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ABSTRACT Formation of a stereospecific protein complex is favored by specific interactions between two proteins but dis-
favored by the loss of translational and rotational freedom. Echoing the protein folding process, we have previously proposed a
transition state for protein-protein association. Here we clarify the specification of the transition state by working with two types
of toy models for protein association. A ‘‘hemisphere’’ model consists of two matching hemispheres as associating proteins, and
a ‘‘crater’’ model consists of a spherical protein with a crater to which another spherical protein fits snugly. Short-range pairwise
interactions between sites across the interface hold together the bound complex. Small relative translation and rotation between
the subunits quickly destroy the interactions, leading to a sharp transition between the bound state with numerous short-range
interactions but restricted translation and rotational freedom and the unbound state with, at most, a small number of interactions
but expanded configurational freedom. This transition sets the outer boundary of the bound state as well as the transition state
for association. The energy landscape is funnel-like, with the deep well of the bound state surrounded by a broad shallow basin.
Calculations with the toy models suggest that mutational change in the interaction energy in the x-ray structure of a protein-
protein complex, commonly used to approximate the effect on the association constant, overestimates the effect of mutation by
10–20%. With an eye toward specifying the transition states of actual protein complexes, we find that the total number of
contacts between the subunits serves as a good surrogate of the interaction energy. This formalism of protein-protein asso-
ciation is applied to the barnase-barstar complex, reproducing the experimental results for the association rate over a wide
range of ionic strength.

INTRODUCTION

Interactions between proteins play central roles in diverse

biological functions such as signal transduction, immune re-

sponse, motility generation, and enzyme catalysis and inhibi-

tion. The mode of action is the association and dissociation

of the interacting partners. The product of association is a

stereospecific protein complex. Both the stability of the pro-

tein complex (measured by the association constant Ka) and

the association and dissociation rate constants (ka and kd) are

of fundamental interest. In many ways, the association pro-

cess resembles the folding of a protein (1). Both are favored

by short-range specific interactions, between two subunits in

association while among residues within the same polypep-

tide chain in folding. Both are disfavored by restrictions

on internal motion, i.e., relative translation and rotation for

association and large-scale variations of chain conformations

for folding. Great insight to protein folding has been gained

from systematic studies of toy models (2,3). Here we present

a study of the association process based on two types of toy

models.

Echoing the protein folding process, we have previously

proposed a transition state for protein-protein association

(4,5). The bound state of two proteins is characterized by

specific (e.g., van der Waals, hydrophobic, and electrostatic)

interactions, whereas the unbound state is characterized by

translational and rotational freedom. On going from the

bound to the unbound, a sharp transition in interaction en-

ergy and in configurational freedom is expected. This tran-

sition serves as the outer boundary of the bound state as well

as the transition state for association. A main aim of this study

is to clarify the specification of the transition state.

The measured association constants for protein complexes

vary from ,103 to .1015 M�1. What accounts for the .10

orders-of-magnitude difference in Ka? Valuable information

is provided by the structure of a protein complex determined

by x-ray crystallography or NMR spectroscopy. This struc-

ture presents a representative configuration of the bound

complex. However, there is no statistical mechanical reason

to expect a simple relation between Ka and the interaction

energy in just one representative configuration of the bound

complex. The understanding of Ka is limited by uncertainties

about the extent of relative translation and rotation sampled

in the bound state and how the interaction energy changes

with the relative motion. In recent years significant progress

has been made toward a fundamental understanding of bind-

ing affinity and kinetics (1,4–12), but many important ques-

tions remain unresolved. With the two types of toy models

studied here, in which interactions between the subunits are

fully specified, we hope to address:

1. How can the outer boundary of the bound state, i.e., the

transition state, be specified?

2. What is the extent of relative motion in the bound state

and the size of its configurational volume?

3. Is there a simple relation between Ka and Um, the minimum

interaction energy in the bound state, and, in particular, can
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the effects of point mutations on Ka be approximated by

the changes in Um?

4. Can the transition state thus specified be used to predict

electrostatic enhancement of association rate?

FORMULATION OF THE
ASSOCIATION CONSTANT

When two molecules associate to form a complex, the equi-

librium is measured by the association constant, Ka. We now

illustrate the formulation of Ka on a number of molecular

models.

General model

The development here largely follows the book of Hill (13),

but with an emphasis on protein molecules. Consider a pro-

tein molecule a with internal dynamics well separated from

overall translational and rotational motion. In particular, the

separability of internal and overall motion is the basis of the

model-free approach to the analysis of NMR relaxation data

(14). Let the overall translation be described by the dis-

placement vector ra, the overall rotation be described by an

orientation vector va, and the internal degrees of freedom be

represented by a vector xa. If the potential of mean force,

after considering the solvent degrees of freedom, of the pro-

tein molecule is Ua(xa), then the configurational integral is

Za ¼
Z

exp½�bUaðxaÞ�dradvadxa

¼ 8p
2
V

Z
exp½�bUaðxaÞ�dxa; (1)

where b ¼ (kBT)�1 and V is the volume sampled by the

translation of protein molecule a. For convenience, Ua will

be referred to simply as the potential energy.

Now suppose that there are three species, protein A, pro-

tein B, and their complex C. For protein A or B, Eq. 1 gives

the configurational integral when the subscript a is replaced

by A or B. For the complex, translations of the subunits can

be recast as the overall translation R plus a relative trans-

lation r ¼ rB – rA. The potential energy of the complex can

be written as UC(r, vA, vB, xA, xB), and its configurational

integral is

ZC ¼
Z

b

exp½�bUCðr;vA;vB; xA; xBÞ�dRdrdvAdvBdxBdxB

¼ V

Z
b

exp½�bUCðr;vA;vB; xA; xBÞ�drdvAdvBdxBdxB:

(2)

It should be noted that the bound state is defined as a par-

ticular region in the configurational space and the integration

of Eq. 2 is restricted to this region, as signified by the sub-

script b. Specifying the boundary of this region is a focus of

this study.

The equilibrium constant for the association of proteins A

and B to form the 1:1 complex C is then (13)

Ka ¼
ZC=V

ðZA=VÞðZA=VÞ (3a)

¼
R

b
exp½�bUCðr;vA;vB; xA; xBÞ�drdvAdvBdxBdxB

ð8pÞ2
R

expf�b½UAðxAÞ1 UBðxBÞ�gdxAdxB

:

(3b)

It is now helpful to define a potential of mean force to mea-

sure explicitly the energy of interaction between the sub-

units:

exp½�bUðr;vA;vBÞ� ¼R
exp½�bUCðr;vA;vB; xA; xBÞ�dxBdxBR
expf�b½UAðxAÞ1 UBðxBÞ�gdxAdxB

: (4)

Note that as r / N (i.e., as the subunits move far apart),

UC(r, vA, vB, xA, xB) ¼ UA(vA, xA) 1 UB(vB, xB) and

U(r, vA, vB) becomes zero. The association constant then

becomes

Ka ¼ ð8p
2Þ�2

Z
b

exp½�bUðr;vA;vBÞ�drdvAdvB: (5)

So far, the individual translations of the subunits in the

complex have been recast as the overall translation of the com-

plex plus relative translation within the complex, but the

individual rotations of the subunits have been retained in the

formulation of Ka. One way to separate overall and relative

rotations is to 1), select a fixed orientation of protein A and

then sample different orientations of protein B; and 2), rotate

protein A and protein B together to different orientations. Let

the orientation of protein B relative to the selected orienta-

tion of A be v, and the orientation of the subunits together be

V, then

Ka ¼ ð8p
2Þ�2

Z
b

exp½�bUðr;vÞ�drdvdV

¼ ð8p
2Þ�1

Z
b

exp½�bUðr;vÞ�drdv: (6)

It has often been said that, when two proteins form a com-

plex, six translational and rotational degrees of freedom are

lost. This statement is misleading as it neglects the relative

translational (r) and relative rotational (v) motion within the

complex. A completely rigid complex, i.e., one without any

relative translation or rotation, has an association constant

that is given by an integral over a single point, which is zero

unless the interaction potential well is infinitely deep.

