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ABSTRACT A new form of metabolic flux analysis (MFA) called thermodynamics-based metabolic flux analysis (TMFA) is
introduced with the capability of generating thermodynamically feasible flux and metabolite activity profiles on a genome scale.
TMFA involves the use of a set of linear thermodynamic constraints in addition to the mass balance constraints typically used in
MFA. TMFA produces flux distributions that do not contain any thermodynamically infeasible reactions or pathways, and it
provides information about the free energy change of reactions and the range of metabolite activities in addition to reaction
fluxes. TMFA is applied to study the thermodynamically feasible ranges for the fluxes and the Gibbs free energy change, DrG9,
of the reactions and the activities of the metabolites in the genome-scale metabolic model of Escherichia coli developed by
Palsson and co-workers. In the TMFA of the genome scale model, the metabolite activities and reaction DrG9 are able to
achieve a wide range of values at optimal growth. The reaction dihydroorotase is identified as a possible thermodynamic
bottleneck in E. coli metabolism with a DrG9 constrained close to zero while numerous reactions are identified throughout
metabolism for which DrG9 is always highly negative regardless of metabolite concentrations. As it has been proposed
previously, these reactions with exclusively negative DrG9 might be candidates for cell regulation, and we find that a significant
number of these reactions appear to be the first steps in the linear portion of numerous biosynthesis pathways. The thermo-
dynamically feasible ranges for the concentration ratios ATP/ADP, NAD(P)/NAD(P)H, and H1

extracellular/H
1
intracellular are also deter-

mined and found to encompass the values observed experimentally in every case. Further, we find that the NAD/NADH and
NADP/NADPH ratios maintained in the cell are close to the minimum feasible ratio and maximum feasible ratio, respectively.

INTRODUCTION

Thermodynamics have been applied to many areas of

analysis of biological systems (1–5), but thermodynamics

have yet to be applied to a rigorous examination of entire

metabolic networks. This has been primarily due to a scarcity

of thermodynamic data on metabolic reactions, a lack of

rigorous models of metabolic chemistry, and the absence of

any extensive databases, which bring all of this information

together. However, the availability of thermodynamic data

has increased over time, and group contribution methodol-

ogies for estimating thermodynamic properties have also

been introduced (6–9). Furthermore, several rigorous models

of the metabolic chemistry of a variety of microorganisms

have been developed including some genome-scale models

(10–13). Recently, the application of thermodynamics to

study the feasibility of metabolic pathways has been

revisited. Beard, Qian, and co-workers have conducted

studies on the topic of eliminating internal flux cycles from

flux balance analysis solutions (14–16). These are sets of

reactions such as A/B/C/A. According to the first law

of thermodynamics, the overall thermodynamic driving force

through these cycles must be zero, meaning that no net flux is

possible through these cycles. Beard and Qian have also used

nonlinear thermodynamic and enzyme activity constraints to

determine the concentration profiles of metabolites in the

central carbon chemistry of a hepatocyte cell (17). Maskow

and Stockar used the pathway analysis method of Mavro-

vouniotis (18,19) to study the thermodynamic feasibility of

the lactic acid fermentation pathway, and they found that

without careful consideration of ionic strength of solution,

uncertainty in thermodynamic data, and cell pH, feasible

pathways can be falsely labeled as infeasible or vice versa

(20). However, these previous studies were performed on

relatively small-scale pathways due to a lack of thermody-

namic data for genome-scale models and utilized nonlinear

optimization criteria to determine fixed values for the activities

of the metabolites under an isolated set of conditions.

In a previous article, we utilized the group contribution

method (7,8) to estimate the standard Gibbs free energy

change, DrG9�, of the reactions in a genome-scale model of

Escherichia coli, and we used these estimates to assess the

thermodynamic feasibility of the reactions in the model (21).

We called this model iHJ873, which is based on the iJR904
model developed by Palsson and co-workers. The iHJ873
model was derived from the iJR904 model by removing all

of the reactions in the iJR904 model that contain compounds

for which the standard Gibbs free energy change of

formation, DfG9�, could not be estimated and replacing

these reactions with lumped reactions. The iHJ873 model

contains fewer reactions than the iJR904 model (873 vs. 931,

respectively), but DrG9� of every reaction in the iHJ873 can

be estimated. The thermodynamic studies of the iHJ873
model focused on the individual reactions in the model that
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were found to have a large positive DrG9� in the direction of

flux. We simulated the impact of removing these unfavorable

reactions on the growth of the cell, and we considered the

biological implications that these particular reactions were

thermodynamically unfavorable. In this article, we take this

work a significant step forward by examining the metabolite

concentrations required for every reaction essential for

optimal growth to be simultaneously thermodynamically

feasible. We propose a new methodology that we call

thermodynamics-based metabolic flux analysis (TMFA) for

integrating thermodynamic data and constraints into a

constraints-based metabolic model to ensure that flux

distributions produced by the model are thermodynamically

feasible and to provide data on the thermodynamically

feasible metabolite activity ranges for the metabolites in the

cell. TMFA can also be used for the analysis of unmodified

models that are lacking some thermodynamic data to allow

for direct analysis of models such as iJR904 without first

creating lumped models like the iHJ873. We apply TMFA to

analyze the iJR904 model using new thermodynamic data

estimated from an updated and expanded implementation of

the group contribution method (M. D. Jankowski, C. S.

Henry, L. J. Broadbelt and V. Hatzimanikatis, unpublished);

we assess the sensitivity of TMFA to changes in DrG9� due to

uncertainty and ionic strength; and we examine the thermo-

dynamically feasible ranges for biologically important con-

centrations ratios such as ATP/ADP, NAD(P)/NAD(P)H,

and H1
extracellular/H

1
intracellular. Finally, we utilize the DrG9

ranges calculated for the iJR904 reactions with TMFA to

identify candidate reactions for cell regulation as it has been

previously proposed (2).

METHODS

Metabolic flux analysis (MFA)

TMFA uses at its core the mass balance constraints of metabolic flux

analysis (MFA) (13,23–25). MFA defines the limits on the metabolic

capabilities of a model organism under steady-state flux conditions by

constraining the net production rate of every metabolite in the system to

zero as

N � v ¼ 0; (1)

where N is an m 3 r matrix of the stoichiometric coefficients for the r

reactions and m metabolites in the model, and v is an r 3 1 vector of the

steady-state fluxes through the r reactions in the model. MFA is combined

with optimization to determine the limits on the ability of the cell to produce

biochemicals such as ethanol (26,27), to predict the maximum possible

growth yields of the cell (28–30), and to predict the responses to gene

knockouts and additions (31,32).

The introduction of thermodynamics-based constraints in MFA will

enforce the exclusion of thermodynamical infeasibilities from flux distribu-

tion solutions. One example of these infeasibilities would be flux distribu-

tions involving flux through the thermodynamically infeasible internal flux

loops mentioned earlier. In addition, these constraints will allow the quan-

tification of the ranges in the gradients of metabolite activities required to

drive reactions in the direction of flux reported in all calculated flux

distributions. Knowledge of the permissible ranges of metabolite activities is

essential for the development of kinetic models of metabolism and metabolic

control analysis (33–38).

