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ABSTRACT A notion of curvature is introduced in multi-
variable operator theory. The curvature invariant of a Hilbert
module over �[z1; : : : ; zd] is a nonnegative real number which
has significant extremal properties, which tends to be an in-
teger, and which is hard to compute directly. It is shown that
for graded Hilbert modules, the curvature agrees with the
Euler characteristic of a certain finitely generated algebraic
module over the appropriate polynomial ring. This result is
a higher dimensional operator-theoretic counterpart of the
Gauss–Bonnet formula which expresses the average Gaussian
curvature of a compact oriented Riemann surface as the alter-
nating sum of the Betti numbers of the surface, and it solves
the problem of calculating the curvature of graded Hilbert
modules. The proof of that result is based on an asymptotic
formula which expresses the curvature of a Hilbert module in
terms that allow its comparison to a corresponding asymp-
totic expression for the Euler characteristic.

1. Introduction

By a Hilbert module over the polynomial algebra A =
��z1; : : : ; zd� of dimension d, we mean a Hilbert space H
together with a commuting d-tuple of bounded operators
T1; : : : ; Td acting on H. The A-module structure is defined
on H by

f · ξ = f �T1; : : : ; Td�ξ; f � A; ξ � H:

A Hilbert module H is said to be contractive if for every
ξ1; : : : ; ξd � H we have

�T1ξ1 + · · · + Tdξd�2 < �ξ1�2 + · · · + �ξd�2; [1]

and the rank of a contractive Hilbert module is defined as the
dimension of the range of the defect operator 1 = �1−T1T

∗
1 −· · · − TdT ∗d �1/2. The rank of H is written rank�H�.

This note concerns finite rank contractive Hilbert modules.
These are Hilbert space counterparts of finitely generated
modules over polynomial rings. We introduce a numerical in-
variant K�H� for such Hilbert modules H, called the curva-
ture invariant of H. K�H� is a real number satisfying 0 <
K�H� < rank�H�. We give almost no proofs here, but full de-
tails can be found in ref. 1, which is available at the author’s
web site (http://math.berkeley.edu/7arveson.)

The curvature invariant carries key information about the
operator theory and structure of Hilbert modules. For exam-
ple, it is sensitive enough to detect exactly when H is a “free
Hilbert module of finite rank" in the sense that H is unitarily
equivalent to a finite direct sum of copies of the free Hilbert
module H2��d� (to be described more pecisely below) if, and
only if, K�H� = rank�H�. This is the first extremal property
of K�H�.

The second extremal property of K�H� is related to the
structure of the invariant subspaces of the rank-one free
Hilbert module H2 in the following sense: a closed submod-
ule M � H2��d� is associated with an “inner sequence”
iff

K�H2��d�/M� = 0;

PNAS is available online at www.pnas.org.

H2��d�/M denoting the quotient of contractive Hilbert mod-
ules.

To make use of these extremal properties for a given finite
rank contractive Hilbert module H, one must know the value
of K�H�. But direct computation appears to be difficult for
most of the natural examples, and in the few cases where the
computations can be explicitly carried out, the curvature turns
out, to be an integer. Thus we were led to ask if the curvature
invariant can be expressed in terms of some other invariant
which is (i) obviously an integer and (ii) easier to calculate.

We establish such a formula in Theorem B below, which ap-
plies to Hilbert A-modules H which are “graded” in the sense
that their operator d-tuple is circularly symmetric. This for-
mula is analogous to the Chern–Fenchel generalization of the
Gauss–Bonnet formula to compact oriented Riemannian 2n-
manifolds (2); it asserts that K�H� agrees with the Euler char-
acteristic of a certain finitely generated algebraic module that
is associated with it in a natural way. Because the Euler char-
acteristic of a finitely generated module over ��z1; : : : ; zd�
is relatively easy to compute by using conventional algebraic
methods, the problem of calculating the curvature can be con-
sidered solved for graded Hilbert modules.

The problem of calculating the curvature of ungraded finite
rank Hilbert modules remains open.