The formulation of the association constant presented

above is based on separating the relative translational and

rotational degrees of freedom (r and v) from the internal

degrees of freedom (xA and xB) of the subunits. Tidor and

Karplus (15) used normal-mode analysis to study the

Energy Landscape of Protein Association 1487

Biophysical Journal 92(5) 1486–1502



contribution of relative motion within the bound complex.

The advantage of their approach is that there is no need to

explicitly separate r and v from xA and xB. The advantage

of our formulation is that there is no need to assume the

potential U(r, vA) as harmonic.

The change in chemical potential upon the association of

proteins A and B is (13)

Dm ¼ �kBT lnðZC=V½C�Þ1 kBT lnðZA=V½A�Þ
1 kBT lnðZB=V½B�Þ

(7a)

¼ �kBT lnKa 1 kBT lnð½C�=½A�½B�Þ; (7b)

where [A], [B], and [C] are the concentrations of the separate

proteins and the complex. Note that, at chemical equilibrium,

Dm ¼ 0 and Eq. 7b leads to [C]/[A][B] ¼ Ka, the expected

dependence of the equilibrium concentrations on the asso-

ciation constant. The standard chemical-potential change is

obtained when [A] ¼ [B] ¼ [C] ¼ 1 M, which is given by

Dm� ¼ �kBT lnðKa 3 1 MÞ: (7c)

If Ka is in units of M�1, then the logarithmic term of Eq. 7c

can be simply written as ln Ka.

Spherical model

Consider two spherical proteins, with an interaction energy

U(r) depending on the interprotein distance r. A complex is

considered formed when r is within an outer limit rz defining

the bound state. For this model, the association constant is

given by (5,6,11)

Ka ¼
Z r

z

0

exp½�bUðrÞ�4pr
2
dr; (8)

which is easily derived from Eq. 6 after considering the fact

that individual rotations of the subunits are uncoupled from

their relative translation and do not affect the association pro-

cess. When the interaction potential is harmonic, i.e., U(r) ¼
Um 1 f(r – rm)2/2, one has

Ka � 4pr2

mð2p=bf Þ1=2
expð�bUmÞ: (9)

With the individual rotations cast aside, the two spherical

subunits can be viewed as point masses, and the complex as a

diatomic molecule. While each subunit before association

has three translational degrees of freedom, the complex has

three degrees of translation for the center of mass, two de-

grees of rotation (around two perpendicular axes through the

center of mass), and one degree of vibration for the inter-

subunit distance. If the masses of the subunits are mA and

mB, then their partition functions for translational motion are

qa ¼ ð2pma=bh
2Þ3=2

V; (10)

where a ¼ A or B, and h is Planck’s constant. The partition

function of the complex, accounting for translation, rotation,

and vibration, is (13)

qC ¼ ½ð2pm=bh
2Þ3=2

V�3½8p
2
I=bh

2�3½1=bhn�3expð�bUmÞ;
(11)

where m ¼ mA 1 mB is the total mass, I ¼ mr2
m is the mo-

ment of inertia with m ¼ mAmB/(mA 1 mB) for the reduced

mass, and n ¼ (f/m)1/2/2p is the vibrational frequency. In Eq.

11, the classical limit of the vibrational partition function is

used. One can easily check that the association constant cal-

culated from the partition functions, Ka ¼ (qC/V)/(qA/V)

(qB/V), is identical to the result given by Eq. 9.

In this simple model, individual rotations of the subunits

and their relative translation are uncoupled, and the relative

translation can be further separated into rotation of the com-

plex and vibration within the complex. Rotation of the com-

plex is equivalent to a change in the direction of the relative

translation, whereas vibration within the complex is just a

change in the magnitude of the relative translation. For more

complicated models, individual rotations and relative trans-

lation become coupled. It then becomes impractical to in-

troduce harmonic approximations to any of the translational

and rotational degrees of freedom.

Rigid-body model

Equation 6 can be interpreted as the expression for the asso-

ciation constant of two proteins modeled as rigid bodies that

are interacting with an interaction potential U(r, v). One

expects U(r, v) to have a deep minimum, which identifies

the bound state. As already alluded to, the bound state is not

just a single configuration of the complex. Configurational

sampling around the energy minimum must take place in the

bound state, and the integral in Eq. 6 should reflect this

sampling. It is clear that Ka is not solely determined by the

minimum interaction energy, Um, in the bound state. Equally

important are the variation of the interaction energy with

relative motion and the size of the configurational space of

the bound state. Unfortunately, x-ray crystallography cannot

tell the extent of configurational space sampled by the con-

stituent proteins in the bound state. Some relative motion

around the energy minimum is prevented by steric clashes

between the subunits. Steric clashes thus set an inner bound-

ary for the bound state. The outer boundary remains to be

specified.

In this study we specify the six relative translational and

rotational degrees of freedom of the bound state in the

following way (see Fig. 1 A). Protein A is fixed in space, with

the center of the binding site at the origin of a laboratory-

fixed coordinate system. Protein B is allowed to translate and

rotate. The position of the binding site of protein B in the

laboratory-fixed coordinate system is identified as the rela-

tive translation vector r. With the magnitude of the r denoted

as r and the direction of r specified by polar and azimuthal

angles u and f, dr¼ r2drsinududf¼�r2drdcosududf. The

orientation v of protein B in the laboratory-fixed coordinate

system consists of a body-fixed unit vector e (with the polar
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and azimuthal angles j and z) and a rotation angle x around

the unit vector. In terms of these angles, dv¼ sinjdjdzdx ¼
�dcosjdzdx.

Equation 6 can be rewritten as (4)

Ka ¼
R

b
exp½�bUðr;vÞ�drdvR

b
drdv

3

Z
b

drdv=8p
2
;

¼ Æexp½�bUðr;vÞ�æbVb; (12)

where the first term is the average Boltzmann factor of the

bound state, and the second term Vb ¼
R

bdrdv/8p2 is the

configurational volume of the bound state. If Vb is in units of

Å3, then a multiplicative factor of 10�27 NA, where NA is

Avogadro’s number, is required for Ka to be expressed in

units of M�1. In this study Eq. 12 is implemented by

sampling r and v over a region that covers the bound state.

A similar sampling approach has been taken by Schlosshauer

and Baker (16). In the sampling region r is restricted to

between 0 and r0 and cosu to between cosu0 and 1. No

restrictions are imposed on the other four coordinates, hence

f and z are allowed to vary from 0 to 2p, cosj from �1 to 1,

and x from �p to p. The upper bound r0 is introduced

because, among the six degrees of freedom, the relative

separation r is the only one for which the span of all possible

values (0 to N) cannot be fully sampled. In this study we

typically set the upper bound r0 to 10 Å. Within r , r0 Å, a

certain span of cosu values may not be allowed due to col-

lision between the subunits (such as in the hemisphere

models to be introduced later). The lower bound cosu0 is

introduced to account for this situation.