Estimation of DrG9� of reactions in the iJR904
metabolic model

Formulation of the thermodynamic constraints in TMFA requires knowl-

edge of DrG9� of the reactions in the model, and it must either be estimated or

measured experimentally. Experimental data is available for only a small

fraction of the reactions involved in a genome-scale metabolic model such as

iJR904. Fortunately, the group contribution method provides a means of

estimating DrG9� of nearly every reaction (7,8). In a previous article (21), the

group contribution method was used to estimate DrG9� of 808 of the 931

reactions in the iJR904 model. Recent improvement and expansion of the

group contribution method (M. D. Jankowski, C. S. Henry, L. J. Broadbelt

and V. Hatzimanikatis, unpublished) based on a refitting of the group

contribution values using the thermodynamic data gathered in the NIST

Standard Reference Database (39) and other literature (40–42) have allowed

the estimation of DfG9� for 576 (92%) of the compounds and DrG9� for 891

(96%) of the reactions in the iJR904 model. In addition, we have been able to

quantify the ranges of uncertainty in the estimated energy values due to

variances in experimental measurements and the fitting method. All new

estimated thermodynamic data for the iJR904 model are provided in the

Supplementary Material.

In contrast, experimental DrG9� measurements taken within 10 K and one

pH unit of the standard conditions of 298 K and a pH of 7 exist for only 52

(5.6%) of the 931 reactions in iJR904. The estimated DrG9�, DrG9�est, for these

52 reactions agree well with the measured DrG9� (Fig. 1). Literature values

exist for DfG9� of 68 (11%) of the compounds in iJR904, and the DfG9�
values from the literature are nearly identical to the estimated DfG9� (Fig. 2).

In all but three cases, the measured DrG9� values fall within the uncertainty

of the estimated DrG9�. All of the experimental DrG9� and DfG9� data shown

in Figs. 1 and 2 were part of the dataset to which the group contribution

energies were fit using multiple-linear regression (M. D. Jankowski, C. S.

Henry, L. J. Broadbelt and V. Hatzimanikatis, unpublished).

In our previous article (21), all of the reactions in iJR904 for which the

value DrG9� could not be estimated were lumped to produce a set of net

reactions for which the value DrG9� could be estimated. We then removed

the reactions with unknown DrG9� and replaced them with the net reactions

to produce the iHJ873 model. In the work presented here, although we still

lump together the 40 reactions for which DrG9� cannot be estimated, we do

not remove these 40 reactions from the model stoichiometry. Instead, these

reactions are treated in the manner discussed in the formulation of the

thermodynamic constraints in TMFA described in a following section.

Adjustment of DrG9� for ionic strength

All TMFA studies performed in this article are in terms of metabolite

activities instead of concentrations, making the results of these studies

independent of ionic strength. However, ionic strength will have an effect on

the DrG9� value of the reactions, and the zero ionic strength reference state

upon which the estimated DrG9� values are based differs significantly from

the ionic strength of the cytosol in which these reactions take place, between

0.15 and 0.20 M (20). We explore the sensitivity of DrG9� of the reactions in

the genome-scale model to ionic strength using the extended Debye-Hückel

equation (43,44),

DrG9�j ðIÞ ¼ DrG9�j ðI ¼ 0Þ � 2:303 RTA +
m

i

ni;jc
2

i I
1=2

1 1 BI
1=2
; (2)

where I is the ionic strength of the solution, ci is the charge of species i, and A

and B are parameters of the extended Debye-Hückel equation with universally

applicable values of 0.5093 mol1/2/L1/2 and 1.6 mol1/2/L1/2, respectively (45).
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The charge used for each metabolite in the ionic strength studies performed is

the charge of the predominant ionic form of each metabolite at pH 7

determined using pKa estimation software (MarvinBeans pKa estimation

plug-in, Ver. 4.0.3, ChemAxon, Budapest, Hungary). This dramatically

simplifies the calculation, although it might result in less accuracy.

Calculation of DrG9i for reactions involving
transmembrane ion transport

As discussed in a previous article (21), the standard conditions of pH 7

solution and zero ionic strength upon which all DrG9�est values are based is

applied to both the extracellular and intracellular environment when

calculating DrG9�est for reactions involving the transport of metabolites across

the cellular membrane. As a result, DrG9�est for these reactions is based on the

assumption that the electrochemical potential, Dc, and the pH gradient, DpH

FIGURE 1 Comparison of estimated DrG9� to experimentally measured

DrG9�. Estimated DrG9� values (solid diamonds) are shown and compared to

experimentally measured DrG9� values (shaded squares) for every reaction

in the iJR904 model for which data exists in the NIST database (39) within

the temperature and pH limitations (288–308 K and pH of 6–8). In some

cases, multiple data points existed in the NIST database at the suitable

conditions. In these cases, the average DrG9� is shown along with the

standard deviation in the data (shaded error bars). The uncertainty in the

estimated DrG9� (solid error bars) calculated from the group contribution

method (22) is also shown verifying that all but three of the measured DrG9�
fall within the range of uncertainty of the estimated DrG9�.

FIGURE 2 Comparison of estimated DfG9� to DfG9� available in the

literature. Estimated DfG9� values (solid diamonds) are shown and compared

to literature values of DfG9� (shaded squares) for every compound in the

iJR904 model for which literature data was found (40–42). The uncertainty

in the estimated DfG9� (solid error bars) calculated from the group

contribution method (22) are also shown verifying that all but one of the

literature DfG9� values fall within the range of uncertainty of the estimated

DfG9�.
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(pHintracellular – pHextracellular), across the cell membrane is zero. For example,

the ATP synthase reaction in E. coli is typically written in as

4H
1

extracellular 1 Pi 1 ADP/ATP 1 H2O 1 3H
1

cytosolic: (3)

The DrG9�est calculated from the group contribution method only applies to

the portion of this reaction that takes place inside the cell, DrG9�est; intracellular,

H
1

cytosolic 1 Pi 1 ADP/ATP 1 H2O: (4)

The energy contribution of the transmembrane transport portion of the

ATP synthase reaction, DrG9transport,

4H
1

extracellular/4H
1

cytosolic; (5)

is the sum of the driving force of DpH across the membrane for the transport

of H1 into the cell, DDpHG, and the energy associated with the transport of

an ion across the membrane, DDcGest,

DrG9�est; transport ¼ DDcG 1 DDpHG: (6)

The overall DrG9�est of a reaction energetically coupled to the transport of

an ion across the cell membrane such as ATP synthase is

DrG9�est ¼ DrG9�est; transport 1 DrG9�est; intracellular: (7)

Under physiological conditions Dc, and DrG9transport depend on DpH.