Our proof of Theorem B amounts to establishing appropri-
ate asymptotic formulas for both the curvature and the Euler
characteristic of arbitrary (i.e., perhaps ungraded) finite rank
contractive Hilbert A-modules (Theorems C and D below).
Theorem D is proved by showing that K�H� is actually the
trace of a certain self-adjoint trace class operator (the curva-
ture operator of H), and an asymptotic formula for the trace
of that operator is developed.

The problem of determining more precisely the distribution
of eigenvalues of this curvature operator is an attractive one
about which we as yet know very little.

2. Basic Definitions

We now describe these results in more detail, beginning
with the definition of the curvature invariant K�H�. Let
T1; : : : ; Td � "�H� be the defining d-tuple of a contrac-
tive finite rank Hilbert A-module H. With every point
z = �z1; : : : ; zd� in complex d-space �d , we associate the
operator

T �z� = z1T1 + · · · + zdTd � "�H�:

Because of the inequality [1], we have

�T �z�� < �z� = (�z1�2 + · · · + �zd�2
)1/2
; z � �d;

and in particular for every point z in the open unit ball Bd =
�z � �d x �z� + 1�; we have �T �z�� + 1, and hence 1− T �z�
is invertible. Thus for every z � Bd , we can define a positive
operator F�z� which acts on the finite dimensional Hilbert
space 1H as follows,

F�z�ξ = 1�1− T �z�∗�−1�1− T �z��−11ξ; ξ � 1H:
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To define the curvature invariant, we require the bound-
ary values of the function z � Bd 7→ traceF�z�. These do not
exist in a conventional sense because in all significant cases
this function is unbounded. However, “renormalized" bound-
ary values do exist almost everywhere relative to the natural
rotation-invariant probability measure σ defined on the unit
sphere ∂Bd , in the following sense.

Theorem A. For σ-almost every ζ � ∂Bd; the limit

K0�ζ� = lim
r→1
�1− r2�traceF�rζ�

exists and satisfies 0 < K0�ζ� < rank�H�.
The curvature invariant of a finite rank contractive Hilbert

module is defined as follows:

K�H� =
∫
∂Bd

K0�ζ�dσ�ζ�; [2]

and we have 0 < K�H� < rank�H�.

3. Extremal Properties of K�H�

In a recent paper (3), the author developed the theory of
a particular Hilbert module over A = ��z1; : : : ; zd�, called
H2��d� or more simply H2 when there is no possibility of con-
fusion over the dimension. There is a natural inner product on
A and H2 is obtained by completing this inner product space.
The action of polynomials on H2 extends the natural multi-
plication of A. The associated d-tuple of operators S1; : : : ; Sd
acting on H2 is called the d-shift. The d-shift satisfies [1] but
does not satisfy the natural counterpart of von Neumann’s in-
equality for the unit ball Bd . Indeed, there is no constant K
satisfying ∥∥f �S1; : : : ; Sd�

∥∥ < K sup
z�Bd

�f �z��

for every polynomial f � A (see ref. 3, Theorem 3.3). It fol-
lows from this fact that the d-shift is not a subnormal d-tuple.

Nevertheless, finite direct sums of copies of the d-shift serve
as an effective substitute for free modules in the algebraic the-
ory of finitely generated modules over polynomial rings. To
discuss this we require the notion of a pure Hilbert A-module.
Let H be a contractive Hilbert A-module with canonical op-
erators T1; : : : ; Td and consider the linear map of operators
φ x "�H� → "�H� defined by

φ�A� = T1AT
∗
1 + · · · + TdAT ∗d ; A � "�H�:

φ is completely positive map satisfying �φ� = �φ�1�� < 1.
It follows that the sequence of positive operators φn�1�, n =
0; 1; 2; : : : is decreasing and hence the limit limn→:φ

n�1� ex-
ists relative to the strong operator topology as a positive con-
traction. The Hilbert A-module H is said to be pure if

lim
n→:

φn�1� = 0:

Let r be a positve integer. By a free Hilbert module of rank r
we mean a direct sum F = r ·H2 = H2⊕· · ·⊕H2 of r copies of
the Hilbert module H2 = H2��d�, where the module structure
is defined by the d-shift, i.e.,

f · �g1; : : : ; gd� = �f · g1; : : : ; f · gr�;
f � A; g1; : : : ; gd � H

2:

This definition has a natural and obvious interpretation when
r = :, and : · H2 is called the free Hilbert module of infi-
nite rank. Notice that if we are given any closed submodule
M of a (contractive) Hilbert A-module H, then the quotient
H/M is naturally a Hilbert space and it inherits the struc-
ture of a contractive Hilbert module from that of H. In gen-
eral, one has rank�H/M� < rank�H�. Every such quotient

F/M of a finite rank free Hilbert A-module F by a closed
submodule M � F is a pure Hilbert A-module of rank at
most r = rank�F�. Conversely, the basic result on the dila-
tion theory of d-contractions (see ref. 3, theorem 8.5 for ex-
ample) implies the following characterization of pure Hilbert
A-modules.

Dilation Theorem. Every pure contractive Hilbert A-
module H of finite or infinite rank r is unitarily equivalent to a
quotient F/M; where F = r · H2 is the free Hilbert module of
rank r and M � F is a closed submodule.

We conclude that to understand finite rank Hilbert A-
modules, one should focus attention on free Hilbert modules
of finite rank, their closed submodules and quotients. In par-
ticular, how does one determine whether a given Hilbert
module is free? What are the properties of submodules of
free Hilbert modules? In the following discussion, we re-
late these questions to extremal properties of the curvature
invariant. These are fundamental results in the subject.

First Extremal Property. Let H be a pure Hilbert A-
module of finite rank r. Then H is unitarily equivalent to a free
Hilbert A-module iff K�H� = r; and in that case H is equivalent
to r ·H2.

To discuss the second extremal property of K�H�; we
consider closed submodules M � H2 of the free Hilbert
A-module of rank 1. Such a submodule M is itself a con-
tractive Hilbert module, it is pure, but it is frequently of
infinite rank (see Theorem E below). In any case, the Dilation
Theorem readily implies that there is a (finite or infinite) se-
quence of bounded holomorphic functions φ1; φ2; : : : on the
open unit ball Bd of �d whose multipliers define bounded
operators on H2��d�, which in fact satisfy

Mφ1
M∗φ1
+Mφ2

M∗φ2
+ · · · = PM; [3]

PM denoting the orthogonal projection of H2 onto the
subspace M . Formula [3] makes the following assertion.
If we consider the row operator defined by the sequence
R = �Mφ1

;Mφ2
; : : :� as an operator from a direct sum of

copies of H2 into H2, then R is a partially isometric homo-
morphism of Hilbert A-modules whose range is precisely the
given invariant subspace M � H2.

The sequence �φn� of multipliers appearing in [3] is cer-
tainly not uniquely determined by the invariant subspace M ,
but if it is carefully chosen, it is unique up to a “unitary rota-
tion matrix.” We also emphasize that it is usually impossible
to find a single multiplier φ or even a finite sequence of mul-
tipliers φ1; : : : ; φr which satisfies [3]. Indeed, the minimum
length r of such a sequence turns out to be the rank of M
as a Hilbert A-module, and as we have pointed out above,
the latter is usually infinite. Thus, while such sequences exist
for arbitrary closed submodules M � H2, they are typically
infinite sequences.

In dimension d = 1 there is a single multiplier φ satisfy-
ing MφM

∗
φ = PM , and [3] reduces essentially to the assertion

of Beurling’s theorem: every invariant subspace of H2��� is
the range of an isometry which commutes with the unilateral
shift. In turn, the multiplier φ is an inner function, that is,
a bounded analytic function defined on the open unit disk
whose boundary values satisfy �φ�eiθ�� = 1 almost everywhere
dθ on the unit circle. This description of the boundary values
of the multiplier φ is easily established by using subnormality:
the unilateral shift is the restriction of a unitary operator (the
bilateral shift) to an irreducible invariant subspace.