The total sampling volume in the six-dimensional config-

urational space is V0 ¼ 16p3(1 – cosu0)r0 when r, cosu, f,

cosj, z, and x are uniformly sampled. Along r, there is a

geometric factor r2, which should appear as a weighting

factor when the uniform sampling is used to calculate

averages. Specifically, r, the average of a quantity A, ÆAæ, is

calculated as Ær2Aæ9/Ær2æ9, where Æ� � �æ9 means averaging with

uniform sampling. Of all the configurations distributed

within the sampling volume, some do not contribute to Ka

because they involve steric clashes between the subunits. Let

the fraction that avoids clashes be fc. Within this fraction,

only a subfraction (fb) is in the bound state. The configu-

rational volume of the bound state is given by

Vb ¼ fc fbV
0
Ær2æ9b=8p

2 ¼ 2pfc fbð1� cosu0Þr0Ær2æ9b; (13a)

where Ær2æ9b is the average of r2 over the bound-state con-

figurations, generated with uniform sampling of r. Suppose

that, out of M0 initial configurations, M configurations do not

have steric clashes, and of these Mb are in the bound state.

Then fc ¼ M/M0, fb ¼ Mb/M, and the average Boltzmann

factor is given by

Æexp½�bUðr;vÞ�æb ¼
+
Mb

r2
exp½�bUðr;vÞ�

MbÆr2æ9b
: (13b)

The average Boltzmann factor can be used to define a free

energy of interaction in the bound state:

Æexp½�bUðr;vÞ�æb[ expð�bGintÞ: (14)

The magnitude of Gint is expected to be less than that of the

minimum energy Um. Now Eq. 12 can be written as

�kBT ln Ka ¼ Gint � kBT lnð10
�27

NAVbÞ: (15)

Toy models

We implement two type of toy models to illustrate the cal-

culation of the association constant. They have different

interface shapes, mimicking in a small measure the great

variety of interface shapes of actual proteins. The first, called

the hemisphere model, consists of two matching hemispher-

ical proteins (both with a radius denoted by R), which form a

whole sphere in the bound state (see Fig. 1 B). The binding

site on each subunit is a flat circle with an area S ¼ pR2. The

second toy model, called the crater model, consists of a

spherical protein with a crater to which another spherical

protein snugly fits in the bound state (see Fig. 1 C). The radii

of the two proteins are denoted as RA and RB, respectively. In

this case the binding site is curved on each side. If the polar

angle spanned by the binding site on protein B is g, then the

interface area is S ¼ 2pR2
Bð1� cosgÞ. In this study cosg is

FIGURE 1 (A) Definitions of the three translational (r) and three rota-

tional (e and x) degrees of freedom. (B) The hemisphere and (C) crater

models in their minimum-energy configurations. (D) Side view of the inter-

face between two subunits with two types of interaction sites: filled for h and

open for p.
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set to 0.5, so the interface areas of the two models are iden-

tical when R ¼ RB. In both models, the body-fixed unit vec-

tor e on protein B is chosen to be the normal vector located at

the center of the binding site, pointing toward the interior of

the protein. The coordinate systems for r and v are defined

such that the configuration in which the two subunits are

perfectly matched corresponds to r ¼ 0, cosu ¼ cosj ¼ 1,

and x ¼ 0. Note that for the hemisphere model, when r , R,

cosu must be greater than 0 to avoid collision between the

two subunits.

To model interactions, matching loci on the binding sites

of the two subunits are randomly selected, with a minimum

separation of sm ¼ 3.5 Å among the loci on either side. To

ensure stereospecificity of the bound complex, there are two

types of interaction loci (labeled h and p). The total numbers

of h and p loci are denoted nh and np, respectively. Each

locus on protein A potentially interacts with all the loci on

protein B and vice versa. The interaction energy between two

loci across the interface is a square well (between two h-loci

or two p-loci) or square barrier (between an h- and a p-locus),

with a width rw ¼ 3.5 Å (see Fig. 1 D). When the two

subunits collide, the interaction energy is infinite; otherwise

it is given by

Uðr;vÞ ¼ +
nh1np

iA ;iB¼1

u0IiAiB sðjriA � riB jÞ; (16)

where I ¼ �1 for two like loci and 11 for two unlike loci,

s(r) ¼ 1 if r , rw and 0 otherwise, and u0 is set to 1.57 kBT0,

in which T0 is a reference temperature (e.g., 300 �K). Unless

otherwise indicated, results will be for the reference tem-

perature. In the perfectly-matched configuration of the

complex, the nh h-loci and np p-loci on protein A coincide

with their cognate loci on protein B and no other pairs are

within interaction range, leading to a total energy of �(nh 1

np)u0. Note that the energy given by Eq. 16 is discrete.

Two sets of parameters are implemented for both the

hemisphere model and the crater model. In the first set, R ¼
20 Å for the hemisphere model while RA ¼ 25 Å and RB ¼
20 Å for the crater model. The interface areas of the two

models are both 1257 Å2. Over this area 30 interaction loci

are distributed, of which 18 were h-loci and 12 are p-loci. In

the second set, R ¼ 17 Å for the hemisphere model, while

RA¼ 21 Å and RB¼ 17 Å for the crater model. The interface

areas of the two models are now 908 Å2. Over this area 20

interaction loci are distributed, of which 12 are h-loci and 8

are p-loci. The interaction locus densities are ;1 in every 45

Å2 of interface area for all models. For easy reference, the

hemisphere and crater models with the larger surface area

will be denoted as HL and CL, respectively, and the corre-

sponding ones with the smaller interface area will be denoted

as HS and CS, respectively. The sampling bounds r0 and

cosu0 for the models are listed in Tables 1 and 2.

Outer boundary of bound state and association
rate constant

The outer boundary of the bound state dictates the rate con-

stant at which the complex is formed by diffusion. Exper-

imental data on the diffusion-controlled association rate thus

provide valuable information for specifying the outer bound-

ary. In the absence of long-range interactions, the diffusion-

controlled association rate constant, k0
a , is typically in the

range of 105–106 M�1 s�1 (17). The parameters used in the

models should lead to values of k0
a that are in this range. We

carry out this important check by calculating k0
a for each

model through Brownian dynamics simulations (18).

TABLE 1 Transition state and bound state properties of the toy models with an interface area of 1257 Å2

Variables Hemisphere model Crater model

Sampling range of coordinate

r0 (Å) 10 6 10 6

cosu0 0 0 �1 �1

Mean and standard deviation of coordinate in transition state

rz6sz
r (Å) 3.3 6 0.7 3.4 6 0.5 3.7 6 0.9 4.0 6 0.7

cosu
z
6sz

cosu 0.8 6 0.2 0.8 6 0.2 0.7 6 0.2 0.7 6 0.2

f
z
6sz

f 3.0 6 1.8 3.0 6 1.8 2.8 6 1.9 3.0 6 2.0

cosj
z
6sz

cosj 0.995 6 0.004 0.994 6 0.005 0.988 6 0.011 0.987 6 0.009

z
z
6sz

z 2.9 6 1.7 2.9 6 1.7 3.6 6 1.6 3.4 6 1.7

xz6sz
x 0.004 6 0.15 �0.001 6 0.19 �0.01 6 0.17 0.003 6 0.20

Energetic and geometric parameters of bound state

�bUm 54.98 56.55 54.98 54.98

�bUz 23.56 21.99 25.14 21.99

Æexp(�bU)æb 6.79 3 1020 6.26 3 1020 4.44 3 1020 3.01 3 1020

–bGint 47.97 47.89 47.54 47.15

fc 7.18 3 10�3 2.52 3 10�3 1.66 3 10�3 0.510 3 10�3

fb 2.26 3 10�3 11.96 3 10�3 2.10 3 10�3 14.57 3 10�3

Ær2æ9b (Å2) 6.75 7.13 7.54 8.78

Vb (10�3 Å3) 6.88 8.10 3.31 4.92

Ka (1015 M�1) 2.8 3.1 0.89 0.89
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The outer boundary of the bound state plays a critical role in

the transition-state theory for the protein-protein association

(4,5,17). In this theory, the outer boundary is taken to be the

transition state, and the association rate constant in the pres-

ence of long-range electrostatic interactions is calculated as

ka ¼ k0

a Æexp½�bUel�æz
; (17)

where Uel is the free energy of long-range electrostatic inter-

actions between the associating proteins, and Æ. . .æz signifies

averaging over the transition state. Note that short-range in-

teractions and long-range electrostatic interactions play sep-

arate roles. The former exclusively determine the transition

state and thus the prefactor k0
a , while the latter exclusively

contribute to the exponential factor. Previous specifications

of the transition state have been guided by experimental data

(4,19–22); our aim is to establish a theoretical foundation for

the transition state of protein-protein association. We test our

theoretically based transition state by comparing the predic-

tion of Eq. 17 for the ionic-strength dependence of ka against

experimental data.