DDcGest depends upon Dc, which in turn depends on DpH according to the

equations (47)

DDcGðkcal=molÞ ¼ cFDc; (8)

DcðmVÞ ¼ 33:33DpH � 143:33

ðbased on a fit of experimental dataÞ; (9)

where c is the net charge transported from outside the cell into the cell, and F

is the Faraday constant in kcal/mV mol. DDpHG depends only on DpH

according to the equation (47)

DDpHGðkcal=molÞ ¼ �2:3 hRT DpH; (10)

where h is the number of protons transported across the membrane. While

DrG9�est used in the TMFA constraints for every reaction involving the

transport of ions across the cell membrane will involve a DrG9transport term

according to Eq. 7, the nature of the DrG9transport term depends on the ion

being transported. If protons are transported across the cell membrane as in

ATP synthase, DrG9transport will involve a contribution from both DDpHG and

DDcGest according to Eq. 6. If any other ions are being transported across the

membrane, DrG9transport is equal to DDcGest.

Thermodynamics-based metabolic flux
analysis (TMFA)

To produce flux distributions that are free of thermodynamic infeasibilities

and to allow the exploration of feasible metabolite activities and reaction

driving force, TMFA augments the mass balance constraints of MFA with

additional thermodynamic constraints. Linear thermodynamics-based con-

straints have already been proposed and utilized with MFA to eliminate

thermodynamically infeasible flux loops (14–16), and nonlinear constraints

have been proposed to eliminate flux distributions that utilize reactions that

cannot be thermodynamically feasible under physiological conditions (17).

However, these constraints and methods have never been applied on a

genome scale, and the nonlinear constraints make application to large-scale

systems computationally challenging. In the proposed TMFA, the following

mixed integer linear constraints are used to produce flux distributions free of

any thermodynamic infeasibilities and provide data on feasible metabolite

activity profiles and DrG9,

N � v ¼ 0; (11)

0 # vi# zivMax; fi ¼ 1; . . . ; rg; (12)

DrG9i � K 1 Kzi , 0; fi ¼ 1; . . . ; rjDrG9�i is knowng; (13)

DrG9�i 1 RT +
m

j¼1

ni;j lnðxjÞ ¼ DrG9i; fi ¼ 1; . . . ; r 1 L

jDrG9�i is knowng; (14)

DrG9i � Kyi , 0; fi ¼ r; . . . ; r 1 Lg; (15)

yi 1 +
r

j¼1

ai;jzj# +
r

j¼1

ai;j fi ¼ r; . . . ; r 1 Lg; (16)

where N is the m 3 r stoichiometric matrix, v is the r 3 1 flux vector, r is

equal to the total number of reactions in N, and m is equal to the total number

of metabolites. The value r is larger than the number of reactions in any

model being used because each of the reversible reactions in the model must

be split into separate irreversible forward and backward component

reactions during the formation of N. This separation is performed so that

the flux through each reaction i can be constrained to be greater than or equal

to zero. A binary use variable, zi, is also associated with each reaction i

specified in the stoichiometric matrix N. The value of zi is equal to one if the

flux through reaction i, vi, is positive, and zi is equal to zero if vi is zero. This

condition is enforced by the constraint described in Eq. 12. The vMax in Eq.

12 is the upper limit on the flux through any reaction typically set to a

physiologically reasonable value such as 100 mmol/gm DW/h. Equations 11

and 12 represent the mass balance constraints carried over from MFA with

the only difference being the separation of reversible reactions into forward

and backward component reactions.

The new thermodynamic constraints of TMFA begin with Eq. 13, which

ensures that the activity profiles and flux distributions generated by TMFA

adhere to the second law of thermodynamics; a reaction flux cannot be

positive unless DrG9i is negative. The K in Eq. 13 is a constant selected to be

large enough that Eq. 13 is always satisfied if vi and zi are zero. The terms

involving K in Eq. 13 ensure that the constraint is only applied to reactions

with a non-zero flux. Equation 14 is the Gibbs free energy equation used to

set the value of DrG9i for reaction i given the metabolite activities. In Eq. 14,

ln(xj) is the natural logarithm of the activity of compound j, and ni,j is the

stoichiometric coefficient of compound j in reaction i. In Eq. 14, the energy

contribution for any transport of ions across the cell membrane is accounted

for in the DrG9� term as described in Eq. 7.

As DrG9� of a reaction must be known to formulate the thermodynamic

constraints for a reaction, the constraints described by Eqs. 13 and 14 are not

applied to the reactions in the model with unknown DrG9�. Instead, these

reactions are lumped into overall reactions with known DrG9�, and special

thermodynamic constraints are applied to the reactions for which DrG9� is

unknown; these constraints are described by Eqs. 14–16. In these equations,

L is the number of lumped reactions, and ai,j is a coefficient equaling one if

reaction j is one of the original reactions with unknown DrG9� that makes up

the lumped reaction i. When Eq. 14 is applied to a lumped reaction, it sets the

value for DrG9i of the lumped reaction. Equation 15 is the thermodynamic

feasibility constraint for the lumped reactions similar to Eq. 13 except that

the binary use variable for each lumped reaction, yi, is set to zero when the

reaction is thermodynamically feasible and one when the reaction is in-

feasible. Equation 16 excludes flux distributions that involve flux through

the set of reactions that comprise an infeasible lumped reaction. The con-

tinuous independent variables of this optimization problem are ln(xj), vi, and

DrG9i, and the binary independent variables are zi, and yi.

In the TMFA of the iJR904 model, the 40 reactions with unknown DrG9�est

are lumped into 20 reactions with known DrG9�est. An additional two internal

flux loops were found within the stoichiometry of the reactions with

unknown DrG9�est. Being internal flux loops, the DrG9 of these reactions is

constrained to zero, i.e., Eqs. 15 and 16 constrain the flux through these
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loops to zero. All 20 lumped net reactions and the two internal flux loop

reactions are listed in the Supplementary Material.

TMFA with uncertainty in thermodynamic data

The values of DrG9� used in the thermodynamic constraints of TMFA can be

based on either group contribution estimates or experimental observations,

and they are subject to some uncertainty due to the error allowed when fitting

group contribution energy values or in measuring DrG9� experimentally.

The TMFA must account for this uncertainty to avoid overconstraining

the ranges of possible values for metabolite activities and reaction DrG9 due

to inaccurate DrG9� values. This uncertainty can be accounted for by al-

lowing the DrG9� values used in the TMFA constraints to vary within the

range of the uncertainty.

For example, when the DrG9� values used in TMFA are estimated using

the group contribution method, the potential variance in DrG9�est due to uncer-

tainty is captured by allowing the energy contributions of the molecular

substructures used in the group contribution method to vary. The error in the

energy contribution of molecular substructure i, Eg,i, is introduced as a new

variable in the TMFA formulation, and Eg,i is allowed to vary within two

standard errors, s, reported for the group contribution energies in the new

group contribution scheme (M. D. Jankowski, C. S. Henry, L. J. Broadbelt

and V. Hatzimanikatis, unpublished),

�2si # Eg;i # 2siði ¼ 1; . . . ; qÞ; (17)

where q is the number of molecular substructures used in the group contri-

bution scheme, and si is the standard error reported for the group contri-

bution value of molecular substructure i. The thermodynamic constraint

specified in Eq. 14 is now altered to include terms accounting for the

uncertainty in DrG9�est,

DrG9�est;i 1 RT +
m

j¼1

ni;j lnðxjÞ1 +
q

j¼1

gi;jEg;j ¼ DrG9i; (18)

where gi,j is the number of occurrences of molecular substructure j being

created or destroyed during reaction i.

