implemented. The pairing of data from two data vectors that
were to be tested for correlation was randomly shuffled 10,000 times;
i.e., one vector was repeatedly randomly shuffled. The count, Cgs, how
often the magnitude of the correlation coefficient exceeded the
actually observed coefficient for the unshuffled data, divided by the
total number of shufflings, Ns, served as a nonparametric p-value
estimate, ps, for the correlation coefficients such that ps = Cs/Ng. In
almost all cases, the obtained pg-value was zero, i.e., no shuffled
correlation coefficient was obtained with greater correlation than the
actually observed one. We therefore only list pg-values in the few cases
with nonzero values (Figure 2). All p-values reported for i¢-test
comparisons of mean values correspond to the two-tailed value.

GO data and categorical correlations by Fisher exact tests. GO
information was obtained from TAIR [50]. Association tests of
categorical gene classification data (GO annotations or cis-regulatory
elements) with two gene sets were performed using the Fisher exact
test. The two one-tailed Fisher exact p-values corresponding to
overrepresentation or underrepresentation of categories in the two
sets relative to one another have been calculated based on counts in 2
X 2 contingency tables. Counts 1y, ny9, 791, and nys in the contingency
table refer to n;;, number of observations of a particular category in
the first gene set; n;5, number of other categories in the first gene set;
n91, number of observations of category in second gene set; and ngo,
number of observations of other categories in the second gene set.
Listed p-values correspond to multiple testing-corrected Fisher exact
p-values using the FDR method ([53]).

Gene and genomic sequence and gene mapping information. Gene
and genomic sequence information and gene mapping information
to the Arabidopsis genome sequence, including intergenic distances,
number of introns, gene, cDNA, and 5/3" UTR length information,
and all sequence information, were obtained from TAIR database
release 6 [50]. For 2,238 of the 11,797 genes, more than one transcript
sequence was contained in the TAIR dataset (annotated splice
variants). For those genes, always the first instance was taken (*.17-
transcript) for the study of transcript-related properties such as UTR
length or cDNA length. We verified that similar results were obtained
when taking different instances and that the number of splice
variants per gene was not correlated with the breadth of response. It
should be borne in mind that the ATHI probes were designed to
target the 3" end of gene transcripts [46] and, therefore, identification
of various splice forms of genes is difficult or impossible.

Identification of gene parologs. Duplicated genes within the
Arabidopsis genome were identified following a method introduced
by Gu and coworkers [54,55]. This method is based on an all-against-
all sequence comparison of protein sequences that are not splice
variants of the same gene and require at least 30% amino acid
sequence identity with adjusted higher thresholds for short sequen-
ces. A second grouping of genes into paralogous gene families was
generated applying a more stringent threshold of 70% amino acid
sequence identity.

Multiple linear regression. Multiple linear regression was per-
formed using Statistica 7.1 (StatSoft, http:/lwww.statsoft.com). For-
ward stepwise regression was applied with F to enter set to 1 and
casewise missing value deletion.

Supporting Information

Figure S1. Relationship between Number of Experiments (NE) in
Which Genes Were Differentially Regulated as a Function of Absolute
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Expression Level Measured by the Median Rank of Gene Expression
Levels Across All Control Experiments

Curves correspond to the 500 point-running averages for the x-axis
sorted data for the three different applied expression data normal-
ization techniques.

Found at doi:10.1371/journal.pgen.0030011.sg001 (847 KB EPS).

Figure S2. Correlation of the Number of cis-Regulatory Elements in
500-Nucleotide Upstream Promoter Regions of Varying Length with
the Breadth of Differential Gene Expression Response

Red data points refer to counts of cis-elements in differentially up-
regulated genes, whereas the green data points show data for down-
regulated genes in treatment samples versus the respective control
samples. Only genes with longer than 500-nucleotide intergenic
upstream regions have been considered. Shown are the mean values
and the standard errors of the mean (SEM). The p-values associated
with the observed linear Pearson correlation coefficient are given for
all raw data pairs (all gene probes and associated gene properties)
and, in parentheses, for the mean values as they are plotted in the
graph. Only mean values with more than 100 raw observations (genes)
are plotted.

Found at doi:10.1371/journal.pgen.0030011.sg002 (16 KB EPS).

Figure S3. Correlation of the Length of the Intergenic Space in
Nucleotides Preceding Genes with Their Breadth of Differential Gene
Expression Response

Red data points refer to differentially up-regulated genes, whereas
the green data points show data for down-regulated genes in
treatment samples versus the respective control samples. Shown are
the mean values and the SEM. The p-values associated with the
observed linear Pearson correlation coefficient are given for all raw
data pairs (all gene probes and associated gene properties) and, in
parentheses, for the mean values as they are plotted in the graph.
Only mean values with more than 100 raw observations (genes) are
plotted.

Found at doi:10.1371/journal. pgen.0030011.sg003 (15 KB EPS).

Figure S4. Motif Distribution in Upstream Intergenic Regions
without Any Gene Overlaps (Green Histogram), with Possible
Preceding Genes Falling into the 3,000-Nucleotide Intergenic Up-
stream Region

Regulatory motifs are less frequent in intragenic regions.

Found at doi:10.1371/journal.pgen.0030011.sg004 (16 KB EPS).

Figure S5. Mean Number of cis-Elements in 500-Nucleotide Gene
Upstream Regions and Associated Standard Error of the Mean as a
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