Proc. Natl. Acad. Sci. USA
Vol. 96, pp. 11085-11089, September 1999
Chemistry

Hierarchies and logarithmic oscillations in the temporal
relaxation patterns of proteins and other complex systems

(dynamics of complex systems/protein folding/logarithmic temporal oscillations /hierarchically constrained dynamics/

ultrametric spaces)

RALF METZLER, JOSEPH KLAFTER, AND JOSHUA JORTNERT

School of Chemistry, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel

Contributed by Joshua Jortner, July 21, 1999

ABSTRACT Logarithmic oscillations superimposed on
the temporal relaxation patterns of complex systems are
considered from the standpoint of their hierarchical origin.
We propose that a closer examination of experimental data
should reveal logarithmic oscillations in systems that are
characterized by a hierarchical structure of their dynamical
degrees of freedom. On that footing, a new methodology of
data analysis is proposed that may prove important for the
dynamics of protein folding and of conformational fluctua-
tions in proteins in which the relevant time scales of the
dynamical evolution underlying the relaxation kinetics can be
deduced from these oscillations.

Complex systems characterized by “structure with variations”
(1) have gained increasing interest in physics, chemistry, and
biology. The structural and dynamical features of complexity
are ubiquitous in a variety of systems, such as proteins,
biopolymers, glasses, organisms, or whole ecosystems. The
underlying structural characteristics of complex systems in-
volve a large variety of elementary units and/or strongly
interacting elementary units (2). Complex systems exhibit a
surprisingly rich temporal behavior being manifested in a
nonpredictable time evolution (1, 2). This dynamics is usually
connected with a multitude of time scales described through a
relaxation time distribution (3). The relaxation behavior of a
broad range of complex systems deviates from the simple
exponential Debye relaxation f(f) = fo exp{—¢/7). Instead,
many data sets obtained from relaxation experiments can be
described by the Kohlrausch-Williams-Watts stretched expo-
nential function f(r) = foexp{—(¢/7)F}, where 0 < B < 1, or they
follow an asymptotic power-law [Nutting law (4)] f(¢) = fo/(1
+ t/7)* with n > 0 (3, 5-7). Often, one also observes a
transition from one behavior to the other that can be described
by fractional relaxation equations (7, 8).

Usually, only effective time scales such as the constant 7in
the power-law or stretched exponential law defined above can
be deduced from the continuous relaxation time distribution,
where possible individual contributions are smeared out (3, 4,
6-8). Additionally, novel information can be inferred from the
presence of logarithmic oscillations in the time evolution of the
underlying system, as this systematic behavior can be related
to single exponential relaxations with correlated characteristic
time scales. Thus, in their analysis of experimental patch-clamp
data of fast chloride channels, Blatz and Magleby (9) found
logarithmic oscillations, superimposed on a power-law trend.
They demonstrated that a sum of single exponential functions
describes well the distinct shoulders in their data, which is
displayed on a double-logarithmic scale. This analysis shows
the existence of distinct and discrete time scales governing the
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gating process. The data of Iben et al. (10) show oscillations
around the asymptotic power-law trend, especially for the
lower temperature range. Similar observations might be an-
ticipated for various complex systems, such as proteins.

In this paper we address some mechanisms leading to
logarithmic oscillations in the temporal relaxation patterns of
some hierarchical model systems that have been shown to be
relevant to the dynamics of proteins, or other complex systems.
After the discussion of a Markoff chain model on the basis of
which logarithmic oscillations emerge, we argue that measure-
ments of this oscillatory time dependence will result in new
information on the hierarchical dynamic structure in complex
systems.

Hierarchically Constrained Dynamics

Nonexponential relaxation behavior can be related to internal
barriers that are arranged in hierarchies. Such hierarchically
constrained dynamics (11) depends on the time scale of the
measurement, the hierarchies being typified by the constraints
that the “spins” in a given tier n can only relax if a certain
portion of spins in the above tier n — 1 have already relaxed.
Depending on the specific laws imposed on this system, a
power-law, or a stretched exponential relaxation pattern, can
be derived. Alternatively, models with (hierarchical) energy
barriers that are based on the properties of ultrametric spaces
(12-16) are used for the description of relaxation phenomena
in complex systems. In a treatment bridging constrained
dynamics models and hierarchical barrier models, it was shown
(17) that barrier models are as versatile as constraint models
and that both are closely connected. This similarity, i.e., the
same relaxation patterns resulting from the different physical
models, was noted by Klafter and Shlesinger (6). It is common
to all of these models that they exhibit a broad relaxation time
spectrum (3) combining the cascades of discrete time scales
that typify an individual barrier. A prototype example for such
a hierarchical system is given by proteins.

