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NSP4-encoding genes of 78 human rotavirus strains of common or reassortant genotypes were characterized
by reverse transcription-PCR followed by sequencing and phylogenetic analysis. It was found that all the
human strains characterized clustered into only two of the five known NSP4 genotypes. Linkage between NSP4
genotypes and VP6 subgroups was 100%, NSP4 genotype A being linked to VP6 of subgroup I (SGI) and NSP4
of genotype B being linked to VP6 of SGII. The diversity among the NSP4- and VP6-encoding genes was
significantly less than that among the VP7 and VP4 genes in cocirculating human rotavirus strains. Whereas
G and P types appear to be shared among different animal species and humans, the NSP4- and VP6-encoding
genes appear to segregate according to their host of origin, suggesting that these two proteins may be host
restriction determinants. The NSP4-VP6 association may be structurally determined during rotavirus repli-
cation (morphogenesis).

Group A rotaviruses are the commonest etiologic agents of
acute gastroenteritis in children and infants worldwide (22).
They are ubiquitous viruses, also infecting the young of many
animal species (22). The rotavirus genome consists of 11 seg-
ments of double-stranded RNA that encodes six structural and
six nonstructural proteins. Group A rotaviruses are classified
into subgroups, G types, and P types according to serological
reactivities of the structural proteins VP6, VP7, and VP4, re-
spectively, which constitute the middle and outer shells of the
virions, or according to the nucleotide sequences of the genes
encoding these proteins, gene segments 6, 9 (or 7 or 8, de-
pending on the strain), and 4, respectively (12). Epidemiolog-
ical studies of rotavirus infections in humans have revealed a
great diversity of G and P types and combinations thereof
cocirculating in different parts of the world (reviewed in ref-
erence 9). Rotaviruses readily reassort upon dual infection of
a single cell, and this phenomenon, observed both in vitro and
in vivo, is believed to be the major contributor to the natural
evolution of rotaviruses (19).

The existence of genotypes is not, however, limited to the
structural proteins. Studies of the genetic diversity of rotavirus
gene segment 10, encoding nonstructural protein 4 (NSP4),
have identified five genotypes (termed A to E) among human
and animal rotaviruses of different G and P types (7, 8, 15, 28).
NSP4 genotypes appear to cluster according to rotavirus host
species, suggesting a conserved pattern of evolution within
species (7).

NSP4 is a cotranslationally glycosylated 175-amino-acid (aa)
protein that contains a noncleavable signal peptide (10, 11).
The amino terminus of this protein interacts with the endo-
plasmic reticulum (ER) membrane and contains three hydro-
phobic regions; the glycosylation sites are located in the first
one, and the second and third hydrophobic regions are mem-
brane-associated and transmembrane domains, respectively
(6). The hydrophilic carboxy terminus extends into the cyto-
plasm (6) and functions as an intracellular receptor for nascent
double-layered particles (DLPs), mediating their budding into
the ER lumen (1, 27, 36). The budding of DLPs involves spe-
cific interactions between the VP6, constituting the outer layer
of the DLPs, and the cytoplasmic carboxy-terminal domain of
the membrane-bound NSP4 (2, 27). However, membrane as-
sociation is not an essential prerequisite for binding, and the
soluble NSP4 carboxy-terminal domain retains the capacity to
bind DLPs (36). Although the domain at aa 156 to 175 (2, 32)
is critical for DLP binding, there is evidence that this binding
domain is dependent on the conformational integrity of the
carboxy terminus of NSP4 for efficient DLP binding (2).

NSP4 and peptides derived therefrom have been shown to
induce diarrhea in mice in a specific and age-dependent man-
ner (3). Differences between the NSP4 sequences from rotavi-
ruses causing symptomatic and asymptomatic infections have
been reported in some studies (24, 34, 39) but not in others (15,
32, 33, 38). Also, antibodies against NSP4 have been found to
reduce the ability of NSP4 to induce diarrhea, and vaccination
with NSP4 has been found to induce homotypic and hetero-
typic protection against rotavirus-induced diarrhea in mice
(13). In humans, NSP4 has been found to induce humoral and
cellular immune responses (20).

NSP4-encoding genes of human rotavirus strains of common
or reassortant genotypes were characterized in order to deter-
mine the variability of NSP4 among rotaviruses circulating in
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diverse geographical areas during different rotavirus seasons
and to investigate whether the gene encoding NSP4 segregates
independently during reassortment, as do other rotavirus
genes (16, 19).