FUNNEL-LIKE ENERGY LANDSCAPE AND
TRANSITION STATE

The toy models are designed to capture two essential proper-

ties of protein complexes:

1. The bound state is located around the bottom of a deep

energy well, stabilized by numerous specific interactions.

2. Small separation and reorientation of the subunits will

destroy many of these interactions and lead to the disso-

ciation of the complex. These properties are reminiscent

of those for protein folding and suggest a funnel-like

energy landscape.

Configurational sampling in toy models

Configurations of the subunits in each model system are ran-

domly generated, with the relative separation (r) restricted to

within 10 Å. Each configuration is checked for collision

between the subunits. If no collision occurs, the interaction

energy is calculated. Typically energy calculations are made

on 10 million configurations. Fig. 2 A displays a scatter plot

of the interaction energy versus the rotation angle x for

the HL model. A striking feature of the plot is the sudden

transition between the bound state in which relative rotation

is restricted and interaction between the subunits is strong

and the unbound state in which relative rotation is unre-

stricted but interprotein interaction is weak. This contrast is

manifested by the standard deviation of x (sx) sampled at

different energy levels (Fig. 2 B). The transition can be con-

veniently located by the parameter

JðUÞ ¼ ÆsxðU9ÞæU9.U � sxðUÞ; (18)

which is the difference of the standard deviation of x at

energy level U from the average for all higher energy levels

(U9 . U). At the start of the transition from the bound state to

the unbound state, J(U) is maximal. We take the corre-

sponding energy level, Uz, as defining the outer boundary of

the bound state and the transition state. For the HL model,

Fig. 2 B shows bUz ¼ 23.56. The corresponding sz
x is 0.15

radians, or, 8.6� (the mean value of x among the transition-

state configurations is close to the expected value of 0).

Among the four toy models sz
x varies from 8� to 14�. Note

that the location of the outer boundary of the bound state

stays the same even when the value of the energy parameter

u0 is changed.

Another feature of the U-versus-x scatter plot is the profile

of the lower bounds of the sampled energies at different

TABLE 2 Transition state and bound state properties of the toy models with an interface area of 908 Å2

Variables Hemisphere model Crater model

Sampling ranges of coordinate

r0 (Å) 10 6 10 6

cosu0 0 0 �1 �1

Mean and standard deviation of coordinate in transition state

rz6sz
r (Å) 3.4 6 0.8 3.5 6 0.7 3.5 6 0.6 3.3 6 0.5

cosu
z
6sz

cosu 0.7 6 0.2 0.7 6 0.2 0.7 6 0.2 0.7 6 0.2

f
z
6sz

f 3.0 6 1.9 3.0 6 1.9 3.0 6 1.8 3.1 6 1.8

cosj
z
6sz

cosj 0.994 6 0.006 0.993 6 0.007 0.986 6 0.010 0.988 6 0.008

z
z
6sz

z 3.5 6 2.1 3.5 6 2.1 3.3 6 1.9 3.2 6 1.9

xz6sz
x �0.004 6 0.23 �0.002 6 0.25 �0.03 6 0.18 �0.03 6 0.14

Energetic and geometric parameters of bound state

�bUm 39.27 39.27 36.13 36.13

�bUz 18.85 17.28 17.28 18.85

Æexp(�bU)æb 1.36 3 1014 0.953 3 1014 0.111 3 1014 0.154 3 1014

�bGint 32.54 32.19 30.04 30.36

fc 10.1 3 10�3 3.54 3 10�3 2.47 3 10�3 0.770 3 10�3

fb 2.46 3 10�3 14.13 3 10�3 2.09 3 10�3 9.65 3 10�3

Ær2æ9b (Å2) 6.55 7.23 7.37 6.58

Vb (10�3 Å3) 10.2 13.6 4.78 3.69

Ka (108 M�1) 8.4 7.8 0.32 0.34
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x-values. For example, the lower bounds at 690� are much

lower than those at 6120�. The lower bounds in U are

reached when the other five coordinates are close to those in

the perfectly matched configuration. Starting with the per-

fectly matched configuration (in which x ¼ 0�), as the value

of x is changed toward 6180�, the energy shows nearly the

same profile as in Fig. 2 A. This profile is a reflection of the

distribution of the interaction loci within the binding sites.

The energies and statistical distributions in x and the other

coordinates for the transition states of the four toy models are

listed in Tables 1 and 2. The span of allowed values of the rel-

ative separation r experiences a sharp transition, as illustrated

by a scatter plot in Fig. 3 A for the HL model, similar to the

situation for the rotation angle x. The transition also occurs

at the same energy level Uz as found in the x-dependence.

The mean values of r among the transition-state configura-

tions of the four toy models all fall within 3 to 4 Å; the

standard deviations are between 0.5 and 1 Å.

In contrast to x and r, sampling along the other four co-

ordinates shows much less variation between the bound and

unbound states. Avoidance of collision forces the direction

of the translation of subunit B to be away from subunit A

(i.e., cosu . 0). This is so even for the crater models, for

which the lower bound of cosu is set to �1. There are no

significant differences in the ranges of cosu and f sampled

between the bound and unbound states. Avoidance of colli-

sion also significantly restricts the direction of the body-fixed

unit vector e. Only values of cosj . 0.8 are sampled in each

of the four models (freedom in cosu and cosj will eventually

be regained when r is greater than the sum of the subunit

radii), with values in the bound state restricted to ;0.98,

corresponding to a polar angle of ;10�. Because of the re-

striction on cosj, there is apparent freedom in the azimuthal

angle z of the unit vector e (note that the value of z is

irrelevant at cosj ¼ 1).

Though it is not possible to sample the full span of pos-

sible r values (0 to N), the regions of interest, i.e., the bound

state and the transition to the unbound state, occur well be-

low the upper bound r0 ¼ 10 Å and hence are well sampled.

To make sure that conclusions are not influenced by the

specific value of r0, the configurational spaces of the four toy

models are also sampled with r0 ¼ 6 Å. All the main results

presented above are confirmed, with a possible small shift in

Uz (Tables 1 and 2).

Free energy functional along r

Along the r coordinate, the interplay between interaction

energy and configurational freedom in the transition from the

bound state to the unbound state can be elucidated by sep-

arating the Boltzmann weight into energetic and entropic

contributions. The energy function E(r) can be defined from

the average Boltzmann factor among the N(r) allowed con-

figurations in a bin [r – Dr/2, r 1 Dr/2]:

FIGURE 2 (A) Scatter plot of the

interaction energy versus the rotation

angle x for the HL model. For clarity,

the full range of x is evenly divided into

500 bins and each bin contains at most

one sampled x-value at each energy

level. The total number of sampled

configurations is 107 (r0 ¼ 10 Å). The

transition-state energy level is indicated

by dark points. (B) The standard devi-

ation of x and the parameter J (Eq. 18)

at different energy levels. An arrow

indicates the transition-state energy

level, where J is maximal.