The current conceptual basis for protein folding (18, 19)
focuses on the description of the energy landscapes, their
roughness, and the existence of funnels (18-30). A central
issue in the structure-dynamics-function relations for protein
folding pertains to the multiple time scales for the process. The
kinetic inhomogeneity of the sequential domains is envisioned
in terms of a “downhill folding” scenario (31-34) cascading
through a hierarchy of protein substates. These substates,
which have already been inferred from molecular dynamics
simulations (35), can be described in terms of a Bethe tree (37),
portrayed in Fig. 1. Similarly, inhomogeneous kinetics, origi-
nating from static disorder, was documented for other related
processes in globular proteins, i.e., low-temperature CO or O,
recombination to myoglobin or hemoglobin (36). A sequential
dynamics in the reordering of proteins after a “proteinquake,”
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FiG. 1. Bethe tree and corresponding ultrametric space, with a
branching factor 3. The tiers 71, 7>, and T3 are shown. At each
branching point, three possible paths on the down-cascading way are
considered to be open. Only the terminal points on the bottom actually
belong to the ultrametric space; the connecting lines represent (en-
ergy) barriers between the sites (see text). The dynamics on an
ultrametric space infers that a relaxation of an excited state @ can be
achieved by reaching one of the traps *, by a random walk on the
branches. The ellipsoids denote the growing radius (ultrametric dis-
tance) embracing all sites the excitation can reach within the next step.
Note that the sites *3 and *4 have the same ultrametric distance D from
the original state @.

following a hierarchy of protein substates that are arranged in
a Bethe tree manner, as well as the existence of equilibrium
fluctuations between protein states along the branches of this
tree, was suggested by Frauenfelder and colleagues (38—42).

A hierarchical space in the form of a Bethe tree, with a
branching factor of three, is shown in Fig. 1. Note that only the
end points on the bottom of the tree actually belong to the
corresponding ultrametric space. The branches connecting
these terminal points characterize (energy) barriers that have
to be overcome to reach another point of the ultrametric space.
Therefore, the system is hierarchical, and the barrier height
d(x,y) between two sites x and y can be used as a metric on the
ultrametric space, fulfilling the strong triangle inequality d(x,
y) = max{d(x, w), d(y, w)} for all sites w. Note the conditions
d(e,*)) < d(e,*;) < d(e,*3) = d(e,*,).

In the case of the protein landscape picture developed by
Wolynes and colleagues (27-34) for protein folding, the top
point O in Fig. 1 represents the global state of the native folded
protein, which acts as a funnel for a hierarchy of higher energy
substates. For CO recombination in myoglobin (Mb) (38), the
top point O refers to the bound MbCO configuration. This
state is subdivided into several conformational substates that
are further subdivided in a like manner. Equilibrium confor-
mational fluctuations then take place on this Bethe tree
structure (38). Similar tree structures involve the ultrametric
topology encountered in the modeling of spin glasses (12, 14).
There the different tiers of Fig. 1 resemble energy barriers
arranged in a hierarchical way. A transition as displayed in Fig.
1 then means the following: Suppose the bullet represents a
non-native state reached by the protein, for instance, through
fluctuations, or by freezing it in. If *;, within the same tier, is
another state, it can be reached by comparatively small energy
fluctuations: i.e., by crossing a relatively low energy barrier.
The activation has to be increasingly larger to achieve a
transition for possible native states designated by *,, *3, etc.;
i.e., it increases with growing ultrametric distance d.

A possible relaxation process on the ultrametric space is also
sketched in Fig. 1. To relax, the excitation, symbolized by @, has
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to encounter a site that is occupied by one of the traps *. To
find the traps designated *;, *,, etc., barriers of heights 1, 2, or
3, respectively, have to be overcome. This leads to the data
obtained by Zumofen and colleagues for the kinetics in
ultrametric spaces used for the modeling of reaction dynamics
in complex systems (15, 16). If the bullet in Fig. 1 corresponds
to a molecule of the species 4, and the asterisks to either a
molecule of the same species or to a substance B, reactions of
the type A + A — 0 or A + B — 0, respectively, can be
described.