MATERIALS AND METHODS

A total of 78 human rotavirus strains of common or reassortant G and P
genotype combinations were selected for NSP4 characterization by reverse tran-
scription (RT)-PCR and sequence analysis. Thirty-nine of these strains were
collected in the United Kingdom between 1995 and 2002 (17), and the remaining
39 were collected between 1995 and 1999 in Vellore, India (21). The G and P
types of these strains were determined by RT-PCR as previously described (18).
The subgroups of 58 of these strains (34 from the United Kingdom and 24 from
Vellore) were determined by RT-PCR and sequence analysis of a 378-bp VP6
amplicon as previously described (16). The subgroups and G and P types of these
strains are listed in Table 1

Nucleic acid was extracted from 200 �l of 10% rotavirus-positive fecal sus-
pensions by the guanidinium isothiocyanate method (5), and RT was performed
with random hexamers (18). The resulting cDNA was used for the VP6-, VP7-,
VP4-, and NSP4-specific PCRs by using oligonucleotide primers and methods
previously described (7, 16, 18). G and P types were determined by seminested
PCR with type-specific primers (18). VP6 and NSP4 genotypes were determined
by direct sequencing of the 379-bp and full-length amplicons of the VP6- and
NSP4-encoding genes, respectively, with an automated sequencer (Beckman
Coulter) followed by phylogenetic analysis with the Bionumerics software pack-
age (Applied Maths, Kortrij, Belgium). The NSP4 sequences obtained were
aligned and compared to other NSP4 sequences of rotaviruses of human or
animal origin available in GenBank/EMBL. Dendrograms were confirmed by
two methods, neighbor joining and maximum parsimony. Genotypes and genetic
lineages within genotypes were confirmed by bootstrap values of �90%.

The NSP4 sequences described in this work are freely available from the
corresponding author upon request.

RESULTS

The 78 NSP4 sequences analyzed clustered in two groups
(Fig. 1) Of these, 57 sequences, 26 from rotavirus strains iso-
lated in India and 31 United Kingdom strains, clustered within
genotype B. Twenty-one sequences, 13 and 8 from strains iso-

lated in India and the United Kingdom, respectively, clustered
within genotype A (Fig. 1).

Genetic lineages were distinguished among the sequences in
genotypes A and B when known sequences of animal and
human rotavirus strains (available from GenBank/EMBL)
were included in the phylogenetic analysis (Fig. 2) Three clus-
ters, or genetic lineages, were identified within genotype A.
Lineage A-I uniquely comprised sequences from human
strains, whereas the other two, lineages A-II and A-III, com-
prised sequences derived from animal rotavirus strains (bo-
vine, equine, and lapine). A single human strain isolated in
Australia clustered in lineage A-II (Fig. 2). Prototype human
rotavirus strain AU1 (D89843), isolated in Japan, is the only
human strain with an NSP4 genotype other than A or B and
clustered with feline and canine strains of NSP4 genotype C.
Three genetic lineages were distinguished in genotype B. Lin-
eage B-I consisted uniquely of sequences derived from human
strains, and lineage B-II comprised sequences of animal
(equine or porcine) rotaviruses (Fig. 2). Genotype D was com-
posed of sequences derived from murine rotavirus strains, and
genotype E was defined by an NSP4 sequence derived from an
avian rotavirus (Fig. 2).

A 100% linkage between subgroup and NSP4 genotype was
identified among the human common and reassortant strains
for which G, P, and subgroup data were available: Of the 58
strains for which G and P types, subgroups, and NSP4 geno-
types were known, all 17 strains of NSP4 genotype A had a
VP6 of subgroup I (SGI), whereas all 41 strains of NSP4 ge-
notype B had a VP6 of SGII. By contrast, no associations were
found between the NSP4 genotype and G or P types (Fig. 3)

When 17 NSP4 sequences of prototype human rotavirus
strains or other rotavirus strains isolated in the United States
(25) (available in GenBank/EMBL; accession numbers are
given in Fig. 3) were included in the comparison, the segrega-
tion of NSP4 genotype with subgroup specificity remained
100%: NSP4 type A segregated with SGI, and NSP4 type B
segregated with SGII (Fig. 3).

Three genetic lineages were distinguished among the se-
quences derived from human rotavirus strains in genotype B-I,
which did not correlate with any temporal or geographical
pattern of virus isolation (Fig. 3).

