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ABSTRACT Describing and understanding the biological function of a protein requires a detailed structural and thermody-
namic description of the protein’s native state ensemble. Obtaining such a description often involves characterizing equilibrium
fluctuations that occur beyond the nanosecond timescale. Capturing such fluctuations remains nontrivial even for very long
molecular dynamics and Monte Carlo simulations. We propose a novel multiscale computational method to exhaustively
characterize, in atomistic detail, the protein conformations constituting the native state with no inherent timescale limitations.
Applications of this method to proteins of various folds and sizes show that thermodynamic observables measured as averages
over the native state ensembles obtained by the method agree remarkably well with nuclear magnetic resonance data that span
multiple timescales. By characterizing equilibrium fluctuations at atomistic detail over a broad range of timescales, from pico-
seconds to milliseconds, our method offers to complement current simulation techniques and wet-lab experiments and can
impact our understanding and description of the relationship between protein flexibility and function.

INTRODUCTION

It is well established that, while an experimentally deter-

mined structure may reveal a protein’s functional regions,

structural fluctuations under native conditions can modulate

function (1–3). Experiments, simulations, and theory indi-

cate that a detailed description of function (encompassing en-

zymatic reactions, electron transfer, protein ligand binding,

and protein/protein interactions) requires the characterization

of a protein’s native state as an ensemble of conformations

(4–7). Such a characterization involves describing in detail

the structural and thermodynamic properties over all con-

formations of the native state ensemble.

Obtaining this description has proven challenging. While

nuclear magnetic resonance (NMR) spectroscopy describes

picosecond-millisecond timescale dynamics through relaxa-

tion phenomena (1,8,9), the characterization of all the con-

formations constituting the native state at atomistic detail

remains an active area of research (10). Molecular dynamics

(MD) and Monte Carlo (MC) methods, especially when com-

bined with enhanced sampling techniques and massive par-

allelization (11–14) or when conducted in low-dimensional

configuration spaces (15–17), are powerful complements to

characterize the native state ensemble (18). However, the com-

putational demand of these methods makes it challenging to

explore longer timescales (19–21). Efforts to explore native

state ensembles with no timescale limitations have recently

focused either on obtaining native thermodynamic propen-

sities of amino acids (22) or on generating conformations of

the native state ensemble by guiding MD or MC with explicit

information from NMR measurements (10,23,24).

In this context, we have recently developed the Protein

Ensemble Method (PEM) (25) to exhaustively characterize

the native state ensemble of a protein at atomistic detail with

no inherent timescale limitations. PEM obtains all-atom

conformations of the native state in a multiscale fashion

combining geometric and energetic considerations. On the

generated conformations, PEM measures thermodynamic

averages in a statistical mechanics framework and so allows

a direct quantitative comparison with wet-lab experimental

measurements. We have shown that PEM is intrinsically

parallel, efficient in generating large ensembles, and able to

characterize equilibrium fluctuations of both loop segments

and polypeptide chains (25,26).

In this work, we show the generality of PEM by using the

method to characterize native state ensembles of proteins

of different sizes and folds. We present the PEM-obtained

native state ensembles of eglin c, the SH3 domain of Fyn

tyrosine kinase (FynSH3), the 10th type III domain of fib-

ronectin (FNfn10), and the Peptostreptococcus magnus
albumin-binding second GA module of PAB (ALB8-GA).

These proteins are 70, 58, 90, and 53 aa long, of a 1 b,

mainly b, all b, and all a-folds, respectively. We show that

for all these proteins the PEM-obtained native fluctuations

agree remarkably well with NMR data such as order pa-

rameter and three-bond scalar coupling data. In addition, for

ALB8-GA, where side-chain NMR data are presently not

available, we present our prediction on equilibrium side-

chain fluctuations.

MATERIALS AND METHODS

We first briefly review the main components of PEM. A more detailed

discussion of the method can be found in Shehu et al. (26).

Generation of native state ensembles

PEM employs the following multi-scaling approach to generate the native

state ensemble of a protein:
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1. Starting from the topology of an initial native structure (used as a ref-

erence), the method first divides the polypeptide chain into consecutive

long segments of significant overlap.