To what extent does such a function-theoretic description
of invariant subspaces hold in higher dimensions? Alexandrov
has shown that inner functions exist for the unit ball in di-
mension d > 2 (see ref. 4; also see refs. 5–7), but as [3] and
the remarks following it imply, one cannot hope to achieve
[3] with a single multiplier or even with a finite sequence of
multipliers. Thus, we require a notion of innerness that can
be applied to finite or infinite sequences.
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Now Eq. [3] implies that the sequence of functions �φn�
has the following property on the open unit ball

�φ1�z��2 + �φ2�z��2 + · · · < 1; z � Bd:

In particular, each φn is a bounded holomorphic function on
Bd and thus it has radial limits φ̃�ζ� for σ-almost every point
ζ on the sphere ∂Bd (8). The preceding inequality implies that

�φ̃1�ζ��2 + �φ̃2�ζ��2 + · · · < 1

holds almost everywhere dσ�ζ� on ∂Bd . �φn� is called an inner
sequence if equality holds

�φ̃1�ζ��2 + �φ̃2�ζ��2 + · · · = 1 [4]

for σ-almost every point ζ � ∂Bd .
We have already pointed out above that in dimension d >

2; the d-shift is not a subnormal d-tuple. Hence the argument
alluded to above for establishing [4] in one dimension breaks
down in a fundamental way, and the issue of whether or not an
invariant subspace can be associated with an inner sequence
becomes significant.

Second Extremal Property. Let M be a closed sub-
module of the rank-one free Hilbert module H2��d�, and let
�φn� be any sequence of holomorphic functions in the unit
ball of Bd whose multipliers satisfy [3].

Then �φn� is an inner sequence iff K�H2��d�/M� = 0.
We will make use of these extremal properties at several

points in the discussion to follow.

4. Euler Characteristic, Graded Hilbert Modules, Principal
Formula

We have pointed out in the Introduction that the curvature
invariant is not easily calculated directly, nor is it obviously an
integer in even the simplest cases. In this section we introduce
another invariant which is an integer by virtue of its definition,
and which can be readily computed for many examples by
using the basic tools of commutative algebra (cf. 9, 10).

Throughout this section, H will denote a Hilbert module
over A = ��z1; : : : ; zd� of finite rank r. We will work not with
H itself but with the following linear submanifold of H

MH = span�f · 1ξ x f � A;ξ � H�:

The definition and basic properties of the Euler characteristic
are independent of any topology associated with the Hilbert
space H, and depend solely on the linear algebra of MH . If we
choose any linear basis ζ1; : : : ; ζr for the r-dimensional space
1H; then every element of MH is a finite sum of vectors of
the form

f1 · ζ1 + · · · + fr · ζr;

where f1; : : : ; fr are polynomials in A. Thus, MH is a finitely
generated A-module. By Hilbert’s Syzygy Theorem (refs. 11
and 12, or ref. 9 or 10), MH has finite free resolutions in the
category of finitely generated A-modules

0→ Fn → · · · → F2 → F1 →MH → 0; [5]

each Fk being a sum of a finite number βk of copies of the
rank-one module A. The sequence [5] is an exact sequence
of A-modules, and is called a finite free resolution of MH .
Free resolutions are not unique, but there do exist free res-
olutions whose length n does not exceed the dimension d of
the underlying polynomial ring A = ��z1; : : : ; zd�.

The alternating sum of the ranks β1 −β2 +β3 −+ · · · does
not depend on the particular free resolution of MH , and we

define the Euler characteristic of H by

χ�H� =
n∑
k=1

�−1�k+1βk: [6]

For algebraic reasons one always has χ�H� > 0.
We now describe the principal formula which evaluates the

curvature invariant of graded Hilbert modules. By a graded
Hilbert space we mean a pair H;0 where H is a (separable)
Hilbert space and 0 is a strongly continuous unitary represen-
tation of the circle group � = �λ � � x �λ� = 1�. 0 is called
the gauge group of H. For each n � � we can define the asso-
ciated spectral subspace

Hn = �ξ � H x 0�λ�ξ = λnξ; λ � ��;
and thus H can be regarded as a �-graded Hilbert space in
the sense that we have an orthogonal decomposition

H = · · · ⊕H−1 ⊕H0 ⊕H1 ⊕ · · · : [7]

Conversely, if we are given a �-graded Hilbert space [7], then
we can construct an associated gauge group simply by defining
0�λ� on the nth summand to be ξ 7→ λnξ and then extend-
ing by linearity. Algebraists tend to prefer the description in
terms of �-gradings because that formulation works for arbi-
trary scalar fields, but for our purposes it is more convenient
to think in terms of gauge groups.

