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Abstract
This study evaluated the utility of human blood micronucleated reticulocyte (MNCD71+) frequency
measurement as a cytogenetic damage biomarker. The analytical methodology was flow cytometry
in conjunction with a previously described three color fluorescence labeling technique that includes
anti-CD71 to focus analyses on the most immature fraction of reticulocytes [Dertinger et al., Environ.
Molec. Mutagen., 44:427–435 (2004)]. Blood specimens from fifty self-reported healthy adult
volunteers were studied. In addition to MNCD71+ measurements, blood plasma folate and B12 levels
were assessed, since these variables tend to influence other indices of cytogenetic damage. Time-
course data are also provided for ten cancer patients undergoing treatment. For these subjects,
frequency of MNCD71+ was measured immediately before therapy, and daily during the first week
of chemotherapy and/or fractionated radiotherapy. For the group of healthy volunteers, the variables
of age, and folate and B12 levels demonstrated no significant effect on MNCD71+ frequency. In
addition, no difference was observed between pre-treatment MNCD71+ values for cancer patients
compared with healthy volunteers. Regarding chemotherapy and/or partial body radiotherapy,
elevated frequencies were observed upon initiation of treatment for 9 of the 10 patients studied.
Maximal effects were observed three to five days following initiation of therapy. The largest increases
in frequency of MNCD71+ (up to 25.9-fold) were observed in those patients exposed to anti-neoplastic
drugs, presumably due to the systemic red marrow exposure provided by these agents. Taken
together, these data support the hypothesis that the MNCD71+ endpoint represents a valuable
biomarker of cytogenetic damage that does not require cell culture or microscopy-based scoring.
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1. INTRODUCTION
In vivo cytogenetic damage assays have proven useful for myriad human health applications,
including assessments of product safety, occupational and environmental exposures, dietary
and life-style choices, and the effect of genetic polymorphisms on chromosomal integrity (1–
6). Furthermore, the current gold standard techniques for estimating radiation dose in the
absence of physical dosimetry are based on chromosomal damage endpoints, especially
dicentric and micronucleus formation in peripheral blood lymphocytes (7–10). Whatever the
application, it is well recognized that conventional assays are too cumbersome to efficiently
assess large populations (11–12). Thus, there is a need for new methods capable of quantifying
chromosomal damage that are significantly more amenable to application on a mass scale.

Whereas chromosomal effects measured in peripheral blood lymphocytes have traditionally
involved cell culture in the presence of mitogens, erythrocyte-based micronucleus assays do
not share this requirement. Rather, harvested cells are immediately ready for analysis following
minimal processing. As the assay was originally described, target cells (i.e., reticulocytes, or
Retics) were obtained from the bone marrow compartment of rodents (13–14). MacGregor and
colleagues (15) demonstrated that micronucleated erythrocytes formed in the bone marrow
persist in the peripheral circulation of mice, paving the way for mouse blood-based assays.
Since the spleen of most other species eliminate micronucleated erythrocytes from circulation,
the use of rat, canine, non-human primate, and human blood was considered counterintuitive.
Indeed, although splenic filtration does dilute the effect observed in blood relative to the bone
marrow compartment, much data have been reported establishing that circulating Retics may
represent a suitable target population for studying genotoxicant-induced micronuclei, even for
species with efficient splenic activity (16–29). It has been reported that assay sensitivity can
be realized for blood-based analyses by restricting interrogation to the most immature fraction
of Retics (16,19,21–22,25), and also by increasing the number of Retics evaluated (30). Both
of these modifications to the traditional assay are readily made using various flow cytometry-
based techniques for measuring the frequency of micronucleated reticulocytes.

The current study was designed to address two deficiencies that exist in the human blood
micronucleated reticulocyte literature: sparse information regarding the degree of inter-
individual variation, and an incomplete understanding of the sensitivity and kinetics of the
endpoint when exposure to known clastogenic agents occurs. To address these remaining
questions, a flow cytometry-based assay developed by this laboratory was applied to blood
specimens from 50 self-reported healthy volunteers in order to score: (i) young Retics (i.e.,
CD71-positive erythrocytes, or ReticCD71+), (ii) micronucleus-containing young reticulocytes
(MNCD71+), and (iii) micronucleus-containing mature erythrocytes (MNCD71−). As folate and
B12 levels have been shown to affect other endpoints of cytogenetic damage (31–32), the
influence of these factors on MNCD71+ incidence was evaluated for the health volunteer
population. Finally, flow cytometric analyses were performed for blood specimens obtained
from cancer patients before and during chemotherapy and/or partial body radiotherapy.

