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The potential of Bacillus thuringiensis Cry proteins to control the grape pest Lobesia botrana was explored by
testing first-instar larvae with Cry proteins belonging to the Cry1, Cry2, and Cry9 groups selected for their
documented activities against Lepidoptera. Cry9Ca, a toxin from B. thuringiensis, was the protein most toxic to
L. botrana larvae, followed in decreasing order by Cry2Ab, Cry1Ab, Cry2Aa, and Cry1Ia7, with 50% lethal
concentration values of 0.09, 0.1, 1.4, 3.2, and 8.5 �g/ml of diet, respectively. In contrast, Cry1Fa and Cry1JA
were not active at the assayed concentration (100 �g/ml). In vitro binding and competition experiments showed
that none of the toxins tested (Cry1Ia, Cry2Aa, Cry2Ab, and Cry9C) shared binding sites with Cry1Ab. We
conclude that either Cry1Ia or Cry9C could be used in combination with Cry1Ab to control this pest, either as
the active components of B. thuringiensis sprays or expressed together in transgenic plants.

Most Bacillus thuringiensis strains that have been identified
contain a mixture of up to eight different Cry proteins (26),
which provides a great diversity of insecticidal toxins (2, 14),
representing an important toxin reservoir for the development
of numerous pest control products.

The grape moth (Lobesia botrana) is the most important
component of the lepidopteran pest complex attacking vine-
yards in Europe (4, 27, 28). This pest has been successfully
controlled using certain B. thuringiensis strains (3, 34). How-
ever, the effects of single Cry proteins against this pest have not
been tested systematically, with the exception of a single study
(30) that reported Cry1Ab to be the most active of a series of
Cry1 proteins tested.

Reduced binding of toxin to the insect midgut target sites
represents a well-known mechanism of resistance to B.
thuringiensis toxins (7). Alterations and modifications in cer-
tain insect gut molecules that could be associated with re-
sistance to B. thuringiensis toxins have been also reported (9,
16, 17, 20, 38).

In the present study, we have evaluated the potential of B.
thuringiensis toxins for the control of L. botrana. We deter-
mined the insecticidal activities of some of the most common
lepidopteran-active Cry proteins (selected from the Cry1,
Cry2, and Cry9 classes) and investigated their binding site
relationships to determine their suitability for combined use in
pest management programs.

For this, seven single Cry toxins, purified from recombinant
B. thuringiensis strains, were tested. Strains EG7077 (Cry1Ab),
Cry1Ja (EG11096), and Cry1Fa (EG7279) were obtained from
Ecogen Inc. (Langhorne, PA) and EG7543 (Cry2Aa) and
EG7699 (Cry2Ab) from Monsanto Co. (Chersterfield, MO),

and these strains were grown in casein hydrolysate-yeast ex-
tract medium (36), supplemented with the appropriate antibi-
otic (3 �g/ml of chloramphenicol for EG11069, EG7543, and
EG7699; 10 �g/ml of tetracycline for EG7077; and 4 �g/ml of
chloramphenicol for EG7279), and further activated by tryp-
sin treatment, as described previously (6). Trypsin-activated
proteins used for binding assays were purified by fast pro-
tein liquid chromatography (Pharmacia, Uppsala, Sweden).
Cry1Ia7 (Cry1Ia) was produced in recombinant BL21(DE3)
Escherichia coli cultures. Cells were grown overnight in LB
with kanamycin (50 �g/ml) at 37°C and used to inoculate
750 ml of 2� TY (tryptone-yeast extract) culture medium
(23). The culture was grown at 37°C until the optical density
at 600 nm was 0.5 to 0.6 and then incubated at 25°C for 45
min. Isopropyl-�-D-thiogalactopyranoside (IPTG) (1 mM) was
added and the incubation continued for 2 h at 25°C. Cold
phosphate-buffered saline (PBS) (137 mM NaCl, 2.7 mM KCl,
4.3 mM Na2HPO4, 1.4 mM KH2PO4, pH 7.5) (0.5 volume) was
added to the culture, and cells were recovered by centrifuga-
tion (16,000 � g, 15 min). The pellet was resuspended in cold
PBS (1/10 volume), centrifuged, and stored at �80°C. Cells
were thawed on ice with a 1/33 volume of cold binding buffer
(40 mM imidazole, 4 M NaCl, 160 mM Tris-HCl, pH 7.9;
Novagen, Darmstadt, Germany) and sonicated for 60 s in 15-s
pulses. Protein was expressed with a histidine residue, and
purification was performed using an affinity nickel column (His
Bind purification kit; Novagen). Finally, the buffer was
changed to carbonate (50 mM NaCO3, 100 mM NaCl, pH
11.3) with a Sephadex G-25 prepacked column (Amersham
Biosciences, Uppsala, Sweden) and the protein solution stored
at 4°C until use. Cry1Ia was trypsin activated for binding assays
but used as a protoxin for insect bioassays. Purified and acti-
vated Cry9Ca (the Lys mutant) (22) was obtained from Bayer
CropScience (Gent, Belgium). The protein concentration was
determined as described by Bradford (1), using bovine serum
albumin (BSA) as a standard. Strain HD-1, obtained from the
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Bacillus Genetic Stock Center (BGSC, OH), was used as a
standard in bioassays for activity comparisons. Spore-crystal
suspensions were obtained, and the crystals were purified as
described previously (33) and administrated to larvae without
any previous treatment.

