Skip to main content
. 2006 Dec 8;92(5):1522–1543. doi: 10.1529/biophysj.106.088807

TABLE 1.

Definitions and abbreviations

AP Action potential
APD Action potential duration measured at 90% repolarization
BCL Basic cycle length
CaV1.2 Cardiac L-type Ca2+ channel
RyR Ryanodine receptor SR Ca2+ release channel
CaT Calcium transient
CICR Calcium induced calcium release
VDI Voltage-dependent inactivation
CDI Calcium-dependent inactivation
ModeV L-type Ca2+ channel states in VDI gating mode
ModeCa L-type Ca2+ channel states in CDI gating mode
INa Fast Na+ current, μA/μF
m Activation gate of INa
h Fast inactivation gate of INa
j Slow inactivation gate of INa
ICa(L) Ca2+ Current through L-type Ca2+ channel, μA/μF
ICa,Na Na+ Current through L-type Ca2+ channel, μA/μF
ICa,K K+ Current through L-type Ca2+ channel, μA/μF
IKr Rapid delayed rectifier K+ current, μA/μF
xr Activation gate of IKr
rKr Time-independent rectification gate of IKr
IKs Slow delayed rectifier K+ current, μA/μF
xs1 Fast activation gate of IKs
xs2 Slow activation gate of IKs
IK1 Time-independent K+ current, μA/μF
K1 Inactivation gate of IK1
IKp Plateau K+ current, μA/μF
ICa,b Background Ca2+ current, μA/μF
ICa(T) T-Type Ca2+ current, μA/μF
INa,b Background Na+ current, μA/μF
INaCa Na+-Ca2+ exchanger in myoplasm, μA/μF
INaCa,ss Na+-Ca2+ exchanger in subspace, μA/μF
γINaCa Position of energy barrier controlling voltage dependence of INaCa
INaK Sodium-potassium pump, μA/μF
fNaK Voltage-dependent parameter of INaK
σ [Na+]o dependent factor of INaK
Ip,Ca Sarcolemmal Ca2+ pump, μA/μF
Inline graphic Maximum conductance of channel x, mS/μF
Km Half-saturation concentration, mM/L
PS Membrane permeability to ion S, cm/s
PS,A Permeability ratio of ion S to ion A
γS Activity coefficient of ion S
Inline graphic Maximum current carried through channel x, μA/μF
Vm Transmembrane potential, mV
zs Valence of ion S
Cm Total cellular membrane capacitance, 1 μF
ACap Capacitive membrane area, cm2
AGeo Geometric membrane area, cm2
RCG Ratio of ACap/AGeo = 2
Vx Volume of compartment x, μL
Δ[S]x Change in concentration of ion S in compartment x, mM
CASQ2 Calsequestrin, Ca2+ buffer in JSR
TRPN Troponin, Ca2+ buffer in myoplasm
CMDN Calmodulin, Ca2+ buffer in myoplasm
BSR Anionic SR binding sites for Ca2+ in the subspace
BSL Anionic sarcolemmal binding sites for Ca2+ in the subspace
SR Sarcoplasmic reticulum
JSR Junctional SR
NSR Network SR
ss Subspace
myo Myoplasm
Ex Reversal potential of current x, mV
[S]o Extracellular concentration of ion S, mM
[S]i Intracellular concentration of ion S, mM
[S]ss Subspace concentration of ion S, mM
[Ca2+]JSR Ca2+ concentration in JSR, mM
[Ca2+]JSR,t Total Ca2+ concentration in JSR ([Ca2+]JSR + [csqn]), mM
[Ca2+]NSR Ca2+ concentration in NSR, mM
Irel Ca2+ release from JSR to subspace, mM/ms
adap Function describing RyR channel adaptation
gradedrel ICa(L) dependent function for determining graded response of Irel
vgainofrel Function describing voltage dependence of gain
Iup Ca2+ uptake from myoplasm to SR, mM/ms
Ileak Ca2+ leak from NSR to myoplasm, mM/ms
Itr Ca2+ transfer from NSR to JSR, mM/ms
τtr Time constant of Ca2+ transfer from NSR to JSR, ms
Idiff Ca2+ transfer from subspace to myoplasm, mM/ms
τdiff Time constant of Ca2+ transfer from subspace to myoplasm, ms
Inline graphic Ca2+ flux from ICa(L)
Inline graphic Ca2+ flux from Irel
F Faraday constant, 96,487 C/mol
R Gas constant, 8314 J/kmol/K
T Temperature, 310°K
τ0 Rate constant of monoexponential decay for the probability density function fit to the open probability data of the L-type Ca2+ channel
ICa,t Total transmembrane Ca2+ current
ICa,t = ICa(L) + ICa,b + Ip,Ca − 2*INaCa − 2*INaCass
INa,t Total transmembrane Na+ current
INa,t = INa + INa,b+3*INaK + ICa,Na + 3*INaCa + 3*INaCass
IK,t Total transmembrane K+ current
IK,t = IKs + IKr + IK1 + ICa,K + IKp − 2*INaK
Itot Total transmembrane current
Itot = ICa,t + INa,t + IK,t
Istim Stimulus current, μA/μF