FIGURE 3 (A) Scatter plot of the

interaction energy versus the relative

separation r for the HL model. The full

range of r (0–10 Å) is evenly divided

into 500 bins and each bin contains at

most one sampled r-value at each energy

level (out of a total of 107 sampled

configurations). (B) The free-energy func-

tional W(r) and its energetic and entro-

pic components.
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exp½�bEðrÞ� ¼
+

NðrÞ
exp½�bUðr;vÞ�

NðrÞ : (19a)

Note that E(r) ¼ 0 as r / N. The entropy function can be

defined by scaling the number of allowed configurations

with the expected number if collisions were not considered,

exp½SðrÞ=kB� ¼
fcð1� cosu0Þr0NðrÞ

2MDr
; (19b)

where M is the total number of allowed configurations

collected over the sampling volume V0 ¼ 16p3(1 – cosu0)r0.

Note also that S(r) ¼ 0 as r / N. A free energy functional

can then be defined accordingly,

WðrÞ ¼ EðrÞ � TSðrÞ: (19c)

Fig. 3 B displays the free energy functional and its en-

ergetic and entropic components for the HL model. Note

that, even at r ¼ 10 Å, bE(r) and S(r)/kB are still quite

significant (at ;�10 and �4, respectively). The interactions

contributing to E(r) at such large separations between the

centers of the binding sites come from loci on the peripheries

of the binding sites. These interactions may hold the subunits

together to allow them time to search for the bound state.

Such an ‘‘entrapment’’ effect has been seen in Brownian dy-

namics simulations (23). The energy and entropy functions

have very different dependences on r. E(r) decreases sharply

as the subunits enter the bound state (at around the mean

r-value, 3.4 Å, of the transition-state configurations). The

change in S(r) is more gradual. The asynchronous changes in

E(r) and S(r) do not seem to lead to a significant free-energy

barrier, unlike what was speculated previously (5). How the

change in internal degrees of freedom during the association

process affects the energy and entropy functionals remains to

be studied.

A similar free energy functional, W(r, x), which depends

both on r and x, can also be defined. The energy component

is again given by the average Boltzmann factor according to

Eq. 19a, but with N(r) replaced by N(r, x), the number of

allowed configurations within a two-dimensional grid with r
in [r – Dr/2, r 1 Dr/2] and x in [x – Dx/2, x 1 Dx/2]. The

entropy component is given by Eq. 19b, but with N(r) in the

numerator replaced by N(r, x) and an additional factor, 2p/

Dx, is inserted. Fig. 4, A–D, displays W(r, x) for the four toy

models. The functional presents a funnel-like energy land-

scape, with the deep well of the bound state surrounded by a

broad shallow basin.

Number of contacts—surrogate for
interaction energy

Our aim is to extend the study of protein-protein association

from toy models to actual protein-protein complexes. In that

case, calculation of interaction energies based on realistic

molecular models becomes a formidable challenge. There-

fore we have sought alternatives to the interaction energy for

obtaining the energy landscape of protein-protein associa-

tion.

Inspired by the use of contacts in studying protein folding,

we have tested different contact-based choices and found a

reasonable surrogate in Nc, the sum of native contacts and

nonnative contacts. The former are taken as formed by cog-

nate pairs of interaction loci within a distance of rw ¼ 3.5 Å

whereas the latter are taken as formed by noncognate pairs

of interaction loci within a shorter distance threshold rw9 ¼
2.5 Å. Scatter plots of Nc versus the rotation angle x and the

relative separation r are shown in Fig. 5, A and B, for the HL

model. These pictures are qualitatively very similar to those

found for the interaction energy (see Figs. 2 A and 3 A). In

the Nc-versus-r scatter plot, a void appears at the r ¼ 0 and

Nc ¼ 0 corner, because when the separation is small the two

subunits will inevitably make at least a few contacts. The

transition-state Nc level, Nz
c , can be found from the maxi-

mum of the parameter J(Nc) that is defined analogous to

Eq. 18. The value of Nz
c thus found is 20, 21, 15, and 14,

respectively, for the HL, CL, HS, and CS models.

The transition-state configurations obtained with Nc are

very similar to those obtained with energy. The average

energies of the Nc-based transition-state configurations are

24, 25, 23, and 18, respectively, in units of kBT. These are

close to the values of bUz listed in Tables 1 and 2. In addi-

tion, the means and standard deviations of the six coordinates

in the Nc-based transition-state configurations are close to

their energy-based counterparts (data not shown).

A ‘‘free-energy functional’’ WNc(r) can be defined ana-

logous to W(r), with �bU in Eq. 19a replaced by Nc. Note

that the entropic components of WNc(r) and W(r) are iden-

tical. The energetic component ENc(r) shows high correlation

with its counterpart E(r) (e.g., with R2 ¼ 0.97 for the HL

model). Similarly, in analogy to W(r, x), a two-dimensional

free energy functional, WNc(r, x), can be defined. Fig. 6 A
displays this functional for the HL model, which presents the

same funnel-like energy landscape as seen in Fig. 4 A. The

correlation between ENc(r, x) and ENc(r, x), when the latter

is ,�15 kBT, is shown in Fig. 6 B for the HL model.

Barnase-barstar complex

The formalism developed for the toy models can be directly

applied to actual protein-protein complexes. For illustration,

here we present the application to the barnase-barstar com-

plex, a system that has been studied extensively (4,5,19,21,24–

30). We treat each subunit as a rigid body. The binding sites

on the two subunits are identified by heavy atoms making

interfacial contacts which are ,5 Å in the x-ray structure of

the complex (Protein Data Bank entry 1brs chains C and F;

Fig. 7) (25). There are a total of 109 such atoms on the

barnase side and 101 on the barstar side. The geometric

center of this collection of interface atoms and the normal

vector of their least-square plane are used to define the
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coordinate systems for r and v. The laboratory-fixed co-

ordinate system has its origin at the geometric center and its

z axis along the normal vector. Barnase is then fixed in this

coordinate system. The geometric center and the normal

vector is body-fixed on barstar, which is then allowed to

translate and rotate. The position of the geometric center

fixed on barstar defines r; the normal vector fixed on barstar

becomes the body-fixed unit vector e, which together with a

rotation angle x define v. The x-ray structure corresponds to

r ¼ 0, cosu ¼ cosj ¼ 1, and x ¼ 0.

Interaction loci are identified from the collection of in-

terface atoms. For each interface atom, the shortest cross-

interface contact with a heavy atom in the x-ray structure is

found. All such cross-interface contacts are then sorted in

ascending order of contact distances. If a contact-forming

atom is within sm ¼ 3.5 Å of an atom on the same protein

FIGURE 5 Scatter plots of the total

contact number versus (A) the rotation

angle x and (B) relative separation r for

the HL model. Dark points indicate Nz
c .

FIGURE 4 The free-energy functional W(r, x) for the (A) HL, (B) CL, (C) HS, and (D) CS models.
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which forms a shorter contact, the longer contact is elim-

inated from the list. In the end, a total of 17 distinct contacts

are retained. Fig. 7 displays the interaction loci, i.e., atoms

forming those cognate contacts. For each interaction-locus

atom, a contact radius is defined as half of the contact dis-

tance with its partner.

For configurations that do not involve steric collision be-

tween the two subunits, the number of contacts, Nc, is found

by summing the number of native and nonnative contacts. A

native contact is formed by an interaction-locus atom with its

cognate partner, with a distance that is not longer than the

value found in the x-ray structure by rw¼ 3.5 Å. A nonnative

contact is formed by a noncognate pair of interaction-locus

atoms, with a distance that is not longer than the sum of their

contact radii by rw9 ¼ 2.5 Å. In particular, in their x-ray

structure, there are 21 nonnative contacts in addition to the

17 native contacts, resulting in Nc ¼ 38. Steric collision is

detected whenever a pair of atoms on the two subunits is

closer than a collision distance. For the purpose of detecting

collision, atoms are classified into three types: hydrogen, po-

lar (nitrogen and oxygen), and nonpolar (carbon and others).