Another system in which logarithmic oscillations were found
is the Sierpiniski gasket on which diffusion processes were
studied by Klafter et al. (44). The structure-averaged autocor-
relation function that is proportional to the density of the
returning probability to the origin, P(0,f), shows oscillations
that are the more distinct the higher the embedding dimension
D is, thus mirroring the self-similar nature of the fractal
Sierpinski gasket (44). This is connected with the random
walker being confronted with geometric hierarchies, i.e., bot-
tlenecks on a diversity of length scales, leading to temporal
hierarchies of propagation. The typical time spent on a sub-
structure of iteration N is related to the next iteration by
Tu+1/Tn = D + 3 (44). A similar geometrical influence is found
in branching data of the lung (45). Under some conditions,
chaotic systems are characterized by the existence of islands in
the corresponding phase space. These islands are hierarchi-
cally structured (46). Calculating the escape times from these
archipelago-like, nested islands for the standard map, Zu-
mofen et al. (47) relate the resulting logarithmic oscillations
with the number of hierarchies of different island sizes.
Recently, a hierarchical model of traders in a stock market has
been shown to give rise to logarithmic oscillations, superim-
posed to the power-law trend, which are considered important
in the stock market data before big crashes (48).

These examples for hierarchical topologies suggest that, also
for proteins, logarithmic oscillations might be observed and
thus information on relevant time scales deduced. In fact, one
might suspect oscillations in the relaxation data from pressure-
release experiments on myoglobin reported by Iben ef al. (10)
or in those for protein folding obtained by Gruebele and
coworkers (43). In general, discrete hierarchies in systems give
rise to oscillations in the decay patterns, expressed in the
shoulders in a double-logarithmic plot. Each of these shoulders
represents, in the course of time, the contribution of yet
another relaxation channel in the decay cascades. Hierarchical
dynamics can be caused by energetic barriers, by the underlying
geometry, or by both.

Phenomenological Description of Logarithmic Oscillations

Let us now turn to a phenomenological description of loga-
rithmic oscillations. Consider a system whose data roughly
follow a power-law trend, the power-law being superimposed
by oscillations, the period of which is logarithmic in time, i.e.,
the relaxation function follows the functional form

A
f0) = rt",ft) : [1]

where the “amplitude” Am(¢) is, at least over some time range,
periodic or quasiperiodic in the logarithm of time. If, for short
times, Am(t) goes like Am(t) ~ t*, the relaxation function f{(r)
goes to a constant, as it should if the initial quantity described
by fis normalized. Conversely, if, for long times, Am(t) decays
exponentially, with a characteristic time 7, the power-law
window will be terminated for times longer than 7*. Unter-
minated power-law behavior with superimposed log-
oscillations can be easily described by the amplitude

Am(t) = A, + A, cos(2m log(t/ 7)) [2]
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It is immediately clear that the oscillations are the more
dominant the larger A4, is in comparison to 4. Note, however,
that we require A; > A, and both are supposed to be positive
real numbers.

To get a deeper insight into the coming into existence of
such complicated relaxation behaviors, we consider the sum (7,
49, 50)

N
foy =2 @exp{, f} [31

n=1 Tn n

with N open relaxation channels. Through this representation,
the time series is decomposed into N single Debye contribu-
tions of amplitudes a, and characteristic times 7,, which are a
priori independent. Altogether, the system has 2N — 1 free
parameters, as one parameter is determined either through the
normalization condition or through the initial condition (50).
In systems with hierarchical structures, typical for many com-
plex systems, one finds that the individual constants are
coupled through scaling relations: a, = ao"~! (0 < a < 1) and
T, = TA"71 (A > 1); i.e., higher order relaxation modes decay
slower, have a larger characteristic time constant, and con-
tribute with a lower amplitude:

a3 a\" t
0t (ool L)

The scaling reduces the number of free parameters in the
model to merely four. The analytical behavior of this hierar-
chically built sum, often referred to as Markoff chain (7, 50),
can be studied through application of the Poisson summation
formula (52)

N1 * N-1
Eog(n>= > f g(n) exp{2mmxydx.  [5]
n= m=—o0 0

Introducing the latter relation into Eq. 4, and remembering the
definition y(a,x) = [(dy y*~ e of the incomplete y-function,
the following result can be inferred (refs. 7 and 50; M. O. Vlad
and J. Ross, personal communication):

- a I 1+In &/In A N |lIl a‘ L
T Az T maar
z 2min |Ino|

+ 22}1 abs(Ay(l o M))

a1 2min |lno| ¢ 2’771’11[ p
eostarg{ AN L= A ) T a0y L6

where Avy(a, t/A7) = vy(a, t/A1) — vy(a, t/A7). Thus, the
power-law trend t~1=* of index w = |Ina|/InA is superimposed
by the logarithmic oscillations given through the cosine terms.
Consequently, the logarithmic oscillations emerge from Eq. 3
because of the scaling relations imposed on successive ampli-
tudes a, and characteristic times 7,. The incomplete y-func-
tions let f(f) go to a constant value for t — 0+ and terminate
the power-law region after the Nth shoulder, leading to the
turnover to a fast exponential. On the footing of this Markoff
chain model, the data of Blatz and Magleby (9) were investi-
gated by Glockle and Nonnenmacher (51).