2. For each segment, an extensive ensemble of relevant backbone con-

figurations is obtained through a geometric exploration of conforma-

tional space that combines uniform sampling of the backbone dihedral

degrees of freedom of the segment with an efficient inverse kinematics

procedure known as cyclic coordinate descent (27).

3. Optimal side-chain configurations are then added onto each backbone

configuration, and a short energy minimization of each of the resulting

all-atom conformations is finally performed. A generated conformation

is deemed low-energy and added to the native state ensemble if its

energy is no higher than 20 kcal/mol from the energy of the initial

structure employed.

Equilibration of solution structures

For the proteins presented here, an initial native structure is obtained by

equilibrating an NMR solution structure. NMR ensembles of solution struc-

tures of eglin c (28), FynSH3 (29), FNfn10 (30), and ALB8-GA (31) are

available in the PDB (32) under codes 1egl, 1nyg, 1ttf, and 1gab. The solu-

tion structure that is reported as the best, representative, or the average of the

NMR ensemble for each protein is subjected to a short energy minimization.

The average structures of the NMR ensembles of FynSH3, FNfn10, and

ALB8-GA are reported under PDB codes 1nyf, 1ttg, and 1prb. When a best,

representative, or average structure is not reported in the PDB, which is the

case for eglin c, the first structure of the NMR ensemble is chosen to be

subjected to an energy minimization procedure.

The energy of a structure is measured through the CHARMM all-atom

force field (33). The energy minimization procedure involves a conjugate

gradient descent in the energy landscape. The minimization of a structure is

considered converged if during the last 300 steps of the conjugate gradient

descent the improvement in energy is ,2.0 kcal/mol. Equilibrated structures

of eglin c, FynSH3, FNfn10, and ALB8-GA differ from their corresponding

solution structures by all-atom RMSDs of 1.8, 1.7, 2.0, and 2.5 Å, respec-

tively (the effect of the equilibration of PDB-obtained structures on the na-

tive state ensembles generated by PEM is discussed in full in Shehu et al.

(26)).

PEM divides the polypeptide chain of each of these proteins into seg-

ments of 30 aa long with an overlap with each other of 25 aa. The values for

the segment length and overlap are chosen by a general and automated

procedure. Optimal segment length and overlap result in consistent amino

acid fluctuations as measured over the ensembles generated for overlapping

segments enclosing each amino acid (see (26) for details and for values to all

parameters used by PEM).

Measurement of thermodynamic averages

PEM measures thermodynamic averages over the segment ensembles in

a statistical mechanics framework. Each PEM-generated conformation C

with energy E(C) is weighted by its Boltzmann probability P(C) ¼ Pref

e�ðEðCÞ�Eref Þ=RT0 , where Eref is the energy of the equilibrated solution structure

(taken as reference), R is the gas constant, and T0 is room temperature of

300 K. The constant Pref is the probability of the reference structure and can

be set to 1 without loss of generality. Let Xi(C) indicate the value of an

observable X, at position i, measured on conformation C; the thermodynamic

average of this quantity over the generated ensemble is measured as ÆXiæ ¼
1
Q
+

C
e�ðEðCÞ�Eref Þ=RT0 XiðCÞ, where Q refers to the partition function. Averages

measured over ensembles of neighboring segments are then combined to

obtain structural and thermodynamic observables of the native state. Since a

conformation C with energy E(C) higher than 20 kcal/mol from the reference

energy Eref has an associated relative Boltzmann probability
PðCÞ
Pref

&10�15, its

contribution to ensemble averages ÆXiæ is practically negligible. Therefore,

only conformations whose energies are no higher than a cutoff of 20 kcal/

mol from the reference energy Eref are considered in the ensembles.

The thermodynamic observables calculated over the PEM-obtained en-

sembles consist of amide and methyl order parameter (S2) data that measure

the reorientational averaging of amide and methyl bonds, respectively, and

three-bond scalar coupling (3J ) data that measure side-chain rotamer aver-

aging. These average values can be directly compared to the corresponding

values measured in NMR experiments and quantify native fluctuations of a

protein at varying timescales. While amide S2 data measure picosecond-

nanosecond timescale fluctuations, methyl S2 and 3J data can span up to

millisecond timescales (1,8,9).