The collision distance within one type or between two types

of atoms is set to the minimum distance of such contacts in

the x-ray structure of the complex. The resulting collision

distances are: 2.64 Å between polar atoms, 3.48 Å between

nonpolar atoms, 3.11 Å between polar and nonpolar pairs,

2.14 Å between hydrogens, 1.63 Å between polar and hy-

drogen atoms, and 2.51 Å between nonpolar and hydrogen

atoms.

Scatter plots of Nc versus the rotation angle x and the

relative separation r are shown in Fig. 8 for the barnase-barstar

complex. These plots show resemblance to corresponding

plots for the toy models (see Fig. 5). The transition from the

bound to the unbound state occurs at Nc ¼ 14 for configu-

rations sampled with r0 ¼ 6 Å. The mean and standard

deviation of x in the transition-state configurations are 0.01

and 0.31 radians (or 0.6� and 18�), respectively. The mean and

standard deviation of r in the transition state are 4.9 and 0.5 Å,

respectively. These and other statistics of the transition state

are collected in Table 3. Representative configurations in the

transition state are shown in Fig. 9. In Fig. 10 we display the

free-energy functional WNc(r, x). Similar to the situation

found in the toy models (see Fig. 6 A), this functional exhibits

a funnel leading to the minimum-energy configuration (as

given by the x-ray structure of the complex).

While the transition from the unbound to the bound state

is qualitatively similar to those in the toy models, a major

difference in the barnase-barstar complex is that the interface

involves atomic details. Because of this, when the relative

FIGURE 6 (A) The free-energy functional WNc(r, x) for the HL model.

(B) Correlation of the energetic component ENc(r, x) with its counterpart

E(r, x). The values of the latter is restricted to ,�15 kBT. This range of

values covers the bound state and much of the transition region to the

unbound state (correlation outside this range deteriorates). The line of linear

regression (with zero intercept) is shown.

FIGURE 7 The interaction-locus atoms of the barnase-barstar complex.

Barnase and barstar are shown in blue and gray, respectively; the interaction-

locus atoms are shown as blue or red spheres.
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separation is small, collision between the subunits can be

avoided only if they are nearly aligned for complex forma-

tion. In particular, at small r rotation around the body-fixed

unit vector becomes very restricted, and only a narrow range

of x around 0� can be sampled. This explains why in Fig. 10

the WNc(r, x) surface does not cover the full sampled range

of x.

Comparing Fig. 8 A with Fig. 5 A, it can be seen that

fluctuations in the lower bounds of the sampled Nc values

across the range of x are much more prominent in the

barnase-barstar complex. In the toy models, the variation of

the lower bounds of Nc with x reflects the distribution of

the interaction loci within the interface. Unlike in the toy

models, a change in x in the barnase-barstar complex can

lead to collision between the proteins. Avoidance of collision

thus introduces additional variations in the lower bounds of

Nc. Alignment of the proteins at small separations required

by avoidance of collision also explains the expanded void at

the r ¼ 0 and Nc ¼ 0 corner in the Nc-versus-r scatter plot

(comparing Fig. 8 B against Fig. 5 B). As the proteins are

more aligned, more contacts will also form.

EQUILIBRIUM AND KINETICS OF ASSOCIATION

As described in the previous section, the outer boundary of

the bound state is specified as the transition region in trans-

lational and rotational freedom on going from the bound to

the unbound state. This specification allows for an unam-

biguous calculation of the association constant from the

integration in Eq. 6. On the other hand, the numerical value

of Ka should not be sensitive to the precise specification of

the outer boundary of the integration.

Determination of Ka

Tables 1 and 2 list geometric and energetic information for

the bound state of the toy models. The operational definition

of the bound state is given by the energetic criterion U # Uz.

As noted in the previous section, the relative separation and

FIGURE 8 Scatter plots of the total

contact number versus (A) the rotation

angle x and (B) relative separation r
for the barnase-barstar complex. Dark

points indicate Nz
c . To ensure adequate

sampling of the whole range of r from

0 to 10 Å, three independent runs are

carried out with the upper bound of r set

to 4, 6, and 10 Å, respectively. The

sampled configurations are then com-

bined.

FIGURE 9 Representative transition-state configurations. Barnase, shown

in blue, is fixed in the laboratory frame whereas barstar is allowed to trans-

late and rotate. The body-fixed unit vector e on barstar in different configu-

rations is shown as arrows. For one particular configuration, the arrow is in

blue and the corresponding structure of barstar is shown in gray.

TABLE 3 Transition state and bound state properties of

barnase-barstar complex

r0 (Å) 6

cosu0 �1

rz6sz
r (Å) 4.9 6 0.5

cosu
z
6sz

cosu 0.89 6 0.08

f
z
6sz

f 3.2 6 2.5

cosj
z
6sz

cosj 0.92 6 0.05

z
z
6sz

z 2.8 6 1.7

xz6sz
x 0.01 6 0.31

Nc;max 30

Nz
c 14

fc 0.101 3 10�3

fb 0.059

Ær2æ9b (Å2) 19.5

Vb (10�3 Å3) 8.75

Interface area (Å2)* 797

Ka (1012 M�1)y 8

*Taken as half of the buried solvent-accessible area calculated with a 1.4 Å

probe radius.
ySchreiber and Fersht (24). The value listed is for an ionic strength of 125 mM.
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orientation between the two proteins in the bound state are

severely restricted. Specifically, the separation distance r
is restricted to within ;4 Å, the direction of the body-fixed

unit vector e on protein B is restricted to within ;10�, and

rotation around this vector is restricted to within ;15�. The

resulting configurational volume of the bound state is ;10�2

Å3. The free energy of interaction in the bound state, Gint,

defined in terms of the average Boltzmann factor via Eq. 14,

is ;5–10 kBT higher than the minimum-energy (Um) found

from configurational sampling. The association constant is

2.8 3 1015 and 0.89 3 1015 M�1, respectively, for the HL

and CL models and 8.4 3 108 and 0.32 3 108 M�1,

respectively, for the HL and CL models.

To illustrate the insensitivity of the value of Ka to the

precise specification of the outer boundary of the bound

state, in Fig. 11 we plot Ka for the HL model calculated at

different levels of bUz. It can be seen that essentially the

same value of Ka is obtained from the sampled configura-

tions as long as bUz .�48. When the bound state is located

in a deep energy well, the integral of the Boltzmann factor

for evaluating Ka (Eq. 6) is dominated by a small region

around the energy minimum, and the precise specification of

the limits of the integral has no consequence on the num-

erical value of Ka. This is the same reason why the method of

steepest descent works so well for evaluating integrals of

functions with sharp maxima. However, as the sampling vol-

ume increases, eventually the integration and the resulting Ka

value go to infinity.

The values of Ka calculated with configurations sampled

with r0¼ 10 and 6 Å are essentially identical. This is despite

the fact that in the latter configurations the collision-free

fraction fc is lower by approximately threefold and the bound

fraction fb is higher by approximately sixfold. Moreover, the

configurational volumes of the bound state obtained from

the two sets of sampling agree closely. For the HL model,

the minimum interaction energy obtained from the r0 ¼ 6 Å

configurations is lower by one level, indicating that there is

uncertainty in obtaining the absolute minimum interaction

energy by sampling.