A graded Hilbert A-module is a contractive Hilbert module
H, which is also a graded Hilbert space such that the gauge
group 0 is related as follows to the operators T1; : : : ; Td asso-
ciated with the module structure

0�λ�Tk0�λ�−1 = λTk; λ � � ; k = 1; : : : ; d:

Thus, graded Hilbert modules are precisely those whose un-
derlying operator d-tuple is circularly symmetric. One can eas-
ily verify that the previous formula is satisfied if and only if
the Tk shift the terms Hn of the associated �-grading [7] as
follows

TkHn � Hn+1; n � �; k = 1; : : : ; d:

There are many natural examples of graded Hilbert modules,
and in fact there is a “graded” variation of the Dilation The-
orem above that characterizes them in much the same way as
finite rank pure Hilbert A-modules are characterized.

We view the following result as an analogue of the the
Gauss–Bonnet–Chern formula for graded Hilbert A-modules
H. It implies that K�H� is an integer in such cases, and
because there are well-developed algebraic tools for com-
puting the Euler characteristic of finitely generated modules
over polynomial rings, it can also be viewed as a solution of
the problem of calculating the curvature invariant of graded
Hilbert modules.

Theorem B. For every pure finite rank graded Hilbert A-
module H;

K�H� = χ�H�:

5. Something About the Proof: Asymptotics of K(H) and
·(H)

Theorem B is proved by establishing asymptotic formulas for
both the curvature invariant and Euler characteristic of arbi-
trary (i.e., perhaps ungraded) finite rank Hilbert A-modules.
We briefly discuss these results in this section and say some-
thing about the underlying curvature operator.

Let H be a finite rank Hilbert A-module with canonical
operators T1; : : : ; Td , and let φ be the corresponding com-
pletely positive map on "�H�, φ�A� = T1AT

∗
1 + · · · +TdAT ∗d ,
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A � "�H�. Because 1 − φ�1� = 12 is a finite rank opera-
tor, φn�1� − φn+1�1� = φn�12� is finite rank for every n =
0; 1; 2; : : : and hence so is

1−φn+1�1� =
n∑
k=0

φk�12�:

We have the following asymptotic formulas, the principal one
being Theorem D.

Theorem C. For every finite rank Hilbert A-module H;

χ�H� = d! lim
n→:

rank �1−φn�1��
nd

:

Theorem D. For every finite rank Hilbert A-module H;
there is a naturally associated self-adjoint trace class operator
d0; and

K�H� = traced0 = d! lim
n→:

trace�1−φn�1��
nd

:

We will not define the operator d0 here, but we do offer the
following comment. While K�H� = trace d0 is always a non-
negative real number, d0 is never a positive operator. Indeed,
d0 can be expressed as a difference E−P where E is a projec-
tion whose dimension is rank�H� and P is a positive operator
satisfying traceP < rank�H�. See ref. 1 for more detail.

Notice that because 1−φn�1� is a positive operator of norm
at most 1 for every n = 1; 2; : : : ; we have

trace�1−φn�1�� < rank�1−φn�1��;
and hence Theorems C and D together imply that, for (perhaps
ungraded) finite rank Hilbert modules H, we have the general
inequality

0 < K�H� < χ�H�: [8]

This inequality has significant implications (see Corollaries 1
and 2 in the following section).