S2 data for a bond are measured by averaging over the distribution of

vectors assumed by the bond in a generated ensemble (23). The calculation

of S2 data is based on the Lipari-Szabo model-free formalism (34) that does

not assume a particular model of internal motions. The model-free formalism

allows for a direct comparison of calculated S2 values with experimental

order parameters under the assumption that motions of the methyl symmetry

axis and of the protons about this axis are decoupled (35). A thorough dis-

cussion on the model-free formalism can be found in the literature (34,35).

Based on the Lipari-Szabo model-free formalism (34), the order parameter

S2
i; j for a bond between atoms i and j is calculated through the formula

S
2

i;j ¼
3

2

�
Æx̂2

i;jæ 1 Æŷ2

i;jæ 1 Æẑ2

i;jæ 1 2Æx̂i;jŷi;jæ
2

1 2Æx̂i;jẑi;jæ
2
1 2Æŷi;jẑi;jæ

2 � 1

2

�
;

where x̂; ŷ; ẑ denote the components of the unit vector along the bond. Since

bond lengths remain essentially unchanged from their equilibrium values

during PEM’s execution, the above formula can be simplified as in Best and

Vendruscolo (23) to

S
2

i;j ¼
3

2ðrmin

i;j Þ
4

�
Æx2

i;jæ 1 Æ y
2

i;jæ 1 Æz2

i;jæ 1 2Æxi;jyi;jæ
2

1 2Æxi;jzi;jæ
2
1 2Æyi;jzi;jæ

2 � 1

2

�
;

where rmin
i;j refers to the equilibrium length of the bond connecting atoms i

and j. The ensemble-averaged S2 for a particular bond is thus obtained by

Boltzmann-averaging over the distribution of x, y, z components of vectors

assumed by the bond. S2¼ 1 indicates no heterogeneity in the distribution of

these vectors, whereas S2 ¼ 0 is indicative of a uniform distribution.

Similarly, 3J data are measured over the distribution of assumed rotamers

(36). The calculation of these quantities and their comparison with NMR

data allows us to quantitatively assess the agreement between the PEM-

generated and the actual native state ensembles.

Additional measurements presented in this work consist of probabilities

of contacts and hydrogen bonds, which are similarly Boltzmann-weighted.

Two amino acids are considered in contact with one another if the Euclidean

distance between two of their atoms is no more than 4.5 Å. A hydrogen bond

is considered formed if the OH distance is ,2.4 Å and the maximum NHO

angle for the hydrogen bond alignment is 2.44 rad.

The computational uncertainty associated with the thermodynamic ob-

servables calculated over the PEM-generated ensembles is obtained by

measuring differences in the observables when alternative implementation

decisions are made in PEM. Therefore, the error bars associated with the

PEM-calculated thermodynamic observables measure the inherent error, hence

the robustness, of PEM (see (26) for a list of all implementation decisions).

The Pearson correlation R2 and reduced x2 are used to quantify the

agreement between calculated and experimental thermodynamic averages.

They are measured as defined in Bevington and Robinson (37).

Computational cost

For each of the proteins in this study, ;13,000 conformations with energy

within 20 kcal/mol from the reference structure are generated for each 30 aa

segment. Of these, ;5000 conformations per segment have energies no

higher than 5 kcal/mol from the energy of the equilibrated solution structure
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used as reference. All results presented here were obtained on the Rice

University Terascale cluster of 900 MHz Intel Itanium2 processors (Intel, Santa

Clara, CA) and on the Rice University ADA cluster of 2.2 GHz AMD Opteron

processors. The calculations for each protein required ,100 CPU hours.