Alignment of the deduced amino acid sequences of NSP4
derived from human strains showed that a number of signifi-
cant amino acid changes between the sequences of genotypes
A and B were concentrated mainly in the cytoplasmic domain
of the protein, within the DLP binding region (aa 156 to 175)
(31), or in the region immediately upstream (aa 97 to 148)
(Fig. 4)

DISCUSSION

Although five rotavirus NSP4 genotypes have been identi-
fied to date (7, 8, 15, 28), the diversity of the NSP4-encoding
genes among human rotaviruses is restricted to genotypes A or
B. Previously, Ciarlet et al. (7) found that NSP4 clustering
correlated with rotavirus host species. NSP4 sequences from
animal rotaviruses which had previously been genotyped within
NSP4 A or B according to their deduced amino acid sequences
form clusters that are distinct from the human rotaviruses of
NSP4 genotype A or B (Fig. 1 and 2). The only exception

TABLE 1. G types, P types, and subgroup specificities of 58 human
rotaviruses selected for NSP4 characterization

Strains G type P type Sub-
group

No. of
strains

analyzed

Common human rotavirus strains G1 P[8] II 14
G2 P[4] I 5
G3 P[8] II 4
G4 P[8] II 8

Human rotavirus reassortant strains G1 P[4] I 3
G1 P[4] II 4
G3 P[8] I 1
G4 P[4] I 1
G4 P[4] II 3
G4 P[8] I 1
G9 P[6] I 2
G9 P[8] I 1
G9 P[8] II 4

Strains not fully characterized G1 ND I 1
G1 ND II 1
G8 ND I 1
G8 ND II 1
G9 ND II 1
ND P[8] II 1
ND ND I 1
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identified to date is the human strain AU1, which possesses an
NSP4 C genotype, typical of feline and canine rotavirus strains.
There is evidence through total genome hybridization and
through sequence comparison of the VP4-encoding gene that
this strain was of animal origin, most likely feline (30). The
NSP4 sequence supports this further, strongly suggesting direct
zoonotic transmission from a feline host. Interestingly, this
strain does not appear to have spread widely in the human
population.

A great variety of G and P types and combinations thereof
have been identified in rotaviruses infecting humans, many of
which are shared with rotaviruses found in different animal
species (reviewed in reference 9). However, much less diversity
has been found among the VP6-encoding genes of human
rotaviruses. The molecular characterization of a region of ro-
tavirus VP6 associated with subgroup specificity has shown that
SGI and SGII are the only two VP6 subgroups occurring in
human rotaviruses (16). Similarly, it has now emerged that the

diversity of the NSP4-encoding genes among human rotavirus
strains is restricted to two of the five genotypes that have been
described to date.

It has become increasingly apparent that mixed infections
and subsequent reassortment of rotaviruses occur relatively
frequently in humans and that this is the principal mechanism
generating rotavirus diversity (19). Gene biases during reas-
sortment have been identified both in vitro and in vivo (14, 29),
and particular associations of VP7, VP4, and VP6 appear to be
more frequent than others. In general, G1, G3, and G4 strains
appear to be more frequently associated with P[8] types and
are mostly of SGII, and G2 strains are commonly associated
with P[4] and SGI. However, other subgroup and G and P type
combinations, resulting from reassortment upon dual infec-
tion, have been found in epidemiological studies (9, 17, 19).
Recently evidence for the independent segregation of VP4,
VP6, and VP7 was obtained through sequence analysis of the
genes encoding these three rotavirus proteins from human

FIG. 1. Unrooted dendrogram constructed by using rotavirus NSP4 nucleotide sequences (coding region) and the maximum parsimony method.
The NSP4 cDNA sequences of the 78 human rotavirus strains characterized in this study are highlighted. Sequences representative of the different
existing NSP4 genotypes were included for comparison (accession numbers: EC, U96337; A131, AF144798; ALA, AF144793; CP-1, AF448854;
CH1, AB065287; AU1, D89873; FR3-348, AB 048203). The calibration bar indicates the number of base conversions.
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FIG. 2. Phylogenetic tree of rotavirus NSP4 sequences constructed by the maximum parsimony method. The genotype-defining clusters were
confirmed by bootstrap values of �90% (not shown). Sequences available from GenBank/EMBL from human and animal rotavirus strains (ac-
cession numbers and strain identifiers are in the first column) were included alongside representative NSP4 nucleotide sequences of human strains
from this study for comparison. G and P type (where available) and host of origin are indicated after each strain identifier or accession number.
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rotavirus strains of common and of reassortant genotypes (16,
19).

The most significant finding of the work presented here is
the 100% linkage between NSP4 genotype and VP6 subgroup
in human rotaviruses, with NSP4 type A being associated al-

ways with SGI and NSP4 type B being associated always with
SGII. Kirkwood et al. (23) reported a possible association
between NSP4 genotype and subgroup through Northern hy-
bridization studies of genomes of common human rotavirus
strains with probes complementary to NSP4 genotypes A or B.