Configurational volume of bound state

While the calculation of the association constant using dif-

ferent specifications of the outer boundary of the bound state

confirms that the numerical value of Ka is unequivocally

determined, it does indicate that the further breakup of Ka

into the average Boltzmann factor and the configurational

volume (Eq. 12) is to a certain extent arbitrary. On the other

hand, the diffusion-controlled rate to reach the bound state is

sensitive to the size of the configurational volume, hence

data on k0
a serve as a determinant of Vb.

We have carried out Brownian dynamics simulations to

calculate the diffusion-controlled rate constant to reach the

bound state, using an algorithm developed previously (18).

With the outer boundary of the bound state as specified in

Tables 1 and 2, k0
a is found to vary from 0.6 3 105 to 3.7 3

105 M�1 s�1 for the four models. These values fall within the

range of 105 to 106 M�1 s�1 observed experimentally for the

diffusion-controlled association of proteins in the absence of

long-range electrostatic enhancement (17). Thus our spec-

ification of the outer boundary of the bound state appears

reasonable. Again, the configurational volume of the bound

state thus obtained is ;10�2 Å3.

In the previous section it is seen that, according to sta-

tistics of the six translational and rotational coordinates of

sampled configurations, the transition state obtained with the

number of contacts, Nc, closely mimics that obtained with

energy. The configurational volume of the bound state cal-

culated with the two approaches also agrees to within a factor

of 3, as does k0
a , the diffusion-controlled rate constant for

reaching the bound state.

Effects of mutations

In theoretical studies of the effects of mutations on the

association constant, a common practice is to calculate

FIGURE 10 The free-energy functional WNc(r, x) for the barnase-barstar

complex. Regions not covered by the free-energy surface are not sampled.

FIGURE 11 Calculated value of Ka versus the energy level used to define

the outer boundary of the bound state.
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mutational effects on the interaction energy in the x-ray

structure of the complex (28,31,32). This is equivalent to the

approximation

�lnðKa;mt=Ka;wtÞ ¼ bÆDUmæ; (20)

where Ka;wt and Ka;mt are the association constants of the

wild-type and mutant complex, and DUm is the average

change, due to the mutation, in interaction energy of the

minimum-energy configurations of the wild-type complex.

We now have an opportunity to test this approximation.

Ten single, double, triple, quintuple, and decuple muta-

tions each are made by deleting 1, 2, 3, 5, or 10 interaction

loci on subunit A of the CL model. For the single mutations,

the mutation loci are selected randomly. For the other

mutations, the most closely clustered sets of loci are selected.

The association constant for each mutant is then calculated in

the same way as the original (‘‘wild-type’’) CL model.

For the wild-type CL model, 38 configurations are found

to have the minimum energy Um ¼ �54.98 kBT. The mu-

tations are applied to these configurations, and the changes

in the interaction energy (from Um) are averaged to obtain

ÆDUmæ. In Fig. 12 the results for the total of 50 mutations are

compared with the corresponding values for �kBT ln(Ka;mt/

Ka;wt). A good correlation is seen, but ÆDUmæ overestimates

the magnitude of �kBT ln(Ka;mt/Ka;wt) by 10–20%.

A useful approach for isolating the energetic contribution

of a particular interaction to �kBT lnKa is the double mutant

cycle (26). If locus X of protein A interacts with locus Y of

protein B, then

bDDGint[� ln½Ka;mtðX/0; Y/0Þ=Ka;wt�
1 ln½Ka;mtðX/0Þ=Ka;wt�1 ln½Ka;mtðY/0Þ=Ka;wt�

(21)

approximates the contribution of the X-Y interaction. Here

X / 0 represents a deletion mutation. The relation between

DDGint and the interaction energy between X and Y in the

minimum-energy configuration is tested on the CL model.

For 10 randomly selected interaction loci on subunit A,

deletion mutations decrease lnKa by 0.8 –2.3 (these results

are part of what is shown in Fig. 12). Deletions of their

cognate partners on subunit B decrease lnKa by 0.3–2.5.

When both partners are deleted, the change in lnKa ranges

from �0.7 to 2.8. Applying the double mutant cycle, we

obtain values of DDGint with an average of �1.45 and a root

mean-square deviation of 0.22. The average, multiplied kBT,

is very close to the contribution of a cognate pair of inter-

action loci, i.e., �u0 ¼ �1.57 kBT.

Enthalpy-entropy decomposition

Elsewhere in the article results are for a specific temperature,

T ¼ T0. Here we examine the temperature dependence of Ka.

This dependence allows for the decomposition of �kBT lnKa

into enthalpy and entropy. As shown by Eq. 7c, �kBT lnKa

represents the standard chemical-potential change upon asso-

ciation. The enthalpy and entropy components of Dm� are

DH� ¼ @ðbDm�Þ
@b

¼ �@lnKa

@b
; (22a)

DS� ¼ kBlnKa 1 DH�=T: (22b)

We focus on the particular situation where the interaction

potential U(r, v) is temperature-independent. One conse-

quence of the temperature independence is that the same

specification of the outer boundary of the bound state can be

used for all temperatures.

Equation 9 for the spherical model suggests that Ka can be

separated into a factor with an exponential dependence on

b¼ (kBT)�1 and a factor with a power-law dependence on b.

For the more general expression of Ka, given by Eq. 6, we

can write

Ka ¼ K
0

a expð�bUmÞ; (23a)

where Um is the minimum energy in the bound state and

K
0

a ¼ ð8p
2Þ�1

Z
b

expf�b½Uðr;vÞ � Um�gdrdv: (23b)

As noted earlier, the integration of Eq. 23b is dominated

by a small region around the energy minimum. In this region,

the harmonic approximation may be applicable. In that case,

each degree of freedom contributes a factor b�1/2 (see Eq. 9).

Since there are six degrees of freedom, we expect the pre-

factor K0
a to depend on b as b�3.

We find that K0
a indeed has a power-law dependence on b

for all the four toy models, as illustrated in Fig. 13 for the HL

FIGURE 12 Comparison of the effect of mutation on the association con-

stant and the average change in interaction energy in the minimum-energy

configurations of the wild-type CL model. The diagonal line indicated per-

fect agreement.
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model. The power for all four models is ;2.5 instead of 3,

hence

Ka ¼ K
0

a ðb0Þðb=b0Þ
�2:5

expð�bUmÞ; (23c)

where b0¼ (kBT0)�1. The enthalpy and entropy components

are then given by

DH� ¼ Um 1 2:5 kBT; (24a)

DS� ¼ kB ln K
0

a ðb0Þ1 2:5 kB½1� lnðb=b0Þ�: (24b)

When the interaction potential U(r, v) is temperature-

independent, the enthalpy component differs from the mini-

mum energy by just a few kBT. Both solvent effects and

conformational fluctuations within the protein molecules will

introduce temperature dependence to the interaction poten-

tial U(r, v). In that case, there will no longer be simple

relations between the enthalpy component and the minimum

interaction energy.

For the toy models, varying temperature is equivalent to

changing the energy parameter u0 at a fixed temperature. We

have thus also seen how Ka is affected by u0.

Test on transition state of
barnase-barstar complex

As shown in Table 3, the configurational space explored by

the bound state of the barnase-barstar complex is similar to

those of the toy models. In particular, the configurational

volume of the bound state, at 8.75 3 10�3 Å3, is similar to

those found for the toy models. With an experimentally

determined value of 8 3 1012 M�1 (24), we may use Eq. 12

to deduce a value of 1.5 3 1018 for the average Boltzmann

factor. This corresponds to a free energy of interaction of

Gint ¼ �42 kBT. Assuming a 7 kBT gap between the mini-

mum interaction energy Um and Gint, one finds Um¼�49 kBT.