RESULTS

Optimization of aerobic growth on glucose
using TMFA

We applied TMFA to determine the maximum growth yield

achievable in the iJR904 genome-scale model. In our TMFA

analysis, we chose to study aerobic growth on glucose as

a carbon source. The concentrations of the extracellular

compounds used as nutrient sources in the model were fixed

to the typical concentrations found in growth media (48).

These concentrations are listed in Table 1. The concentra-

tions of all intracellular species were restricted within the

ranges observed in the cell (between 10�5 M and 0.02 M)

(49) with the following exceptions. The concentration of H1

in the cell was held constant at 10�7 M, or a pH of 7. Because

the oxygen concentration selected for the media is 8.2 3

10�6 M (Table 1) and the oxygen concentration in the cell

cannot exceed the concentration in the media, the bounds on

the oxygen concentration in the cell were set from 10�7 M to

8.2 3 10�6 M. The extracellular pH was allowed to vary

between a pH of 4 and 11 to allow for exploration of the

thermodynamically feasible extracellular pH ranges for

E. coli. Specifics on metabolite uptake and secretion con-

straints used in the analysis are listed in the Appendix.

Initially, uncertainty was not accounted for and si in

Eq. 17 was set to zero. With zero uncertainty, the maximum

growth yield determined from TMFA was zero, suggesting

that growth was not feasible due to the thermodynamic

infeasibility of one or more essential reactions. Under these

conditions, the reaction dihydroorotase,

dihydroorotate 1 water4n-carbamoyl-L-aspartate 1 H
1
;

(19)

which must operate in the reverse direction for any biomass

production to occur, is thermodynamically infeasible with a

DrG9�est of 4.7 kcal/mol in the reverse direction. Because

E. coli is capable of growing on glucose, this reaction must

be thermodynamically feasible under physiological condi-

tions. One possible way to overcome the infeasibility of this

reaction is to allow for a wider range of values for the acti-

vities of the reactants and the products in this reaction. While

the activities of water and H1 are both lumped into DrG9�
and thereby fixed, expanding the minimum and maximum

bounds on the activities of dihydroorotate and n-carbamoyl-

L-aspartate to 0.8 3 10�5 M and 0.025 M, respectively,

allows sufficient driving force to exist for dihydroorotase to

be thermodynamically feasible. Performing TMFA on the

model with the bounds on the activities of dihydroorotate

and n-carbamoyl-L-aspartate set to these expanded values

results in an optimal growth yield of 0.0923 g biomass/mmol

glucose. This is the same optimal growth yield observed for

the iJR904 model using mass balance constraints alone (50).

Under these conditions, only dihydroorotase is sensitive to

the thermodynamic constraints; there are no other active

thermodynamic bounds.

However, another potential explanation for the infeasibil-

ity of dihydroorotase is inaccuracy in DrG9�est, the estimated

values of DrG9�. Allowing the error in the group contribution

values to vary within the range of two standard deviations for

the group contribution energies, the optimal growth yield for

the iJR904 model is achievable within the original selected

activity range of 1 3 10�5 M and 0.02 M. While

experimental evidence does verify that dihydroorotase is a

TABLE 1 Concentrations of nutrients in media

Molecules Concentration

Phosphate 0.056 M

Sulfate 0.0030 M

Ammonium 0.019 M

Sodium 0.16 M

Potassium 0.022 M

Fe21 0.062 M

CO2 0.00010 M

Oxygen 8.2 3 10�6 M

Glucose 0.020 M

H1
extracellular pH 4–11
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thermodynamically unfavorable reaction, the experimentally

observed DrG9� is 1.4 kcal/mol, or 3.3 kcal/mol ,DrG9�est.

This deviation is within the range of two standard deviations

for DrG9�est of dihydroorotase, which is 4.7 6 4.6 kcal/mol.

These results suggest the importance of accounting for

uncertainty in DrG9�est, since ignoring uncertainty can lead to

feasible reactions being incorrectly labeled as infeasible.

Although dihydroorotase can be thermodynamically feasible

in the direction required for growth at the experimentally

observed DrG9� of 1.4 kcal/mol, this reaction is still less

favorable than 91% of the reactions in the iJR904 model.

Interestingly, while dihydroorotase is not part of a multien-

zyme complex in E. coli (51), dihydroorotase is a part of a

multienzyme complex in mammalian cells (52) indicating

that mammalian cells could be utilizing substrate channeling

as a means of overcoming the unfavorable DrG9� of this re-

action without the use of large concentration gradients.

Essential, substitutable, and blocked reactions

Under optimal growth conditions, reactions in E. coli may be

classified as essential (requiring a non-zero flux for optimal

growth to occur), substitutable (capable of carrying zero or

non-zero flux at optimal growth), or blocked (do not carry

any flux at optimal growth). Flux variability analysis (FVA)

(53) was used to classify the reactions involved in the maxi-

mum production of biomass from glucose in E. coli. In FVA,

the flux of each reaction in the stoichiometric matrix is indi-

vidually minimized and maximized subject to the mass

balance constraints on the metabolites (Eq. 11) and the

growth conditions being analyzed (optimal aerobic growth

on glucose). When the reversible reactions are expressed as

separate forward and backward component reactions, reac-

tions with a positive minimum flux are essential; reactions

with a minimum and maximum flux of zero are blocked; and

reactions with a zero minimum flux and positive maximum

flux are substitutable. When maximizing growth in the

iJR904 model using only mass balance constraints, 272

(29%) reactions are essential, 83 (9%) reactions are substi-

tutable, and 576 (62%) reactions are blocked. When maxi-

mizing growth in the iJR904 model using mass balance and

thermodynamic constraints, 272 (29%) reactions are essen-

tial, 53 (6%) reactions are substitutable, and 606 (65%)

reactions are blocked. The addition of thermodynamic con-

straints causes 30 of the reactions that were classified as

substitutable using FVA alone to become blocked. These

reactions are all part of thermodynamically infeasible flux

loops in the iJR904 model, demonstrating the effectiveness

of the thermodynamic constraints in restricting the net flux

through these loops to zero while still allowing flux through

the individual reactions involved in the loops. Overall, every

reaction involved in aerobic growth of E. coli on glucose that

is not participating in an internal flux loop is indeed

thermodynamically feasible under the activity conditions

studied. These results hold true whether or not uncertainty in

DrG9�est is accounted for as long as the expanded bounds on

the activities of dihydroorotate and n-carbamoyl-L-aspartate

are used.