RESULTS

Figs. 1 a, 2 a, 4 a, and 6 a, show the obtained conformational

ensembles for eglin c, FynSH3, FNfn10, and ALB8-GA,

respectively. Figs. 1 b, 2 b, 4 b and c, and 6 b, show that

correlations between the S2 and 3J data calculated over the

ensembles obtained for eglin c, FynSH3, and FNfn10 (S2
calc

and 3Jcalc) and the NMR S2 and 3J data (S2
exp and 3Jexp) are

.92%. This result is particularly significant when consid-

ering the low correlations, 37–50%, between the S2
exp, 3Jexp

data and the corresponding quantities measured over the

NMR ensembles (28–31) available for these proteins. Re-

sults for each protein are discussed in the following.

Analysis of PEM-generated native state
ensemble of eglin C

Fig. 1 a shows the native state ensemble obtained by PEM

for eglin c. Fig. 1 a clearly shows the heterogeneity of this

ensemble. The largest equilibrium fluctuations obtained for

this protein are located in the Thr1-Gly15 N-terminus, which

is practically disordered. Interestingly, the protease-binding

loop, encompassing amino acids Ser41-Arg48, is also very

mobile. Of all the amino acids of the loop, Val43-Leu47 are

the most mobile. The mobility of the entire loop is also

reflected in the low average of 0.7 of the amide S2
calc data

corresponding to the amide bonds of the loop’s amino acids.

The entire amide and methyl S2
calc data computed over the

ensemble obtained for eglin c are shown in Fig. 1 b. Fig. 1 b
shows that S2

calc agree with S2
exp data (38) with a Pearson

correlation of 95% and reduced x2 of 0.98. Methyl S2
calc data

measured over the generated native state ensemble of eglin c

are on average as low as 0.49. This is mostly due to the

disordered Thr1-Gly15 N-terminus.

FIGURE 1 (a) Eglin c conformations with energy no higher than 5 kcal/

mol from the equilibrated solution structure, shown as opaque, are drawn in

transparent representation. (b) Calculated amide and methyl S2 data (S2
calc on

the y axis) are compared to NMR S2 data (S2
exp on the x axis). The dashed line

indicates the linear least squares regression fit on the data sets. The solid line

is the identity line.

FIGURE 2 (a) Fyn SH3 conformations with energy no higher than 5 kcal/

mol from the equilibrated solution structure, shown as opaque, are drawn in

transparent representation. (b) Calculated amide and methyl S2 data (S2
calc on

the y axis) are compared to NMR S2 data (S2
exp on the x axis). The dashed line

indicates the linear least squares regression fit on the data sets. The solid line

is the identity line.
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Analysis of PEM-generated native state
ensemble of Fyn SH3

The obtained native state ensemble of FynSH3 is shown in

Fig. 2 a. In contrast to the ensemble obtained for eglin c, Fig.

2 a shows that the obtained equilibrium fluctuations for

FynSH3 are prevalently small-scale. The largest fluctuations

are located in the N-Src loop, which encompasses amino

acids Asn113-Trp119. Interestingly, the N-Src loop discrim-

inates between class I and class II ligands binding to FynSH3

(29). Of all this loop’s amino acids, its central amino acid,

Glu116 is the most mobile.

The obtained equilibrium fluctuations of FynSH3 are val-

idated by comparing S2
calc data to the corresponding S2

exp

NMR data (39). Fig. 2 b shows that S2
calc and S2

exp data (39)

for FynSH3 agree with a Pearson correlation of 93% and

reduced x2 of 0.77. The small-scale fluctuations qualitatively

shown in Fig. 2 a are reflected in the S2
calc data: amide and

FIGURE 3 Distributions of x1 and x2 angles

(x1 and x2 correspond to the dihedral angles

associated with the Cg � Cd1
and the Cg � Cd2

bonds, respectively) for Leu112 in FynSH3 re-

veal that Leu112 prefers more than one rota-

meric state.

FIGURE 4 (a) FNfn10 conformations

with energy no higher than 5 kcal/mol

from the equilibrated solution structure,

shown as opaque, are drawn in transpar-

ent representation. (b) Calculated amide

and methyl S2 data (S2
calc on the y axis) are

compared to NMR S2 data (S2
exp on the

x axis). (c) Calculated 3JNCg
and 3JCCg

(3Jcalc on the y axis) are compared to

NMR 3J data (3Jexp on the x axis). (b and

c) The dashed black line indicates the

linear least-squares regression fit on the

data sets. The continuous line is the iden-

tity line.