Since we find 38 distinct contacts between the two pro-

teins in the x-ray structure, on average each of these con-

tacts apparently contributes ;1.3 kBT, or ;0.8 kcal/mol,

to the binding of the proteins. Compared to the value of 38

for Nc in the x-ray structure, the maximum value found by

configurational sampling is only 31. The failure to obtain a

higher Nc;max is largely due to the rigid-body treatment of

the proteins.

With the outer boundary of the bound state specified as

the transition region in translational and rotational freedom,

the diffusion-controlled rate constant for reaching the bound

state in the absence of long-range electrostatic enhancement,

obtained by Brownian dynamics simulations, is 1.8 3 105

M�1 s�1, which falls within the expected range. We have

also carried out another critical test on the transition state

of the barnase-barstar complex. The electrostatic interaction

free energy in the transition state is calculated over 100 rep-

resentative configurations for the ionic-strength range of

10–2000 mM. Equation 17 is then used to predict the as-

sociation rate constant at different ionic strengths. Fig. 14

displays the comparison between predicted results for ka and

experimental data of Schreiber and Fersht (27). With k0
a ¼

1:4 3106M�1s�1, good agreement is seen for the full range

of ionic strength. That the k0
a value obtained from Brownian

dynamics simulations is somewhat lower than what is re-

quired for fitting with the experimental data is to be ex-

pected; some of the configurations rejected due to steric

collision in the rigid-body treatment of the proteins in the

Brownian dynamics simulations would be allowed for real,

flexible proteins, leading to a higher k0
a .

DISCUSSION

We have used two types of toy models of protein-protein

association to explore the configurational space in the bound

FIGURE 13 Temperature dependence of the prefactor K0
a of the associ-

ation constant. The line shows the power-law dependence, K0
a ðbÞ=K0

a ðb0Þ ¼
ðb=b0Þ�2:5

.

FIGURE 14 Predicted and experimental results for the ionic-strength de-

pendence of the barnase-barstar association rate.
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state and in the transition region to the unbound state. The

models are driven by two key observations: numerous speci-

fic interactions stabilize the bound state, and these interac-

tions are lost quickly upon small translation and rotation

between the partner proteins, leading to the dissociation of

their complex. On going from the bound state to the unbound

state, both the energy function and the sampling ranges of

translational and rotational coordinates experience a sharp

increase. The increase allows for the specification of the outer

boundary of the bound state as well as the transition state for

association. The energy landscape is funnel-like, with the

deep well of the bound state surrounded by a broad shallow

basin. The basin arises from the presence of one or a few

loosely formed native contacts. Some of the features of this

energy landscape has been seen in previous studies (16,33).

Our specification of the transition state, based on theoret-

ical analyses, is in broad agreement with conclusions drawn

from experimental data. For example, Vijyakumar et al. (4)

and Frisch (34), based on effects of mutations on the asso-

ciation rate of barnase and barstar, have concluded that in the

transition state the two proteins are prealigned and solvent-

separated. Miyashita et al. (22) quantitatively analyzed

mutational data for the association between cytochrome c2

and a bacterial reaction center and obtained a transition state

that appears similar to our specification. In particular, they

found the standard deviation of the rotation angle (corre-

sponding to our x-angle) to be ;9�. We have also validated

the specification of the transition state by comparing pre-

dicted and experimental effects of ionic strength on the as-

sociation rate of barnase and barstar.

Dissection of association constant

It is obviously desirable to relate the association constant of a

protein-protein complex to interactions in the x-ray structure

of the complex. A step in bridging the two is Eq. 15, in which

�kBT lnKa is separated into the free energy of interaction,

Gint, in the bound state, and a term determined by the

configurational volume Vb of the bound state. Our study with

the toy models suggest Vb is of the order of 10�2 Å3. It

further suggests that Gint is higher than the interaction energy

in the x-ray structure of the complex by 5–10 kBT. Taken

together, we conclude that, when dissecting �kBT lnKa into

contributions from individual interactions found in the x-ray

structure, its magnitude should be increased by 17–22 kBT
(assuming that Ka is in units of M�1). This increase is to

account for the fact that Ka is determined by an ensemble of

configurations in the bound state, rather than just the single

configuration found in the x-ray structure.

Calculations with the toy models suggest that the change

of the interaction energy in the x-ray structure by mutation

predicts reasonably well the effect on�kBT lnKa. The former

appears to overestimates the latter by 10–20% in magnitude.

The double mutant cycle is shown to be able to isolate the

energetic contribution of an individual interaction.

Mechanism of protein-protein association

The outer boundary of the bound state, marked by a sharp

transition in translational and rotational freedom, has been

identified as the transition state for protein-protein associa-

tion. There are two lines of evidence in support of this iden-

tification. First, the diffusion-controlled rate for reaching this

‘‘transition state’’ is in the expected range of values. Second,

this identification puts the transition state in close proximity

to the bound state. Such proximity was actually proposed

previously (5) in explaining a common kinetic feature ob-

served in a wide of protein-protein complexes. The associ-

ation and dissociation rates have disparate ionic-strength

dependences, with the former showing strong dependence

whereas the latter showed relative insensitivity. The basis of

that explanation was Eq. 17. Because of the proximity of the

bound and transition states, Gint and ÆUelæz are expected to

show similar ionic-strength dependence, hence the insensi-

tivity of kd to and the strong dependence of ka on ionic

strength. In this study we have gone one step further, quan-

titatively rationalizing the ionic-strength dependence of the

barnase-barstar association rate.

In our formalism of protein-protein association, short-

range and long-range interactions have been treated sepa-

rately. The former are used to specify the transition state, and

the latter are then introduced for calculating association rate

enhancement. In well-separated configurations, short-range

interactions can be ignored; however, both in the bound state

and in the broad surrounding basin, the two types of inter-

actions are in play at the same time. The following mecha-

nism of association emerges (Fig. 15). From afar, long-range

electrostatic interactions bias the associating proteins, both in

separation and in orientation, toward a broad basin around

the bound state. Inside the broad basin, subsets of native

contacts hold the subunits together and open parallel path-

ways for them to reach the transition state. After passing the

transition state, the subunits undergo fine-tuning in trans-

lation and rotation and internal degrees of freedom (e.g.,

FIGURE 15 Illustration of the mechanism of protein-protein association.

The plus (1) and minus (–) signs indicate long-range electrostatic inter-

actions or short-range native interactions. Arrows indicate translation toward

the basin around the bound state or into the bound state (rotation is not

shown). In the basin subsets of short ranges, native interactions are present.
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side-chains rotamers) rearrange to achieve stereospecific fit

between the two sides. Recently Brownian dynamics and

molecular dynamics simulations have provided molecular

details on the pathways to reach the transition state and the

bound state (35). There is ample similarity between protein-

protein association and protein folding.

Folding upon association

Our formalism of protein-protein association has focused on

proteins that are relatively rigid, such that internal fluctua-

tions can be separated from overall translation and rotation.

The situation where one or both subunits are unstructured

before association or otherwise undergo significant confor-

mational changes is not addressed. The association kinetics

of such systems will likely involve new mechanisms in which

protein folding or conformational transition and association

are coupled (1,36,37). As far as the association equilibrium is

concerned, we can introduce a fictitious intermediate state in

which the two subunits are unbound but take their confor-

mations in the bound state. Then the overall association

constant Ka is the product of the equilibrium constants be-

tween the unbound and intermediate states (Kc) and between

the intermediate and bound states (Ka9). Our formalism for

association applies to the latter equilibrium. The former

equilibrium involves intramolecular conformational transi-

tions. Since the proteins prefer the unbound conformations

over the bound ones when separated, we must have Kc� 1.

Thus in general the association constants of unstructured

proteins will be substantially lower than their structured

counterparts.
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