Sensitivity of TMFA to the ionic strength
reference state

A reference state of zero ionic strength is not an accurate

representation of the intracellular environment in E. coli, as

the ionic strength of the cytosol in E. coli is known to range

between 0.15 and 0.20 M (20). To determine the effect of the

high intracellular ionic strength on DrG9�est, we utilized Eq. 2

to adjust the reference ionic strength of DrG9�est for all of the

reactions in the iJR904 model to a new reference state of

0.2 M. The effect of ionic strength on DrG9�est was found to

be very small for most reactions. For 95% of the reactions in

iJR904, the difference between DrG9�est (I¼ 0) and DrG9�est (I¼
0.2 M) is ,1 kcal/mol (Fig. 3). There are six exceptional

reactions in the iJR904 model for which DrG9�est (I¼ 0.2 M) is

.10 kcal/mol ,DrG9�est (I ¼ 0). However, these six reactions

also have DrG9�est (I ¼ 0) values that are all ,�80 kcal/mol,

and these reactions are all large lumped reactions involved in

membrane lipid metabolism.

In the case of thermodynamic bottleneck reactions such as

dihydroorotase, even the small change to DrG9�est that results

from the adjustment for ionic strength is sufficient to make a

reaction become infeasible. For dihydroorotase, DrG9�est (I ¼
0.2 M) is 0.73 kcal/mol higher than DrG9�est (I¼ 0). While this

is sufficient to make this reaction infeasible under the

concentration ranges studied when the uncertainty is set to

zero, this is not sufficient to make this reaction infeasible

FIGURE 3 Effect of ionic strength on DrG9�. A histogram of the differ-

ences between DrG9� at an ionic strength of zero (DrG9� (I¼ 0)) and DrG9� at

an ionic strength of 0.2 M (DrG9� (I ¼ 0.2 M)) for all of the reactions in the

iJR904 model. The bin sizes in the histogram are all 0.25 kcal/mol. Greater

than 95% of the differences are within 1 kcal/mol of zero.
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when the uncertainty is accounted for. Overall, the variation

in DrG9�est due to the ionic strength of solution falls well

within the uncertainty in DrG9�est.

Thermodynamic variability analysis (TVA): ranges
of the Gibbs free energy

The permissible ranges of the new system variables of

metabolite activity and DrG9 introduced in TMFA can be

explored using linear optimization in a methodology we call

thermodynamic variability analysis (TVA), which is analo-

gous to FVA. In TVA, the activity of each metabolite and

DrG9 of each reaction are minimized and maximized subject

to the thermodynamic and mass balance constraints. TVA

allows for the identification of the thermodynamic bottle-

necks in the metabolic network. Thermodynamic bottlenecks

are reactions for which DrG9 is constrained to be approxi-

mately zero, meaning these reactions must operate very close

to equilibrium. Any small decrease in the concentrations of

the reactants or increase in the concentrations of the products

in these reactions is sufficient to force the flux to zero

(18,19).

We first studied the system in the absence of uncertainty,

i.e., TVA was performed with the uncertainty set to zero

while using the expanded bounds on the dihydroorotase

reactants and the default bounds on the remaining metabolite

activities (black error bars in Fig. 4). Under these

conditions, the DrG9 values of the reactions are constrained

by the ranges of the values of the metabolite activities that

allow every reaction required for optimal growth to be

simultaneously thermodynamically feasible (Fig. 5 and

Table 2). Only one reaction, dihydroorotase, has a DrG9

that is constrained to near zero, indicating that this reaction is

the only thermodynamic bottleneck under these conditions.

We next performed TVA with the uncertainty in DrG9�
accounted for by allowing the error in the group contribution

energies to vary according to Eq. 17. The expanded bounds

on activities of the metabolites in the dihydroorotase reaction

were also used to keep the conditions consistent with the

TVA study conducted with uncertainty set to zero and allow

for comparison of the results. Due to the relatively large

uncertainty ranges in DrG9�, all of the reactions can achieve a

wide range of DrG9 values, and none of the DrG9 values are

constrained near zero, indicating that no reactions behave as

thermodynamic bottlenecks under these conditions (red
error bars in Fig. 4).

Thermodynamic variability analysis (TVA): ranges
of metabolite activity

TVA was also used to study the ranges of the activities of the

metabolites. When TVA was performed with the uncertainty

in DrG9�est set to zero, the activities of the metabolites involved

in the bottleneck reaction dihydroorotase were highly

constrained (black error bars in Fig. 5). The activity of the

primary product of the reaction, dihydroorotate, is fixed at

the minimum concentration while the primary reactant,

n-carbamoyl-L-aspartate, is fixed at the maximum concen-

tration. When the uncertainty in DrG9�est is accounted for,

concentrations of most compounds are nearly unconstrained

(red error bars in Fig. 5). One important exception is

oxygen. As mentioned earlier, the intracellular oxygen

concentration is always fixed to the very low concentration

range of ,10�5 M because the intracellular oxygen con-

centration must be lower than the extracellular concentration

for diffusion into the cell to occur. Interestingly, this limita-

FIGURE 4 Ranges for DrG9 of required and substitutable reactions. The

thermodynamically feasible ranges for DrG9 of the 45 essential and sub-

stitutable reactions with the narrowest feasible DrG9 range. The ranges are

the widest when the uncertainty in DrG9� is accounted for by allowing the

group contribution energy values to vary within their standard errors (red
error bars). If the uncertainty is assumed to be zero, the feasible ranges for

DrG9 decrease significantly (black error bars), and DrG9 of the reaction

dihydroorotase becomes constrained to near zero. When the two error bars

do not overlap completely, the larger error bar always corresponds to the

range calculated, accounting for uncertainty.
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tion does not have a large effect on the cell as only two

essential reactions require oxygen as a reactant, cytochrome

oxidase bo3 and 2,3-diketo-5-methylthio-1-phosphopentane

degradation, and these reactions have very negative DrG9�est

values of �36.8 and �124 kcal/mol, respectively, ensuring

thermodynamic favorability despite small reactant concen-

tration.

Experimentally measured metabolite concentrations are

available from a variety of literature sources (49,54,55) for

24 (3.8%) of the metabolites in iJR904. These concentrations

are compared with the thermodynamically feasible activity

FIGURE 5 Thermodynamically feasible activity ranges. The thermody-

namically feasible metabolite activity ranges are shown for all of the

compounds with a feasible range that is less than the bounds placed on the

metabolite activities (0.01–20 mM with the exception of the compounds

listed in Table 1, n-carbamoyl-L-aspartate and dihydroorotate). When the

uncertainty in the estimated DrG9� values is assumed to be zero, the

metabolite activities are the most tightly constrained (black error bars).

Tightly constrained metabolites include the main reactant and product of the

bottleneck reaction dihydroorotase, n-carbamoyl-L-aspartate (cbasp) and

dihydroorotate (dhor), respectively. When the uncertainty in the estimated

DrG9� values is accounted for, the feasible activity ranges increase signif-

icantly (red error bars). When the two error bars do not overlap completely,

the larger error bar always corresponds to the range calculated, accounting

for uncertainty.