1506 Shehu et al.

Biophysical Journal 92(5) 1503–1511



methyl S2
calc data have high averages of 0.84 and 0.72. This

result agrees with experimental findings that large amplitude

microsecond-millisecond motions are unlikely in the FynSH3

native state (39).

An interesting instance is represented by amino acid

Leu112, located at the border between a b-sheet and the

beginning of the N-Src loop. The methyl S2
calc values asso-

ciated with the x1 and x2 angles of Leu112 are the lowest in

the whole protein, even though the backbone fluctuations at

this position are limited. Fig. 3 shows the distribution of the

side-chain x1 and x2 angles in Leu112 and reveals that the

low methyl S2
calc data result from averaging over multiple

rotameric states populated by the side chain of Leu112 in the

ensemble.

Analysis of PEM-generated native state
ensemble of FNfn10

The native state ensemble obtained for FNfn10 is shown in

Fig. 4 a. The N-terminal amino acids appear disordered, while

the seven b-strands of FNfn10, A, B, C, C9, E, F, and G, are

well defined and practically rigid. The surface loops connect-

ing the b-sheets (AB, BC, CC9, C9E, EF, and FG), however,

are shown to be mobile. The PEM-obtained mobility for these

loops agrees with the hypothesis that motions of these loops

play a role in the induced-fit recognition of FNfn10 by

multiple receptors (40). In particular, the most mobile amino

acids, Val27, Ser43, and Arg78, are located in the BC, CC9, and

FG loops. Interestingly, the FG loop, which includes the RGD

cell-adhesion motif, encompassing amino acids Arg78-Asp80

(40), is the most flexible of all the surface loops in FNfn10.

Fig. 4, b and c, show that S2
calc and 3Jcalc for FNfn10 agree

with S2
exp and 3Jexp data (41) with Pearson correlations of 97%

and 93%, and reduced x2s of 1.21 and 0.86, respectively.

Amide S2 data with a high average of 0.86 indicate small-

scale fluctuations and a practically rigid hydrophobic core.

This result agrees with the findings reported in Carr et al.

(40), where microsecond-millisecond motions in FNfn10 are

not observed.

While most side chains have a single staggered rotamer,

Val4, Val11, and Val50 have unusually low 3J values, indi-

cative of rotamer averaging. Distributions of the side-chain

g1 and g2 angles in these amino acids are measured over the

obtained native state ensemble of FNfn10 and shown in Fig. 5.

Fig. 5 confirms that Val4, Val11, and Val50, while preferring

one rotamer, are found on average in 4–5 rotamers.

Analysis of PEM-generated native state
ensemble of ALB8-GA

The native state ensemble obtained by PEM for ALB8-GA is

shown in Fig. 6 a. Fig. 6 b shows the amide and methyl S2
calc

FIGURE 5 Distributions of g1 and g2 angles

for Val4, Val11, and Val50 in FNfn10 reveal that

these amino acids visit an average of 4–5 other

rotamers. The distributions of g2 angles are

shown inside the distributions of the g1 angles.

Averaging over the rotameric states explains

these amino acids’ unusually low 3J data, even

though only small-scale backbone fluctuations

are detected in FNfn10.
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measured over the obtained ensemble. Amide S2
calc and S2

exp

data (42) for ALB8-GA agree with a Pearson correlation of

92% and reduced x2 of 1.12. Since NMR methyl S2 data are

currently not available for comparison, in Fig. 6 b we show

our prediction of methyl S2 data as obtained by PEM.

The ensemble drawn in Fig. 6 a shows that the second

a-helix of ALB8-GA, a2, is tightly packed between the other

two helices, a1 and a3. Fig. 6 b shows that obtained back-

bone fluctuations of a2 are small (amide S2 data .0.8). This

result supports the loss of conformational flexibility resulting

from selective pressure on a2, which has evolved to bind

human serum albumin with high affinity (42).