Given the Markoff chain, Eq. 3, with the above scaling
relations, the relaxation pattern exhibits a power-law with
regularly spaced logarithmic oscillations. This situation is
displayed in Fig. 2 A and B. Note that, due to Eq. 3 and the
scaling relations for a, and 7,, the relaxation function f() is
strictly monotonic, so that the corresponding relaxation time

fio)
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F1G. 2. (A) Decadic, double-logarithmic plot of the Markoff chain
(Eq. 3) forn = 4, « = 0.5, and A = 15. For short times ¢ << A7, the
power-law is terminated by the initial value; for long times ¢ >> ANT,
a fast exponential decay takes over. The power-law trend has the slope
1+ p =1+ [Ina|/Inx =~ 1.26, according to 7,,+1/7, = A. The dashed
line corresponds to a power-law o ¢~126, (B) Logarithmic derivative of
the functions in 4. The oscillations are clearly pronounced and wiggle
around the dashed line representing the trend without the cosine
function (second term in the braces of Eq. 6). The spacing of the humps
is logh ~ 1.2 (7,+1/74 = A). The plateau value is —1 —loga/logh ~
—1.26.

spectrum is positive. The populations themselves do not
oscillate; the observed oscillations that are superimposed on
the overall relaxation trend are attributable to the hierarchi-
cally ordered individual relaxations.

If the amplitudes still follow the scaling conditions a, = aa”
but the characteristic time scales grow like 7, = mon*, k > 0, the
overall relaxation trend follows a stretched exponential be-
havior (6). The situation is somewhat more intricate, as is
revealed by Fig. 3 4 and B. The nice symmetry of equidistant
humps is broken. However, the logarithmic derivative still
reveals the distinct shoulders.

Scaling Conditions for Successive Time Scales

How does one detect logarithmic oscillations in the relaxation
data? On first inspection, the measured data may not indicate
any kind of oscillations, or it cannot be clearly distinguished
from noise (43), even on a double-logarithmic plot. This is
exemplified in the model calculations for a Markoff chain
depicted in Fig. 24. The log-oscillations can be considerably
amplified by taking the logarithmic derivative of the function
(Fig. 2B), with the oscillations being much more pronounced.

What information about the system can be obtained from
this analysis? If the extended data analysis proposed above
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log f(t)

—0.25
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dlog f(t) —0.75
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FiG. 3. (A) Stretched law with superimposed logarithmic oscilla-
tions in a decadic, double-logarithmic plot. We have plotted 3522
exp(—t/n8). (B) Logarithmic derivative of the plot in A. The irregular
array of the humps is obvious, and the second and the sixth are
smeared out with the preceding ones.

reveals a power-law or a stretched exponential trend in a given
time window, and it is superimposed by log-oscillations, the
system is (i) assembled in certain hierarchies: i.e., it possesses
different domains in its dynamical response, and each domain
is characterized by its own characteristic time; consequently,
certain relations exist, connecting successive time scales: i.e.,
Tu+1/Tn = const. for the power-law trend and 7,4+1/7, ~
exp{const. X log([n + 1]/n)} for the stretched exponential
trend. (if) The individual amplitudes a, and characteristic
times 7, are scaled in such a way that contributions with a larger
characteristic time have a smaller amplitude. Consequently,
only a comparatively small number of independent parameters
exists for the characterization of this kind of relaxation dy-
namics of the complex system. Especially for the case of a
power-law trend underlying the oscillations, the parameter A
can be deduced from the distance between successive humps.
Either from the slope in Fig. 24, or from the plateau value in
Fig. 2B, one obtains the value for the power-law slope: i.e.,
1+ . Thus, one can infer « and can completely determine the
relevant relaxation modes and their respective weights.

In conclusion, we have proposed a method of data analysis
by help of which additional information on complex systems
might be inferred from their dynamical response. This is
important because the experimental techniques are more and
more refined and open the window for even broader ranges of
data. Thus, complex systems that are a compound of several
tiers responsible for a multiple down-cascading relaxation are
predicted to feature logarithmic oscillations. These oscilla-
tions, being of a large enough amplitude and periodicity that
is comparable with the data window, can be extracted by
plotting the logarithmic derivative of the data in respect to
time. We believe that logarithmic oscillations are a ubiquitous
feature for many systems in physics, chemistry, and biology and
that their study, and hierarchical interpretation, make it pos-
sible to deduce relevant time scales for the relaxation dynamics
of complex systems.
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