TABLE 2 Most thermodynamically constrained reactions

Abbreviation Reaction name

DHORTS(r) Dihydroorotase (reverse)

TRPAS2(r) Tryptophanase (reverse)

O2t O2 transport via diffusion

MTHFD Methylenetetrahydrofolate dehydrogenase

TRDR Thioredoxin reductase

CO2t(r) CO2 transport via diffusion (reverse)

ACONT Aconitase

MTHFC Methenyltetrahydrofolate cyclohydrolase

PPM(r) Phosphopentomutase (reverse)

PGMT(r) Phosphoglucomutase (reverse)

PGAMT(r) Phosphoglucosamine mutase (reverse)

PGM(r) Phosphoglycerate mutase (reverse)

PRAMPC Phosphoribosyl-AMP cyclohydrolase

A5PISO Arabinose-5-phosphate isomerase

TPI Triose-phosphate isomerase

IPPMIb(r) 2-isopropylmalate hydratase (reverse)

IPMD 3-isopropylmalate dehydrogenase

IPPMIa(r) 3-isopropylmalate dehydratase (reverse)

MDH Malate dehydrogenase

PGCD Phosphoglycerate dehydrogenase

NH3t Ammonia reversible transport

MTRI 5-methylthioribose-1-phosphate isomerase

PRMICIi Phosphoribosyl imidazolecarboxamide isomerase

ALARi Alanine racemase

GLUR(r) Glutamate racemase (reverse)

AGMHE ADP-glycero-manno-heptose epimerase

RPE Ribulose 5-phosphate 3-epimerase

AIRC3(r) Phosphoribosylaminoimidazole carboxylase

(reverse)

DAPE Diaminopimelate epimerase

RPI(r) Ribose-5-phosphate isomerase (reverse)

GAPD Glyceraldehyde-3-phosphate dehydrogenase

FUM Fumarase

PEPT_EC Ethanolamine phosphotransferase

THRAr(r) Threonine aldolase (reverse)

PGI Glucose-6-phosphate isomerase

DHDPRy Dihydrodipicolinate reductase

PGK(r) Phosphoglycerate kinase (reverse)

PRAIS Phosphoribosylaminoimidazole synthase

MTHFR2 5,10-methylenetetrahydrofolate reductase

PRAIi Phosphoribosylanthranilate isomerase

AICART Phosphoribosylaminoimidazolecarboxamide

formyltransferase

S7PI Sedoheptulose 7-phosphate isomerase

HCO3E HCO3 equilibration reaction

FBA Fructose-bisphosphate aldolase

ENO Enolase
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ranges determined from TMFA (Fig. 6), and for all but one

metabolite (pyruvate) the experimentally measured concen-

tration data falls within the thermodynamically feasible

activity range when uncertainty in DrG9�est is set to zero.

Pyruvate falls within the thermodynamically feasible activity

range when DrG9�est is allowed to vary within the uncertainty.

Surprisingly, the measured metabolite concentrations fall

near the logarithmic mean (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XMaxXMin

p
) of the minimum and

maximum feasible activities determined from TMFA with

zero uncertainty for a significant number of important metab-

olites. In particular, 6pg, f6p, NADH, NAD1, akg, g3p, g6p,

GTP, asp, and ADP all fall on or near the logarithmic mean

of the minimum and maximum feasible activities. This is of

particular significance because the concentrations of the

metabolites NADH, NAD, and ADP are all under strict

regulatory control. One purpose for maintaining the concen-

trations of these metabolites near the center of the thermo-

dynamically feasible range could be to maximize flexibility.

The activity of these metabolites can deviate significantly

from the intrinsic value before any of the reactions in which

the metabolites are involved become infeasible.

Predicting candidate reactions for regulation
based on thermodynamics

As it has been recently proposed (2), the magnitude of DrG9

of a reaction has some implications for the possibility that

this reaction is subject to regulation. It has been proposed

that reactions with a DrG9 that is close to zero (the reactions

we refer to as thermodynamic bottlenecks) have only limited

potential for regulation as these reactions are very sensitive

to minor perturbations in the concentrations of their reac-

tants. In contrast, reactions with a highly-negative DrG9 have

the thermodynamic potential to serve as regulatory control

points for the pathways in which they participate because

enzyme regulation will be the dominant mechanism for

control of the flux through these reactions. The DrG9 range

data generated by TVA can be used with this proposed

criterion to determine all of the reactions in the genome-scale

iJR904 model that have the potential to be regulatory control

points. Specifically, we identified the reactions in the iJR904
model for which the maximum possible DrG9 as calculated

with TVA is ,�1.0 kcal/mol, meaning none of these

reactions can reach equilibrium under the concentration

ranges studied (Table 3). In our analysis of candidate

reactions for regulation, we utilized the DrG9 range data

produced assuming the uncertainty in DrG9�est is zero, because

we want to focus the analysis on the range of DrG9 values

possible given variations in metabolite concentrations alone.

While the analysis presented previously (2) focuses solely on

the central carbon pathways, we find candidates for regula-

tion in a variety of pathways in the cell. Because the

metabolite concentration ranges that we explore are much

larger than those used previously (2), we do not identify as

many candidate reactions for regulation in central carbon

(we find six of the 14 reactions reported in Kummel et al.

(2), only three of which carry flux; the rest do not carry flux

in our analysis because the operating conditions used to

generate our flux distributions are different from those used

in (2)) .

Typically, a key step for regulation in a metabolic pathway

in the cell is the first step of a linear pathway (56). Therefore,

we studied the locations of the candidate reactions for re-

gulation identified based on thermodynamics, and 30 of the

86 reactions serve as the first step in the pathways in which

they participate while five reactions serve as the final step.

For example, in aromatic amino-acid biosynthesis, DDPA is

the first step in the pathway that produces chorismate; CHORM

is the first step in the pathways that produce phenylalanine

and tyrosine; PPNDH is the first step of the pathway that

produces only phenylalanine; and ANS is the first step of the

pathway that produces tryptophan. All of these reactions

belong to branching nodes in the aromatic amino-acid

FIGURE 6 Comparison to metabolic concentrations reported in the

literature. Experimentally measured concentration ranges (green diamonds

and green error bars) reported in the literature (49,54,55) are shown along

with the thermodynamically feasible activity ranges for the same metabolites

found using TMFA with no uncertainty (black circles and error bars). The

black circles show the logarithmic mean for the feasible activity range

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XMaxXMin

p
). The feasible activity ranges for the metabolites found using

TMFA accounting for uncertainty in estimated DrG9� values are also shown

(red error bars). When the two error bars do not overlap completely, the

larger error bar always corresponds to the range calculated, accounting for

uncertainty.
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biosynthesis pathways (56), and all four of these reactions

were identified as candidates for regulation using TVA.

The analysis presented here has three advantages over the

analysis performed in Kummel et al. (2). First, the thermo-

dynamic data used in our analysis is far more complete,

covering 891 of the reactions in the iJR904 model as

opposed to 132 in Kummel et al. (2). This allows for the

identification of candidates for regulation in every known

metabolic pathway in addition to central carbon. Second,

TMFA combines the quantification of the fluxes in the cell

metabolism with the assessment of thermodynamic feasibil-

ity in a single step. Thus no flux distributions are produced

that must later be corrected due to thermodynamic infeasi-

bilities found. Finally, the metabolite concentration ranges

used in our analysis are far less constrained, allowing a more

complete exploration of the potential ranges for DrG9 of the

reactions in the model.