In contrast, we observe disorder in the N-terminus of a1.

We find that amino acids Leu7-Lys11 located at the beginning

of the a1 helix of the solution structure of ALB8-GA (31) are

highly mobile. These amino acids’ high fluctuations can be

seen in Fig. 6 b. Moreover, we find that Leu7-Lys11 can

populate both helical and coil configurations. Indeed, while

occasionally populating helical configurations in the PEM-

obtained ensemble, these amino acids have a high probabil-

ity to visit unfolded coil-like configurations.

The low helical content of these amino acids in the PEM-

generated ensemble can be seen in Fig. 7 a. Fig. 7 a shows a

square symmetric matrix where a blue square at position (i, j)
indicates the presence of a contact between amino acid i and

amino acid j, and a red square indicates the formation of a

hydrogen bond between amino acids i and j. Fig. 7 a contrasts

the contacts and hydrogen bond network as present in the

PEM-generated ensemble, shown top left, with the network

present in the representative NMR structure of ALB8-GA,

shown bottom right. The bottom right half of the map reveals

that in the NMR structure hydrogen bonds are present for

amino acids Leu7-Lys11 to be in helical configurations. On the

other hand, the top left half of the map shows both the scarcity

and the low probabilities for hydrogen bonds in this region, in-

dicating that amino acids Leu7-Lys11 visit coil-like configu-

rations in the PEM-generated ensemble with high probability.

The relative populations of helical and coil configurations

visited by amino acids Leu7-Lys11 can be quantified by

measuring the probabilities of the N-terminus amino acids

Leu7-Ala21 to be in helical configurations in the ALB8-GA

ensemble obtained by PEM. Secondary structure assignment

for these amino acids on every conformation of the ensemble

is computed with STRIDE (43). The measured probabilities

are shown in Table 1(b). We have compared these proba-

bilities with the helicity scores produced by Agadir (44), a

program that predicts the helical behavior of polypeptide

chains given only amino acid sequence information. The

complete amino acid sequence of Leu7-Ala21 is shown in

Table 1(a). The helicity scores predicted by Agadir are

shown in Table 1(c).

The helicity scores predicted by Agadir agree with our pre-

diction that amino acids Leu7-Lys11 of a1 have lower prob-

abilities of being found in helical configurations in the native

state of ALB8-GA compared to amino acids Lys12-Lys19.

This can be seen in Fig. 7 b, where we plot and correlate the

FIGURE 6 (a) ALB8-GA Conformations with energy no higher than 5

kcal/mol from the equilibrated solution structure, shown as opaque, are

drawn superimposed in transparent representation. (b) Calculated amide S2
calc

data (orange squares), are compared to NMR S2
exp data (yellow squares).

PEM-obtained methyl S2
calc data are shown in colored circles (no NMR data

are available for comparison). Horizontal bars on the x axis show the

position of the three a-helices on the amino acid sequence of ALB8-GA.

The parts of these bars drawn in lighter colors indicate amino acids that are

found in unfolded configurations as well.

TABLE 1

(a) L K N A K E D A I A E L K K A

(b) 0.01 0.10 0.60 0.85 0.88 0.92 0.90 0.96 0.99 1.00 0.94 0.90 0.80 0.70 0.45

(c) 4.7 4.6 3.0 14.4 14.4 15.2 15.8 23.5 24.7 24.9 24.4 22.9 19.9 14.6 11.2

The ALB8-GA sequence of amino acids 7–21 is shown in row a. The probability of each amino acid to be part of the first a-helix in the ALB8-GA ensemble

obtained by PEM is measured over the ensemble conformations and shown in row b. The helicity scores predicted for each amino acid by Agadir (44) are

shown in row c.
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probabilities measured over the PEM-obtained ensemble

with the Agadir-predicted scores. Although the comparison

with the Agadir-predicted scores can only be interpreted at a

qualitative level (the two data sets measure different quan-

tities), the Pearson correlation with these scores is interest-

ingly high, 82%. This agreement further supports our claim

that these five amino acids (Leu7-Lys11) at the beginning of

the a1 helix in ALB8-GA have indeed a high probability to

visit unfolded configurations under native conditions.