The toxicities of individual purified toxins and HD-1 were
determined by incorporating the proteins into an artificial diet
(3.9% wheat germ, 3.25% brewer’s yeast, 0.1% corn oil, 0.1%
nipagin, 2.5% agar, 3.25% corn flour, 0.32% ascorbic acid, and
0.1% benzoic acid [wt/vol]) (25). Initially, the differential sus-
ceptibilities of L. botrana larvae to individual Cry toxins at a
relatively high concentration (100 �g of toxin/ml of diet) were
tested. In a second experiment, bioassays involving a series of
five toxin concentrations of each Cry protein, ranging from
0.012 to 30 �g of toxin/ml of diet, were used to determine the
concentration-response relationship. For this, a solidified diet
containing the appropriate toxin was offered individually to L.
botrana larvae. Twenty-five neonate larvae were tested for each
toxin concentration as well as for the control. The whole bio-
assay was performed three times. Larvae in the bioassays
were maintained under constant conditions (22 � 1°C,
65% � 5% relative humidity, and a 16:8 [light/dark {h}])
photoperiod). Mortality was recorded after 5 days. Control
experiments were performed under the same conditions but
without any Cry protein in the diet. Concentration-mortality
data were subjected to probit analysis (8), and the 50%
lethal concentration (LC50) values were calculated using the
POLO-PC program (24).

Brush border membrane vesicles (BBMV) of L. botrana
were prepared as described previously (33). Activated and
purified Cry1Ab was labeled with 125I by the chloramine T
method (37), and the specific activity of the radio-iodinated
toxin was analyzed by a sandwich enzyme-linked immuno-
sorbent assay (37). The specific activity for 125I-Cry1Ab was 2.9
mCi/mg. Cry1Ia was trypsin activated, and Cry1Ab and Cry9Ca
were trypsinized and further purified by fast protein liquid
chromatography (as performed for radio iodination). Each
protein was then biotinylated using a kit, following the manu-
facturer’s instructions (Amersham Biosciences, Uppsala,
Sweden). Binding experiments with L. botrana BBMV and
125I-Cry1Ab were performed as described previously (6). The
appropriate conditions for time of incubation, concentration of
labeled toxin, and concentration of BBMV were determined in
preliminary tests using the grape moth. These conditions were
1.2 ng of 125I-Cry1Ab, 0.15 mg/ml BBMV, and 1 h incubation
at room temperature in a binding buffer (PBS [1 mM KH2PO4,
10 mM Na2HPO4, 137 mM NaCl, 2.7 mM KCl, pH 7.4], 0.1%
BSA; final volume, 0.1 ml). Competition experiments were
performed by increasing concentrations of nonlabeled Cry1Ab,
Cry1Ia, Cry2Aa, Cry2Ab, and Cry9Ca. 125I-Cry1Ab bound to
the BBMV after the assay was measured using a gamma
counter (Compugamma 1282; LKB). All the experiments were
performed at least twice. Quantitative analyses for obtaining
the dissociation constants and the binding site concentrations
were performed with the LIGAND program (29), using data
from the homologous-competition experiment. Graphical rep-
resentations and curve fittings were plotted using Graphpad
Prism version 4.0 for Windows (Graphpad Software, San Di-
ego, CA). Binding assays with biotinylated toxins were carried
out with a binding buffer (PBS, 0.1% BSA; final volume, 0.1