2. MATERIALS AND METHODS
2.1. Reagents

Prototype Human MicroFlow®PLUS Kits (Litron Laboratories, Rochester, NY) contained anti-
human-CD71-FITC, anti-human-CD61-PE, diluent solution, fixative, buffer solution, RNase
stock solution, anti-rat-CD71-FITC, propidium iodide solution, and fixed malaria-infected
rodent blood (“malaria biostandard”).
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2.2. Blood Specimen Acquisition, Processing, and Storage
2.2.1. Healthy Subjects—This study was approved by the University of Rochester
Institutional Review Board and the Western Institutional Review Board (WIRB, Olympia,
WA); informed consent was acquired from each of the 50 healthy volunteers recruited from
the University of Rochester Medical Center. This group comprised twenty-five males and
twenty-five females, ranging in age from 21 to 63 years (mean ± std dev = 41 ± 11.4 yrs).
Approximately 6 mL of venous blood was collected in green-capped vacutainers (sodium
heparin). Approximately 5 mL of blood suspension was pelleted by centrifugation and the
plasma was frozen for subsequent measurement of B12 and folate levels , while approximately
1 mL whole blood cell suspension was transferred to tubes containing 5 mL diluent solution.
Aliquots (1 mL) of diluted blood were then forcefully injected into 15 mL polypropylene tubes
containing 11 mL ultracold fixative solution (−80°C). The tubes were vortexed for several
seconds and returned to a −80°C freezer. Fixed samples were stored at −80°C for at least one
day before being transported to Litron Laboratories on dry ice. At Litron, samples were stored
at −85°C until flow cytometric analysis.

2.2.2. Cancer Patients—This study was approved by the University of Rochester
Institutional Review Board and the WIRB; informed consent was acquired from each of the
cancer patients recruited from the James P. Wilmot Cancer Center, University of Rochester.
As with specimens from healthy volunteers, these samples were collected into heparin
vacutainers, diluted, and fixed into ultracold fixative. Blood was obtained just prior to initiation
of therapy and again at approximately 24 hour intervals during the first week of treatment. For
two patients, blood specimens were collected during the first week of induction chemotherapy
without radiation (i.e., cisplatin plus docetaxel) and again four weeks later when concomitant
chemotherapy and radiotherapy were initiated. Only those patients able to provide four or more
specimens are presented here (n = 10). Subject characteristics are presented inTable 1. Fixed
samples were stored at −80°C for at least one day before being transported to Litron
Laboratories on dry ice. At Litron, samples were stored at −85°C until flow cytometric analysis.
(Cancer patient blood pspecimens were not processed for plasma B12 or folate measurements.)

2.3. Measurement of Plasma Folate and B12 Levels
Plasma was allowed to thaw at room temperature and 200 μl of each specimen was added to
1 mL freshly prepared Borate-KCN buffer solution with dithiothreitol and ligand-labeled
folate, according to instructions included with the Immulite® B12 and Folic Acid kits
(Diagnostic Products Corp. Los Angeles, California). After a heat denaturation step, levels of
B12 and folate were measured using the chemiluminescence-based Immulite Instrument
(Diagnostic Products Corp.).

2.4. Micronuclei Fluorescence Labeling Technique
Fixed human blood specimens (2 mL) were added to tubes containing 12 mL ice-cold buffer
solution and cells were collected by centrifugation. Washed cells were concentrated with
vigorous decanting, and entire cell pellets were added to tubes containing 100 μl of an antibody/
RNase solution (anti-human-CD71-FITC, anti-human-CD61-PE, RNase A), which was
prepared according to MicroFlow kit specifications. Following successive 30 min incubations
at 4°C and room temperature, cells were washed with 5 mL buffer containing 1% v/v fetal
bovine serum. Finally, cells were resuspended in 1 to 1.5 mL working propidium iodide
solution. Stained samples were stored at 4°C or on ice until analysis (same day).

2.5. Flow Cytometry Data Acquisition
At the beginning of each day of flow cytometric analysis, instrumentation and acquisition/
analysis software parameters were calibrated based on the fluorescence of a biological standard
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—blood from Plasmodium berghei infected rats. A 20 μl aliquot of this fixed and washed cell
suspension was incubated with 80 μl of antibody/RNase solution, according to manufacturer
specifications. These samples guided photomultiplier tube voltage and electronic
compensation settings to optimally resolve parasitized Retics (MNCD71+ mimicking cells), and
also guided the position of the quadrant delineating erythrocytes with and without MN (33–
34).