Since helix/coil transitions happen on timescales longer

than nanoseconds (45), the unfolding observed for amino

acids Leu7-Lys11 cannot be detected by the NMR amide S2
exp

data (42). The native state ensemble obtained by PEM for

ALB8-GA may contain additional information to what is

present in the available NMR data. It would be interesting to

devise wet-lab experiments that can observe native fluctu-

ations of a1 over longer timescales. In this particular case, by

capturing helix-coil transitions, such experiments could allow

to test our prediction of low helical content for Leu7-Lys11.

DISCUSSION AND CONCLUSION

In summary, we have shown that PEM fully characterizes

native local fluctuations of small- to medium-size proteins at

atomistic detail. The remarkably good agreements between

the available NMR data for these proteins and the thermo-

dynamic properties measured over the PEM-obtained en-

sembles show that PEM efficiently characterizes native state

ensembles in detail, at least for the proteins presented here.

Unlike in trajectory-based simulation techniques, the na-

tive conformations obtained by PEM are not correlated to

one another. It is this feature that gives PEM its inherent lack

of timescale limitations and makes the method intrinsically

parallel. The massive parallelism together with the efficient

sampling and geometric techniques employed to generate

each all-atom conformation of the native state, make PEM an

efficient method to obtain extensive native state ensembles

of thousands of conformations.

It is worth stressing that the agreement obtained between

PEM-calculated and experimental order parameter and scalar

coupling data is still a challenge for MD or MC simulation

techniques, since slow side-chain rotations may take up to

milliseconds (46). In addition, the rotameric averaging mea-

sured in the scalar couplings may take from picoseconds to

few hundredths of a second (47).

As a sampling-based approach with no inherent timescale

limitations, PEM can complement current simulation techni-

ques in highlighting structural and thermodynamic properties

FIGURE 7 (a) The contact map is drawn as a 53 3 53 square symmetric

matrix (there are 53 aa in ALB8-GA). The formation of a contact between

amino acids i, j is indicated with a blue square at position (i, j). The formation

of a hydrogen bond between i, j is indicated with a red square at position (i, j).

Shades of blue and red indicate different formation probabilities, with dark

blue and dark red indicating a probability of 1, and lighter shades indicating

lower probabilities. The top left half of the matrix shows the formation

probabilities of contacts and hydrogen bonds in the PEM-generated

ensemble. For reference, the bottom right of the matrix shows the contacts

and hydrogen bonds in the representative NMR structure of ALB8-GA. The

hydrogen bonds in the NMR structure indicate that amino acids Leu7-Lys11

are in helical configurations. The PEM-generated map shows that there are

either missing or less probable hydrogen bonds in this region, indicating that

Leu7-Lys11 visit unfolded configurations in the PEM-generated ensemble. (b)

The probabilities for amino acids Leu7-Ala21 to be part of a1 are shown in red.

These probabilities are measured over the ensemble conformations obtained

by PEM. The secondary structure assignment for each conformation of the

ensemble is computed with the STRIDE program (43) in the Tcl/TK

environment of VMD (48). The normalized helicity scores predicted for each

amino acid by Agadir (44) are shown in blue.
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of the native state. In particular, as demonstrated for ALB8-

GA, PEM can also complement experimental techniques

and formulate hypotheses that can be tested through wet-lab

experiments.

It is worth stressing that PEM is primarily intended for

application on proteins with nonconcerted motions, as for

instance the proteins studied in this article. By obtaining con-

formations of one segment at a time while maintaining the

rest of the protein in a reference conformation, as a first-order

approximation method, PEM does consider the possibility of

correlated motions of segments far away in sequence. We are

currently investigating higher-order approximations (25) to

extend PEM to proteins with concerted motions and, more

generally, to larger and more complex systems. The results

presented in this work lead us to believe that PEM represents

a significant first step toward improving our characterization

and understanding of protein function at a microscopic scale.
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