ml) by incubating the biotinylated protein with the appropriate
amount of BBMV (25 �g) for 1 h at room temperature. The
amount of biotinylated protein was 30 ng of Cry1Ab, 140 ng of
Cry1Ia, and 20 ng of Cry9Ca. The same binding conditions
described for Cry1Ab were used for competition binding as-
says, but a �400-fold excess of unlabeled protein was also
included. Toxin bound to the BBMV after incubation was
recovered by centrifugation at 11,000 � g for 10 min at 4°C,
followed by two washes with 0.5 ml of cold binding buffer as
described elsewhere (11). The final pellet was suspended with
10 �l electrophoresis sample buffer (21) and boiled for 10 min,
and the proteins were separated by 10% sodium dodecyl sul-
fate-polyacrylamide gel electrophoresis gels. Control lanes
with biotinylated toxins were run using 8 to 10 ng of Cry1Ab,
Cry1I, and Cry9C. Proteins were electrotransferred onto a ni-
trocellulose membrane (Hybond ECL; Amersham Bio-
sciences) and blocked with a 3% enhanced-chemiluminescence
blocking agent (Amersham Biosciences), 0.1% BSA, and 0.1%
Tween 20 in PBS. The membrane was incubated for 1 h with
streptavidin conjugated to alkaline phosphatase (Roche Diag-
nosis, IN) and washed three times with 0.1% BSA, 0.1%
Tween 20 in PBS in order to detect the amount of biotinylated
toxin bound to the BBMV. The final detection was carried
out with a nitroblue tetrazolium-BCIP (5-bromo-4-chloro-3-
indolylphosphate) solution (Roche Diagnosis), following the
manufacturer’s instructions.

Cry1Fa did not have any effect on mortality or larval growth
at the concentration of 100 �g/ml, whereas Cry1Ja caused less
than 10% mortality, but a reduction in the size of larvae was
observed. Low toxicities for Cry1Fa and Cry1Ja were pre-
viously reported by Herrero et al. (10, 11) with Cacyreus
marshalli and L. botrana. In contrast, at this high concentra-
tion, all the other five Cry toxins tested (Cry1Ab, Cry1Ia,
Cry2Aa, Cry2Ab, and Cry9C) resulted in the mortality of all
the treated larvae. The most insecticidal toxins were Cry9C,
Cry2Ab, and Cry1Ab, with LC50 values of 0.09, 0.1, and 1.4
�g/ml, respectively, followed by Cry2Aa and Cry1Ia (3.2 and
8.5 �g/ml, respectively) (Table 1). The only previous study with
L. botrana involved assays with a limited number of Cry1 tox-
ins: Cry1Aa, Cry1Ab, Cry1Ac, Cry1B, Cry1C, Cry1D, and

TABLE 1. Toxicity and relative potencies of the active Cry proteins
to neonate Lobesia botrana larvaea

Cry
protein

Regression
value � SE LC50

(�g/ml)

Good-
ness
of fit
value

Relative
potency

95% CI

Slope ab �2 df Lower Upper

Cry1Ab 1.9 � 0.2 4.7 � 0.1 1.4 0.3 3 1
Cry1Ia 2.9 � 0.2 2.3 � 0.2 8.5 0.7 3 0.2 0.1 0.3
Cry2Aa 2.6 � 0.3 3.7 � 0.3 3.2 1.8 3 0.4 0.3 0.6
Cry2Ab 1.7 � 0.2 6.3 � 0.2 0.1 1.3 3 9.0 6.3 12.9
Cry9Ca 2.6 � 0.3 7.7 � 0.3 0.09 0.1 3 16.1 11.6 22.3
HD-1c 1.9 � 0.2 5.7 � 0.1 0.44 0.9 3 3.3 2.3 4.7

a Parameters were obtained from the POLO-PC program (24). The �2 value
was not significant (P � 0.05) by a goodness of fit test for each regression. Slopes
could not be fitted in parallel. The relative potencies were calculated with respect
to that for Cry1Ab, and the values were expressed as the ratio of the LC50 value
for each Cry protein to the LC50 value for Cry1Ab (31).

b a, intercept of the regression line.
c HD-1 means the entire content of the Cry proteins obtained from the B.

thuringiensis kurstaki HD-1 strain.
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Cry1E (30). That study reported that Cry1Ab was the protein
most active against the grape moth, whereas the results for the
present work revealed that L. botrana was 9- and 16-fold more
sensitive to the Cry2Ab and Cry9C proteins, respectively, than
to Cry1Ab (Table 1). Our experimental results are in agree-
ment with the observation that commercial B. thuringiensis
insecticides containing Cry1Ab protein are toxic to the grape
moth (32, 34). Other proteins present in commercial strains
whose crystal compositions include Cry1Aa, Cry1Ac, Cry1D
(30), and Cry2Aa could contribute to the total activity of these
strains.