Exploring the limits on physiologically important
concentration ratios

Thermodynamically unfavorable reactions required to take

place in cell metabolism are typically driven by hydrolysis of

the triphosphate bond in ATP to generate ADP. As such, the

TABLE 3 Candidate reactions for regulation

Reaction Pathway Reaction Pathway

GLYCTO2 Alternate carbon metabolism C160SN* Membrane lipid metabolism

GLYCTO3 Alternate carbon metabolism C181SN* Membrane lipid metabolism

GLYCTO4 Alternate carbon metabolism C141SN* Membrane lipid metabolism

PPA Anaplerotic reactions C161SN* Membrane lipid metabolism

MDRPD Arginine and proline metabolism PSD_EC Membrane lipid metabolism

DKMPPD Arginine and proline metabolism CYSTL* Methionine metabolism

G5SADs Arginine and proline metabolism RNDR1 Nucleotide salvage pathways

ORNDC* Arginine and proline metabolism RNDR2 Nucleotide salvage pathways

ADMDCr* Arginine and proline metabolism RNDR4 Nucleotide salvage pathways

PPTGSy Cell envelope biosynthesis RNDR3 Nucleotide salvage pathways

UDCPDP Cell envelope biosynthesis RNTR1 Nucleotide salvage pathways

KDOPP Cell envelope biosynthesis RNTR2 Nucleotide salvage pathways

KDOPS* Cell envelope biosynthesis RNTR3 Nucleotide salvage pathways

UAPGR Cell envelope biosynthesis RNTR4 Nucleotide salvage pathways

USHD Cell envelope biosynthesis TMDS* Nucleotide salvage pathways

PPCDC Cofactor and prosthetic biosynthesis CYTBO3 Oxidative phosphorylation

GTPCI* Cofactor and prosthetic biosynthesis FDH2 Oxidative phosphorylation

QULNS Cofactor and prosthetic biosynthesis FDH3 Oxidative phosphorylation

ASPO3* Cofactor and prosthetic biosynthesis HYD1 Oxidative phosphorylation

ASPO4* Cofactor and prosthetic biosynthesis HYD2 Oxidative phosphorylation

ASPO5* Cofactor and prosthetic biosynthesis PGLz Pentose phosphate cycle

NNDPR Cofactor and prosthetic biosynthesis GLUPRT* Purine and pyrimidine biosynthesis

DNTPPA* Cofactor and prosthetic biosynthesis IMPC(r) Purine and pyrimidine biosynthesis

ADCL Cofactor and prosthetic biosynthesis PRFGS Purine and pyrimidine biosynthesis

ASP1DC* Cofactor and prosthetic biosynthesis DHORD2 Purine and pyrimidine biosynthesis

GTPCII2* Cofactor and prosthetic biosynthesis DHORD5 Purine and pyrimidine biosynthesis

DB4PS* Cofactor and prosthetic biosynthesis OMPDCy Purine and pyrimidine biosynthesis

DHPPDA2* Cofactor and prosthetic biosynthesis DHDPS* Threonine and lysine metabolism

RBFSa Cofactor and prosthetic biosynthesis DAPDCy Threonine and lysine metabolism

RBFSb Cofactor and prosthetic biosynthesis GLCpts* Extracellular transport

SULR(r)z Cysteine metabolism DHQS Aromatic amino acid metabolism

CYSSy Cysteine metabolism CHORS Aromatic amino acid metabolism

SULabc* Cysteine metabolism (transport) DHQD Aromatic amino acid metabolism

GCALDDy Folate metabolism DDPA* Aromatic amino acid metabolism

FTHFD Folate metabolism PPNDH* Aromatic amino acid metabolism

PDHz Glycolysis/gluconeogenesis CHORM* Aromatic amino acid metabolism

GLCS1 Glycolysis/gluconeogenesis IGPS Aromatic amino acid metabolism

IGPDH* Histidine metabolism ANS* Aromatic amino acid metabolism

HISTDy Histidine metabolism THRD_L* Val, Leu, and isoleu metabolism

IG3PS Histidine metabolism ACLS* Val, Leu, and isoleu metabolism

PRATPP Histidine metabolism DHAD2 Val, Leu, and isoleu metabolism

C140SN* Membrane lipid metabolism DHAD1 Val, Leu, and isoleu metabolism

C120SN* Membrane lipid metabolism OMCDC Val, Leu, and isoleu metabolism

*Reaction is the first step in the pathway leading to the pathway end-product.
yReaction is the final step in the pathway producing pathway end-products.
zReaction also identified in the literature (2) as a candidate for regulation.
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ratio of the ATP activity to the ADP activity is an important

and carefully regulated quantity in the cell (54), and DrG9 of

many reactions in the cell metabolism depend on this ratio.

Similarly, oxidation and reduction reactions taking place

in cell metabolism typically utilize NAD(P)1 as electron

sinks and NAD(P)H as electron sources. The DrG9 of these

oxidation and reduction reactions depend on the ratio of

NAD1 to NADH and NADP1 to NADPH, and these ratios

have also been found to be under strict regulatory control

(54).

We utilized TVA to determine if the physiological levels

of the concentration ratios ATP/ADP, NAD/NADH, and

NADP/NADPH maintained inside the cell are due to ther-

modynamic constraints by exploring the range of thermo-

dynamically feasible values for these ratios. We also used

TVA to study the limits on the ratio of the intracellular pH to

the extracellular pH as all transport of ions across the cell

membrane depends on this ratio. The minimum and max-

imum ratios found are shown in Table 4 along with the

values for these ratios found in the literature (47,49,54). We

found that without accounting for uncertainty in the group

contribution method, all of the ratios found in the literature

nearly fit within the thermodynamically feasible ranges for

the ratios. Interestingly, the physiologically observed ratio

for NAD/NADH is very close to the minimum ratio

predicted by TVA, whereas the physiologically observed

ratio of NADP/NADPH is very close to the maximum ratio

predicted by TVA. This suggests that the values of these

physiologically important quantities at optimal growth con-

ditions are determined by the constraints imposed by the

thermodynamic properties of the entire metabolic network.

When accounting for uncertainty, the estimated ratios

NADP/NADPH and NAD/NADH span the entire range of

values possible given the concentration limits of 10�5 M

and 0.02 M, whereas the ratios ATP/ADP and H1
int/H

1
ext

remain close to the ranges estimated by the analysis without

uncertainty.

