Skip to main content
. 2007 Feb 14;2(2):e207. doi: 10.1371/journal.pone.0000207

Table 3. Comparison of the areas in km2 estimated for the four buffalo GPS collar sets of data (n points) by the 95% and 100% isopleths for nonparametric (LoCoH) and parametric kernela methods.

Collar n HR k-LoCoH r-LoCoH a-LoCoH Kernel
parameter (k 1) (r 1) (a 1) (â)
T07 27 95% 190 268 166 173 244
89 100% 289 (53) 321 (3475) 236 (32383) 253 (44850)
T13 25 95% 96 114 89 95 142
72 100% 238 (51) 144 (1470) 211 (28156) 224 (35000)
T15 28 95% 126 146 128 153 121
46 100% 276 (53) 156 (1555) 205 (35684) 257 (72000)
T16 16 95% 56 46 55 55 84
75 100% 118 (41) 49 (678) 90 (23401) 90 (23401)

For the k, r, and a-LoCoH methods the parameters used, as described in the text, are the heuristic values k 1, r 1, and a 1 and the MSHC value â (given in parentheses).

a

Implemented in Animal Movement Extension for ArcView 3.x [29] using Silverman's ad-hoc method for selecting the smoothing parameter h [14].