Data acquisition and analysis were performed using a FACSCalibur flow cytometer providing
488 nm excitation, running CellQuest software (v3.3) (instruments and software from BD-
Biosciences, San Jose, CA). Anti-CD71-FITC, anti-CD61-PE, and propidium iodide
fluorescence signals were detected in the FL1, FL2, and FL3 channels, respectively (log scale).
Human blood specimens were labeled and resuspended with propidium iodide solution at high
densities. Each specimen was analyzed two times, the first at a reduced cell density (50 to 100
μL high density specimen added to 400 μl ice cold propidium iodide solution). A second flow
cytometric analysis was performed on the undiluted, high density sample using an FL1
threshold. Set sufficiently high, this had the effect of eliminating the majority of events (i.e.,
mature, CD71-negative erythrocytes) from consideration, facilitating rapid evaluation of
immature Retics for the presence of micronuclei (35). Figure 1 andTable 2 provide more detail
regarding these low and high density analyses.

2.6. Statistical Analyses
The precision of flow cytometic data acquired by the method employed herein, as well as other
analytical performance characteristics of the technique, have been described in detail
previously (36–37). Statistical analyses were performed with JMP Software (v5, SAS Institute,
Cary, NC). For healthy volunteers, the range, mean, and standard deviation for percent
ReticCD71+, MNCD71−, and MNCD71+, and levels of folate and B12 in plasma were calculated.
The variables age, and plasma folate and B12 levels were evaluated for possible effects on
frequency of MNCD71+ with the JMP program’s regression analyses platform. The associated
ANOVA tables partitioned the total variation into components, and compared the linear-fit
equation with a simple mean response model. A p value < 0.05 was used to indicate a significant
regression effect. Additionally, all cancer patients’ pre-treatment MNCD71+ frequencies were
compared with healthy volunteers’ MNCD71+ values using a two-tailed, unpaired t-test
(significance indicated by p < 0.05).

3. RESULTS AND DISCUSSION
3.1. Healthy Subjects

Specimens from 50 self-reported healthy adult volunteers were analyzed for ReticCD71+,
MNCD71−, and MNCD71+ frequencies. Fluorescence profiles for these erythrocyte
subpopulations are shown in representative bivariate plots (Figure 1), and frequency data are
presented inTable 3. Whereas classically defined Retics (i.e., RNA-positive erythrocytes) are
typically found in circulation of healthy adults on the order of 1% to 2%, the mean
ReticCD71+ value was 0.10%. Previous studies with anti-human-CD71 (25–26) have resulted
in similar findings, suggesting that it is approximately the youngest 10% to 20% of Retics that
label with this immunoglobulin reagent. Presumably, the measurement of micronucleus
frequencies in a young age cohort such as this is desirable to help minimize the impact that
splenic filtration function has on genotoxicant-induced micronucleus frequencies.

The average frequency of MNCD71+ in the plasma of healthy subjects was similar (although
somewhat lower) to previously reported values observed in the bone marrow or in the peripheral
blood circulation of splenectomized human subjects (0.12% compared with approximately
0.2% to 0.3%, respectively) (3,38–43). This is likely related to splenic filtration function, which
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may not be fully negated by restricting analyses to ReticCD71+ (44). Even so, when compared
with MNCD71− values (mean = 0.002%), the average MNCD71+ frequency of 0.12% provides
evidence that the analytical system described herein does effectively minimize the impact that
spleen function has on peripheral blood micronucleus frequency.

Similar to other reports (3,19,41), we observed a considerable range of MNCD71+ frequencies
in presumably healthy volunteers (0.04% – 0.28%). Linear regression analyses demonstrated
that the variation in these baseline readings could not be correlated with age, or levels of B12
and folate. This is in contrast to other studies reporting significant effects for each of these
factors on the incidence of micronuclei (3,31–32). These discrepancies may be related to
differences in target cells (erythroblasts versus lymphocytes) or some other factor(s), such as
the relative homogeneity of these subjects, the great majority of which exhibited normal/
healthy B12 and folate levels (all recruited from a University hospital setting). The design of
biomonitoring studies will benefit from further characterizations of inter-individual variation.

3.2. Cancer Patients
As indicated byTable 1, the ten cancer patients provided a cross-section of treatment modalities
for evaluating MNCD71+ responses. As expected, these therapies tended to reduce the frequency
of ReticCD71+ within one to two days post-treatment (Figure 2, yy-axis). The proportion of red
marrow space that was subjected to treatment was likely an important determinant for the range
of responses observed. For instance, those patients that received systemic chemotherapy
showed the greatest reduction in frequency of ReticCD71+. In fact, in the case of subjects
CP10/12 and CP11/14, cisplatin plus docetaxel treatment caused peripheral blood frequency
of ReticCD71+ to drop to a level that precluded accurate determination of MNCD71+ frequency
beyond two or three days post-treatment.