FIG. 3. Phylogenetic tree of rotavirus NSP4 sequences (maximum parsimony method) derived from human strains of SGI or SGII; G and P
type specificities, where available, are indicated. Sequences available at GenBank/EMBL were included for comparison. Lineages identified within
NSP4 genotypes A or B, confirmed by bootstrap values of �90% (not shown), are indicated with horizontal lines. The NSP4 gene sequence of the
human strain AU1 (accession number D89873) was included as an outlier.
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FIG. 4. Alignment of the deduced amino acid sequences of the genes encoding NSP4 genogroups A and B of human rotavirus strains. The DLP
binding domain is boxed.
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No evidence for reassortment between genes 6 and 10 was
found. The work presented here confirms this association and
lack of reassortment between the genes encoding VP6 and
NSP4 of particular subgroups or genotypes in common and
reassortant human rotavirus strains, confirmed by sequence
analysis of the genes encoding NSP4, VP4, VP6, and VP7. We
have found no exception to this rule, even in reassortant strains
in which VP6, VP7, and VP4 had segregated independently.
This is the more remarkable as the human rotavirus strains
investigated originated from very different population back-
grounds.

This linkage may be a consequence of NSP4 acting as a
receptor for VP6 during viral morphogenesis and may suggest
coevolution of the genes encoding these two proteins. The
segregation of both NSP4 genotypes and VP6 subgroups ac-
cording to the rotavirus host species (7, 16) suggests that either
of these two proteins or both may be important host restriction
determinants.

There are at present no experimental data to indicate at
which step of the replicative cycle this linkage may occur. One
possibility is that conformational restrictions to interactions of
particular NSP4 and VP6 molecules may occur during mor-
phogenesis. Virus maturation is dependent on the internaliza-
tion of the nascent DLP into the ER lumen, which is mediated
by direct interaction between the ER membrane-bound NSP4
and the VP6 on the DLPs (1, 2, 4, 6, 27, 37). It is remarkable
that the highest sequence diversity between NSP4 genotypes is
located in the cytoplasmic domain of NSP4 (Fig. 4), which is
responsible for interactions with VP6 (13). Several significant
amino acid changes were observed between the cytoplasmic
domains of NSP4s of genogroup A or B at aa 133, 136, 138,
139, 141, and 148 and also within the previously identified DLP
binding domain (2, 32) at aa 170 (Fig. 4). It is therefore pos-
sible that only particular NSP4-VP6 interactions lead to inter-
nalization and maturation of the viral progeny. This may ex-
plain why even in reassortant strains the genes encoding NSP4
and VP6 cosegregate. This process may or may not be host
specific for particular NSP4 and VP6 alleles.

The NSP4-VP6 linkage as well as other gene biases observed
in reassortant viruses may be the result of the ability of the
reassortant progeny to replicate efficiently in a given host.
Further work is necessary to elucidate the mechanism by which
NSP4 and VP6 interact to form this exclusive linkage.

Analysis of the NSP4- and VP6-encoding genes of animal
rotavirus strains will reveal whether linkages also exist among
the NSP4 and VP6 alleles not found in human rotavirus strains.
Binding of SA11 DLPs to membranes expressing SA11-derived
NSP4 was abolished by incubation of the DLPs with an SGI-
specific monoclonal antibody (27), which recognizes aa 259 to
296 and 305 (26, 35). However, the blocking induced by SGI-
specific antibody may be the result of steric hindrance, and
there are no experimental data indicating whether this or any
other subgroup-specific domain is implicated in NSP4 binding.
Identification of the exact domain of VP6 responsible for bind-
ing to NSP4 and investigation of whether differences exist
between the binding domains of the NSP4 and or VP6 proteins
of different genotypes or subgroups, respectively, will contrib-
ute to the understanding of rotavirus morphogenesis. Such
studies may also lead to a better understanding of interspe-
cies transmission of rotaviruses and whether the successful

introduction of novel rotaviruses into the human population
through the acquisition of genes derived from animal strains
depends on coinfection with human strains and the generation
of novel strains with NSP4-VP6 genes characteristic of human
rotavirus strains. Also, NSP4 characterization may be used as a
tool for monitoring interspecies transmission of rotaviruses in
epidemiological studies.

Early rotavirus studies using electropherotyping as a means
of strain characterization are suggestive of a linkage between
VP6 and NSP5, as SGI strains were always found in association
with short electropherotypes and SGII was associated with
long electropherotypes. Also, the study of rotavirus strain di-
versity using RNA-RNA hybridization and the proposed clas-
sification of rotaviruses into genogroups (reviewed in reference
31) may suggest the existence of linkages between other rota-
virus gene segments, based on the scarce cross-hybridization
observed between genogroups. However, these studies have
also provided evidence of interspecies transmission of rotavi-
ruses. Only detailed sequence analysis of whole genomes of a
significant number of common and unusual rotavirus strains
will determine with confidence the degree of diversity of all
rotavirus gene segments and whether they can segregate inde-
pendently during reassortment.
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