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Bone is often thought of as being a passive, inactive tissue like a skeleton hanging in the
anatomy lab. Often, bone tissue is envisioned statically in terms of two dimensions similar to
a ‘shapshot’ of a histology slide. However, quite to the contrary, bone undergoes considerable
turnover as compared to other organs in the body. Modeling during growth is dramatic and
even in adult bone, 2–5% turnover per year occurs in the long bone and 30% in alveolar bone.
Any experimental approach can bias or have an effect on human interpretations of biological
processes and events. Scientists should always be constantly asking how our perceptions are
being modified by our experimental approaches.

Bone biologists can easily visualize in vitro and in vivo the dynamic nature of osteoclasts with
their resorption lacunae and rapid removal of bone, which occurs relatively rapidly in days.
Osteoblasts are less dynamic, with new bone formation occurring in weeks. Many individuals
still view the osteocyte as being a passive, inactive cell that merely acts as a ‘place holder’ in
bone. Again, this perspective has most likely been perpetuated by histological approaches to
the study of bone. Decades ago there were pioneers in the bone field who proposed that the
osteocyte is not a passive cell, but a cell with the potential to have several functions. Credit is
given to several of these pioneers below, while contrasting with most recent advances due to
the availability of state of the art technology.

Osteocyte conversion of mechanical strain into biochemical signals
Osteocytes, with their distribution throughout the bone matrix and their high degree of
interconnectivity, are ideally positioned within the bone matrix to sense mechanical strain and
translate that strain into biochemical signals of resorption or formation related to the intensity
and distribution of the strain signals1. Rubin and Lanyon in 1984 and 1985 developed and
characterized the mechanical strain parameters for inducing bone formation or bone resorption
in vivo2,3. However, the major challenge has been and still is to translate in vivo parameters
of mechanical loading to in vitro cell culture models. With the advent of microCT, finite
element analysis can be performed. Combined with means to follow gene and protein
expression over time, it is now possible to correlate magnitude of strain with biochemical
signals and with the final biological response4,5.

Osteocyte modification of their microenvironment
Over five decades ago, Heller-Steinberg proposed that osteocytes may resorb their lacunar wall
under certain conditions6. The term “osteolytic osteolysis” was initially used by Belanger in
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1969 to describe the enlarged lacunae in patients with hyperparathyroidism7. This term has
been confused with the resorption mechanisms used by osteoclasts as evidenced by
investigators placing osteocytes onto dentin slices8. The term “osteocyte halos” was used by
Heuck9 to describe pericanicular demineralization in rickets and later by others to describe
periosteocytic lesions in X-linked hypophosphatemic rickets10. In 1971, it was suggested by
Baylink and Wergedahl that the osteocyte has both matrix forming and matrix destroying
activities and that the osteocyte can remodel its local environment including lacunae and
canaliculi11. Osteocyte lacunae were shown to uptake tetracycline, called “periosteocytic
perilacunar tetracycline labeling” and were also found to be acid phosphatase positive near
endosteal osteoclastic resorbing surfaces. These early observations mainly using histological
approaches to suggest that the osteocyte can both add and remove mineral from its lacunae and
canaliculi. Using state of the art technology, such as Surface Plasmon and Raman imaging,
Lane and colleagues found that mice receiving prednisolone showed an enlargement of
osteocyte lacunae in trabecular bone and the generation of a surrounding sphere of
hypomineralized bone12. The capacity to deposit or remove mineral from lacunae and
canaliculi in response to environmental stimuli also has important implications with regards
to changes in magnitude of fluid shear stress and mechanical properties of bone.

Osteocytes as regulators of mineralization and phosphate and calcium
homeostasis

Pioneers in the isolation and characterization of osteocytes include Peter Nijweide for the
isolation of avian osteocytes13 and Yuko Mikuni-Takagaki for the isolation of murine
osteocytes14,15. Nijweide identified Pex as being highly expressed in avian osteocytes and
Mikuni-Takagaki described osteocytes as being low expressors of alkaline phosphatase, but
high expressors of casein-kinase and osteo-calcin. Several osteocyte specific markers such as
sclerostin, an inhibitor of mineralization and Dentin Matrix Protein 1, Dmp1, a regulator of
mineralization have been identified in osteocytes16,17. The fact that these molecules that
clearly have a function in mineralization are highly expressed in osteocytes implies that
osteocytes can regulate mineralization.

Once the osteoblast begins to transform into an osteoid osteocyte, molecules such as Dmp1,
Phex, Mepe/OF45, and sclerostin increase in expression. Recently it has been found that Dmp1
null mice have a similar phenotype to hyp mice in which Phex is mutated and both models are
osteomalacic with elevated FGF23 levels. FGF23 has also been found to be highly expressed
in osteocytes18. Taken together, these molecules, Dmp1, Phex, and Mepe/OF45, would control
phosphate metabolism through regulation of this phosphaturic factor, FGF23. The osteocyte
lacunocanalicular system could be viewed as an endocrine organ.

Osteocytes can move
Evidence is accumulating that osteocytes are more active than previously known. Dallas and
colleagues will show at this meeting that osteocyte cell body movement occurs within lacunae
and that extension and retraction of dendrites can occur within canaliculi. These observations
were made possible by the recent generation of transgenic mice with green fluorescent protein
(GFP) expression targeted to osteocytes19 and with time-lapse dynamic imaging. Calvaria
from these mice were used to image living osteocytes within their lacunae20. These studies
have revealed that, far from being a static cell, the osteocyte is highly dynamic. Fluid flow
through the lacunocanaliculi network would be variable depending on cell body and dendrite
movement.

In summary, the proposed functions of osteocytes include the translation of mechanical strain
into signals of bone formation or of bone resorption, as modifiers of their microenvironment
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thereby modifying the properties of bone and the magnitude of shear stress in the bone fluid,
as regulators of mineralization and as regulators of phosphate homeostasis. These cells may
act as more than orchestrators of resorption or formation in response to strain. This information
and the fact that these cells can move within their lacunae should dispel any notion that these
cells are inactive, place holders.
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