Radio-iodinated Cry1Ab bound to L. botrana BBMV in
vitro, and its binding was specific (Fig. 1). Quantitative analysis
of the homologous competition data gave a dissociation con-
stant (� standard error of the mean) of 6.5 � 1.5 nM and a
binding site concentration (� standard error of the mean) of
8 � 2 pmol/mg for Cry1Ab binding sites. Heterologous com-
petition experiments with excesses of unlabeled Cry1Ia, Cry2Aa,
Cry2Ab, and Cry9Ca showed that none of them shared com-
mon binding sites with 125I-Cry1Ab (Fig. 1). Biotinylated
Cry1Ia, biotinylated Cry9Ca, and also biotin-labeled Cry1Ab,
used as a control, bound to L. botrana BBMV, and their bind-
ing was specific (Fig. 2, lanes 1 to 3). Nonlabeled Cry1Ab used
as a competitor in the assays did not displace biotin-Cry1Ia
(Fig. 2B, lane 4) or biotin-Cry9Ca (Fig. 2C, lane 4). In vitro
binding experiments were performed to determine whether the
assayed Cry proteins could be used either as substitutes for the
most frequently used proteins in pest management programs
or in combination with Cry proteins produced by B. thuringien-
sis strains or other recombinant microorganisms. Our compe-
tition experiments with labeled Cry1Ab showed that Cry1Ia,
Cry2Aa, Cry2Ab, and Cry9Ca did not share Cry1Ab binding
sites. Similarly, Cry1Ab was shown not to share binding sites
with biotinylated Cry1Ia and Cry9Ca in L. botrana BBMV. The
fact that Cry1Ia did not share common binding sites with
Cry1A toxins has recently been reported for the cotton pest
Earias insulana (13). Cry2A toxin-specific binding could not be
demonstrated in this study by using the same conditions as

those used for Cry1A toxins, but this is not surprising, as these
toxins seem to have different modes of action (5, 18, 19).

To date, L. botrana control has been performed using some
commercial products based on the HD-1 strain (e.g., Dipel;
Abbot Laboratories, Chicago) or other strains belonging to
serovars kurstaki or aizawai (Delfin and Xentari, respectively),
which have been found to be effective against L. botrana under
laboratory or field conditions (15, 32, 34). The activities of
these strains have been associated with a group of proteins
belonging to the Cry1 and Cry2 classes (35). Our results with
the HD-1 strain indicated an LC50 value lower than those for
the Cry1Ab and Cry2Aa toxins, probably due to a synergic
action among the proteins that constitute the crystal (12, 39).
No commercial strain used for L. botrana control contains all
of the most active proteins, Cry1Ab, Cry2Ab, and Cry9C. In
addition, Cry1Ab and Cry9C do not share binding sites. Con-
sequently, this protein combination in a particular strain is
likely to prove highly effective as a bioinsecticide for use in the
control of the grape berry moth, together or in combination
with Cry1Ab. Moreover, Cry9Ca is of particular interest be-
cause of its high potency against the grape berry moth and its
broad host range, which includes other important pests, like
Ostrinia nubilalis and Agrotis segetum, that are difficult to con-
trol with current B. thruringiensis-based products (22).

We are grateful to V. Marco (Universidad de La Rioja) for supply-
ing insects, Jeroen Van Rie for the Cry9C protein, Jim Baum (Mon-
santo, Chesterfield, MO) for the Cry2Aa and Cry2Ab recombinant

FIG. 1. Binding of 125I-Cry1Ab to L. botrana BBMV at increasing
concentrations of unlabeled Cry1Ab (F), Cry1Ia (}), Cry2Aa (�),
Cry2Ab (Œ), and Cry9Ca (■ ). Experiments were repeated three times,
and error bars represent the standard errors of the means.

FIG. 2. Binding of biotinylated toxins to Lobesia botrana BBMV.
(A) Biotinylated Cry1Ab (lane 1), binding of biotin-Cry1Ab alone
(lane 2), and binding of biotin-Cry1Ab in the presence of an excess of
unlabeled Cry1Ab (lane 3). (B) Biotinylated Cry1Ia (lane 1), binding
of biotin-Cry1Ia alone (lane 2), and binding of biotin-Cry1Ia in the
presence of an excess of unlabeled Cry1Ia (lane 3) or unlabeled
Cry1Ab (lane 4). (C) Biotinylated Cry9Ca (lane 1), binding of biotin-
Cry9Ca alone (lane 2), and binding of biotin-Cry9Ca in the presence of
an excess of unlabeled Cry9Ca (lane 3) or Cry1Ab (lane 4).
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