Finally, we point out that the following upper bound on the
Euler number is a straightforward consequence of Theorem C:

χ�H� < rank�H�: [9]

6. Discussion: Problems and Applications

Theorem B implies that K�H� is an integer for every pure
finite rank Hilbert module H which is graded. But we do not
know if this is so for ungraded modules.

Problem 1: Is K�H� an integer for every pure finite rank
Hilbert A-module H?

We conclude with a discussion of issues and problems re-
lated to Problem 1. Consider the simplest nontrivial case
rank�H� = 1. The Dilation Theorem implies that H can be
realized as a quotient H2/M of the free Hilbert module H2

by a closed submodule M , and the general inequalities [8]
and [9] imply that

0 < K�H2/M� < χ�H2/M� < rank�H2/M� = 1:

Because χ�H2/M� must be either 0 or 1 and we conclude that
either

K�H2/M� = χ�H2/M� = 0 [10]

or

0 < K�H2/M� + χ�H2/M� = 1: [11]

Consider the first alternative [10]. Using a general result of
Auslander and Buchsbaum (see refs. 9 or 10) it is not hard to
show that χ�H2/M� = 0 iff M contains a nonzero polynomial.
On the other hand, recalling the Second Extremal property of
K�H�, we see that when [10] holds, the closed submodule
M � H2 must be associated with an inner sequence. Thus we
may conclude as follows.

Corollary 1. Every closed invariant subspace of H2 which
contains a nonzero polynomial is associated with an inner se-
quence.

More generally, one has Corollary 2.
Corollary 2. Let H be a finite rank Hilbert A-module

whose canonical operators T1; : : : ; Td satisfy an equation
f �T1; : : : ; Td� = 0 for some nonzero polynomial f � A. Then
K�H� = χ�H� = 0.

Returning to the rank-one case, we are led to ask if
the second alternative [11] can occur, and the answer is
yes. Indeed, if M is any closed submodule of H2 which
(i) contains no nonzero polynomials and (ii) satisfies
�0� 6= M 6= H2, then from condition (i) one easily shows
that χ�H2/M� = rank�H2/M� = 1. Condition (ii) implies
that the quotient H2/M cannot be a free Hilbert module,
hence from the First Extremal property of the curvature in-
variant we have K�H2/M� + rank�H� = 1. Thus [11] holds
for all such quotients H = H2/M . Explicit examples are
described in ref. 1.

These remarks also show that Theorem B does not hold for
ungraded Hilbert modules. Nevertheless, we still do not know
if K�H2/M� must be 0 in the context of alternative [11]. By
making use of the Second Extremal property of the curvature
invariant, this special case of Problem 1 (i.e., the case in which
rank�H� = 1) becomes the following more concrete question.

Problem 2: Is every nonzero closed invariant subspace M
of H2 associated with an inner sequence?†

Finally, we offer some comments about the rank of submod-
ules of the free rank-one Hilbert module H2. We have already
pointed out that every closed submodule M of H2 is a (con-
tractive, pure) Hilbert A-module, and that when M 6= H2 the
quotient module H2/M is of rank 1. What about the rank of
M itself? Because H2 itself is of finite rank, it is easy to see
that any closed submodule M � H2 which is of finite codimen-
sion in H2 must also be of finite rank; and the ranks of such
finite codimensional submodules can be arbitrarily large. The
following result concerns infinite codimensional submodules
M which are generated as closed submodules by some set of
homogeneous polynomials in A (perhaps of varying degrees).

Theorem E. Let 0 be the natural gauge group acting on the
rank-one free Hilbert module H2; and let M be any closed sub-
module which is graded in the sense that 0�λ�M �M for every
λ � � ; and which is nonzero and of infinite codimension in H2.
Then rank�M� = :.

Notice that this result stands in rather stark contrast with
the assertion of Hilbert’s basis theorem (9). Indeed, we con-
jecture that the answer to the following question is yes.

Problem 3: Must the rank of every closed submodule of
H2, which is nonzero and of infinite codimension in H2, be
infinite?

Additional problems and applications are discussed in ref. 1.
†I have received a letter from Stefan Richter and Carl Sundberg, which
implies an affirmative solution of Problem 2.
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