Regarding cancer patients’ MNCD71+ frequencies, 9 of 10 patients demonstrated elevated levels
over the course of therapy (see Figure 2, y-axis). As with ReticCD71+, MNCD71+ frequencies
are expected to be influenced by the proportion of red marrow space exposed. Thus, in the case
of radiotherapy, it is likely that micronucleus induction is muted to the extent that non-exposed
sites of erythropoiesis supplied the peripheral blood compartment with MNCD71+ at a baseline
frequency. This likely explains the nil effect that radiotherapy had on CP17’s MNCD71+

frequency. This subject exhibited no reduction to %ReticCD71+, suggesting the presence of
little or no active red marrow space in the treatment field. Conversely, the higher micronucleus
responses observed for patients undergoing chemotherapy can likely be attributed to the large
amount of red marrow exposure achieved (e.g., 25.9-fold for CP26). Subject CP21 was an
exceptional case in that the frequency of MNCD71+ was observed to increase over the week of
therapy, even as the frequency of ReticCD71+ values increased markedly. It is tempting to
speculate that this patient’s diagnosis of multiple myeloma, a condition that impacts the red
marrow space, may have contributed to this unusual response to treatment.

Despite differences in health status and mean ages, cancer patients did not exhibit a statistically
significant difference in pre-treatment MNCD71+ frequency relative to the group of 50 self-
reported healthy volunteers.

3.3. Conclusions
Data presented herein support the hypothesis that the frequency of MNCD71+ in human
peripheral blood circulation can be used to index recent chromosomal damage induced by
agents and dose levels/intensities used in the cancer clinic. This is made possible by a high
throughput analytical system capable of restricting analyses to the most immature fraction of
Retics. The rarity of ReticsCD71+, coupled with the low rate of micronucleus formation, makes
high analysis rates an essential characteristic. These data, coupled with recent reports (27–
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29), suggest that ReticsCD71+ may represent a viable alternative to lymphocyte-based analyses.
Retics offer several advantages, including a low blood volume requirement, no need for cell
culture, and compatibility with an automated scoring methodology. Of course, when exposures
occur acutely, the short-lived nature of genotoxicant-induced MNCD71+ relative to more
persistent expression of chromosome damage in lymphocytes may favor analysis of one cell
type over the other, depending on the experimental question being asked. Since MNCD71+

induction was evident in clinical specimens originating from the cancer clinic, it will be
important to assess the utility of the endpoint for studying the genotoxic consequences of
occupational, environmental, nutritional, and/or genetic factors. Use of this method for
biomonitoring applications such as these is less certain, but reports by Grawé et al. (28) and
Stopper et al. (29) are encouraging.
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Figure 1.
Bivariate graphs illustrate the fluorescent resolution of human erythrocyte subpopulations
(nucleated cells and platelets have been excluded from these plots based on their light scatter
and fluorescence staining characteristics). Upper left and upper right plots: low and high density
analyses of Cancer Patient CP24. Lower left and lower right plots: low and high density
analyses of Cancer Patient CP24, three days following initiation of treatment. The low density
analyses occurred with a forward scatter threshold, facilitating enumeration of young
reticulocytes (ReticCD71+), and also CD71-negative micronucleated erythrocytes (MNCD71−).
The high density analyses occurred with FL1-thresholding, permitting rapid measurement of
CD71-positive micronucleated reticulocytes (MNCD71+).
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Figure 2.
Percent CD71-positive micronucleated reticulocytes (MNCD71+) and percent CD71-positive
reticulocytes (ReticCD71+) are graphed for each cancer therapy patient. Treatment details are
shown inTable 1. While the frequency of ReticCD71+ was generally found to decline over the
first week of treatment, higher incidences of MNCD71+ were observed.
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Table III
Healthy Adult Subjects, n = 50

Parameter Min. Max. Avg. Std. Dev. P value*

%ReticCD71+ 0.02 0.55 0.10 0.093
%MNCD71+ 0.04 0.28 0.12 0.062
%MNCD71− 0.001 0.006 0.002 0.001
Age (years) 21 63 41 11.4 0.3721
B12 (pg/ml) 99 990 392 205 0.4059
Folate (ng/ml) 6.4 57.1 22.6 11.0 0.6735

*
Linear regression analyses evaluating the factors Age, B12, and Folate on MNCD71+ frequency; these P values (> 0.05) indicate that these factors do

not affect %MNCD71+.
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