The minimum value for the ATP/ADP ratio is constrained

by thermodynamics because DrG9 of every kinase reaction

in the cell depends on this ratio. As the ATP/ADP ratio

decreases, DrG9 of every reaction driven by the dephospho-

rylation of ATP increases. This includes the many essential

phosphorylase and kinase reactions in the nucleotide salvage

pathway responsible for the production of all the other

triphosphate nucleotides in the cell. All of these reactions

transfer one phosphate from ATP to another nucleotide such

as GDP, UDP, or CDP to create ADP and either GTP, UTP,

or CTP, respectively. Because the energies of the triphos-

phate bonds being created and destroyed in these reactions

are essentially identical, DrG9� of these reactions are all

approximately zero. Therefore, these reactions must be

driven entirely by the concentration gradient between the

reactants and products. Driving the ATP/ADP ratio to very

low levels also drives the ratios GTP/GDP, UTP/UDP, CTP/

CDP, and nearly every other triphosphate/diphosphate pair

in the cell, to even lower levels to maintain a favorable

concentration gradient. A low ATP/ADP ratio results in an

unfavorable concentration gradient for every kinase reaction

in the cell, reducing the energy generated by the kinase

reactions.

The maximum H1
intracellular/H

1
extracellular ratio is constrained

by thermodynamics because DrG9 of every reaction involv-

ing the transport of ions across the cell membrane depends

on this ratio. Many transport reactions in E. coli, most

notably ATP synthase, are powered by the transport of H1

across the cell membrane. As the extracellular H1 concen-

tration decreases, the transmembrane proton concentration

gradient becomes more unfavorable reducing the power

generated by the transport of the proton into the cell until

insufficient power is provided to drive these reactions in the

direction required for growth.

DISCUSSION

The addition of thermodynamic constraints to MFA results

in both improved accuracy and expanded applicability

of flux balance analysis methods. The flux distributions

generated using TMFA do not involve flux through any

thermodynamically unfavorable flux loops, and no thermo-

dynamically unfavorable reactions given the concentration

ranges found in the cell are utilized. Furthermore, TVA

allows the exploration of the thermodynamically feasible

values for DrG9 of the reactions and the metabolite activities.

Some differences do exist between the results presented here

and the results presented in the previously published article

on this topic (21). These differences are a result of the

TABLE 4 Thermodynamically feasible physiologically important concentration ratios

Ratio reported in literature Min ratio with no uncertainty Max ratio with no uncertainty Minimum ratio Maximum ratio

ATP/ADP 3.2* 0.17 2.0 3 103§ 0.022 2.0 3 103§

NAD/NADH 19y 15 2.0 3 103§ 0.00050{ 2.0 3 103§

NADP/NADPH 1.2y 0.0086 1.1 0.00050{ 2.0 3 103§

H1
int/H

1
ext 0.025–6.3z 0.0010{ 5.0 0.0010{ 7.1

*From Albe et al. (49).
yFrom Andersen and Meyenburg (54).
zFrom Neidhardt and Curtiss (47).
{Equal to the minimum ratio possible given the bounds on the concentrations of these species.
§Equal to the maximum ratio possible given the bounds on the concentrations of these species.
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combination of improvements in the thermodynamic esti-

mates and an improved ability of TMFA to assess the

feasibility of reactions by accounting for all possible

metabolite concentrations rather than just mM concentra-

tions used in the previous article.

Uncertainty remains an issue when utilizing the group

contribution method to analyze the effect of thermodynamic

constraints on metabolite activities and reaction DrG9. All of

the feasible ranges for the metabolite activity ratios studied in

this article with no uncertainty allowable in DrG9� encom-

passed the values observed in literature. When uncertainty

in DrG9�est is accounted for, nearly all of the metabolite acti-

vities are completely unconstrained, and all of the experi-

mentally measured metabolite activities fall within the range

of possible values obtained from TVA. The feasible ranges

for DrG9 and metabolite activities determined from TVA

accounting for uncertainty in DrG9� are far larger than the

true feasible ranges for these quantities. The ranges deter-

mined from TVA with no uncertainty allowable are much

closer to the true feasible ranges.

Regardless of uncertainty in DrG9�est, very few of the

metabolites in E. coli are affected by the thermodynamic

constraints at all. The majority of the reactions in E. coli are

thermodynamically favorable, allowing the reactions to

remain active under a wide variety of metabolite concentra-

tions and granting the cell a large degree of versatility. While

this thermodynamic flexibility prevents the determination of

exact values for DrG9 of the reactions, the estimated

magnitudes of DrG9 are determined, which can provide

valuable insight for the potential of a reaction to undergo

regulation. To tightly constrain metabolite activities and

reaction DrG9 based on thermodynamic constraints, either

a thermodynamic optimization objective must be utilized

as done in the work by Beard and Qian (17), or additional

nonlinear constraints involving kinetics must be added to the

TMFA formalism.

The activity ratio study performed does demonstrate that

while the values for the activities of single metabolites have a

wide range of feasible values, constraints do exist on the

activity ratios of some metabolites of physiological signif-

icance. Important metabolite pairs that appear together in

many different reactions such as ATP and ADP, NAD and

NADH, NADP and NADPH, and intracellular and extracel-

lular protons become thermodynamically coupled to the

activity ratios of many other metabolites in the cell. This

coupling results in a thermodynamic constraint on these

ratios. Interestingly, while the physiological concentrations

of key metabolites in the cell are maintained near the middle

of the feasible activity range, the NAD/NADH ratio is main-

tained near the minimum feasible value while the NADP/

NADPH ratio is maintained near the maximum feasible

value.

While ionic strength can have a large effect on metabolite

activities causing the activity of a metabolite to differ from

the concentration of the metabolite by over 20%, ionic

strength has a much smaller impact on DrG9� of the reactions.

Therefore, the thermodynamic feasibility of reactions can

often be accurately assessed from DrG9� of the reactions

based on a reference ionic strength of zero. The difference

between DrG9� (I¼ 0) and DrG9� (I¼ 0.2 M) is also typically

much smaller than the uncertainty involved in DrG9� (I ¼ 0)

making uncertainty the more important factor to take into

account. However, these adjustments are based on the

extended Debye-Hückel equation, which is applicable for

solutions with an ionic strength of ,0.1 M. Applying this

relationship to adjust DrG9� to an ionic strength of 0.2 M may

affect some of the reported results. The extent of these

differences is the subject of ongoing investigations.

Finally, it is important to note that neither the key

thermodynamic bottleneck dihydroorotase nor most of the

candidates for regulation identified were a part of the central

carbon chemistry of the cell. This emphasizes the importance

of applying thermodynamic analysis to large-scale genome-

based models to account for the highly coupled nature of

thermodynamic constraints.

APPENDIX: MFA CONDITIONS

MFA studies were performed under a specific set of constraints on the

metabolites the cell could uptake from or excrete to the cell surroundings.

The ability of E. coli to grow optimally under aerobic conditions was studied

using glucose as a primary carbon source. The uptake of glucose and oxygen

from the environment into the cell was restricted to 0.01 and 0.02 Mol/g dw

h, respectively (29). The uptake and excretion of sulfate, phosphate, and

ammonium, CO2, water, and hydrogen ion were left unrestricted and the

ATP maintenance requirement was fixed at 7.6 mmol/g dw h (24,30,57).

Under these conditions, the optimal growth on glucose was found to be

0.923 g biomass/g dw h, with a yield of 0.0923 gram biomass per mmol

of glucose uptake (0.512 g biomass/g glucose). This optimal growth

yield agrees well with the optimal growth yields for E. coli under similar

conditions reported in the literature from MFA and experiments (30).

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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