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ABSTRACT An experimental study of the irreversible
deposition of colloidal particles of various radii R on a solid
surface is presented over a wide range of the Péclet number,
Pe, or reduced radius R* (Pe 5 R*4). The experimental data
are analyzed by means of a new generalized random sequential
adsorption model that takes explicitly the diffusion of the
particles during the deposition into account. It allows descrip-
tion of the continuous transition from a random sequential
adsorption-like to a ballistic-like deposition behavior. It de-
pends on three parameters: ds, related to the diffusion of the
particles before adhesion; ns, related to the number of allowed
adhesion trials of a particle; and Re, representing the effective
particle radius. The model allows accounting for all of the
experimental observations relative to the radial distribution
functions and the number density f luctuations over the whole
coverage range and all investigated values of R*. In addition,
it is found that dsyR is proportional to R*22 as expected for a
diffusional process. Moreover, the parameters ds and ns
appear to be connected through the empirical relation (dsy
R)ns

2y3 5 C, where C is found to be of the order of 50. This
unique statistical model allows an accurate description of the
irreversible deposition process, whatever the inf luence of
gravity with respect to diffusion.

The structure of an assembly of particles deposited or adsorbed
on a solid surface depends on the ability of the particles to
diffuse along the surface: when they can diffuse on the surface,
the laws of statistical mechanics predict the properties of the
system. In the case of irreversible deposition processes in
which, once adsorbed, the particles can neither move along the
surface nor desorb from it, the structure depends on the
particle interactions and on a parameter R*, related to the
Péclet number by Pe 5 R*4, which characterizes the relative
importance of the gravitational field with respect to the
Brownian motion of the particles during the deposition process
(1). Large values of R* (R* . 3) correspond to deposition
processes in which gravity plays a dominant role, whereas small
values of R* (R* , 1) characterize purely diffusional deposi-
tion processes.

Over the last few years, our understanding of these irre-
versible deposition processes has evolved from both the ex-
perimental and the theoretical point of view, and a great effort
toward modeling has been undertaken. For the case of large
R*, the ballistic-deposition (BD) model has been developed (2,
3). It has been shown experimentally that this model describes
accurately such deposition processes (4). For the case of small
R*, the random sequential adsorption (RSA) model has been
introduced (5). Its validity for describing adsorption processes
is less clear. Although it seems to predict quite accurately the

radial distribution function, g(r), of the assembly of the ad-
sorbed particles (6, 7), it leads to contradictory results as far
as the density fluctuations of adsorbed particles is concerned.
This latter is measured by the reduced variance (ratio of
variance s2 to mean ^n&) of the distribution of the number of
particles deposited on a great number of subsurfaces of equal
size that are part of the deposition plane (6, 8).

For particles characterized by intermediate values of R*, the
interplay between diffusion and gravity during the deposition
process becomes the dominant feature. To model these pro-
cesses, the generalized BD model, which allows a continuous
transition from the RSA to the BD model, has been introduced
(9). Unfortunately, it does not incorporate the diffusional
aspect of the deposition process. On the other hand, models in
which the diffusion in the gravitational field is directly simu-
lated have also been proposed (10). It is, however, difficult to
compare experimental results to their predictions because of
the extensive computer power needed to cover large surfaces.

The present article is aimed at the elaboration of a new
statistical model that is less computer time-consuming, while
also allowing a continuous transition from the RSA model to
the BD model. In addition, the model takes the diffusion
during the deposition process into account, while avoiding its
explicit simulation. We compare the results of this model to
experimental data obtained for a series of particles covering a
large R* domain (Table 1). The measured quantities are the
radial distribution function g(r) and the reduced variance
s2y^n&. Whereas g(r) gives information on the local correlation
between deposited particles, s2y^n& contains information on
the ability of a deposited particle to hinder a new one to deposit
on the same subsurface (11). If, after having interacted with a
deposited particle, an incoming particle can diffuse away from
the subsurface, it is lost for this subsurface and thus influences
s2y^n&. We exploit this property with a method by analyzing the
evolution of s2y^n& as a function of the size of the subsurfaces
to obtain information on the importance of the diffusion
during the deposition process. Both the model and the analysis
method are original.

EXTENDED RSA (ERSA) DEPOSITION MODEL

The irreversible deposition model presented here (ERSA) is
an extension of the RSA model in which monodispersed
particles, considered as hard spheres, are deposited sequen-
tially on the surface. It contains two parameters: the maximum
diffusion distance ds during one deposition attempt, and the
maximum number of deposition attempts ns of a particle.
These parameters depend on the radius R and buoyancy Dr of
the particles. An adsorption trial consists of the following steps
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(illustrated in Fig. 1). (i) A position is randomly chosen over
the surface. If the particle does not overlap with any of the
already adsorbed spheres, it is irreversibly fixed to the surface,
and the trial is finished. One could also introduce an adsorp-
tion probability, as was done by Luthi et al. (12). There was,
however, no strong motivation to do so because in our exper-
iments, the surface was coated with fibrinogen (see below). (ii)
Otherwise, a new position is selected on a line joining the
centers of the depositing particle with the fixed one that was
hit. This position is defined by the radial distance chosen
randomly between 0 and ds, starting at the center of the
depositing particle, taken in the direction going from the
center of the deposited particle to the center of the depositing
one. If, in this new position, the particle does not overlap with
any of the adsorbed spheres, it is irreversibly fixed on the
surface; otherwise, a deposition attempt is repeated, following
rule ii. If, after ns attempts, the particle cannot find a location
to deposit, it is removed from the system and the deposition
procedure is repeated with a particle starting from a new
random position on the plane.

The parameter ds describes the diffusion of the particles
during the sedimentation process: the smaller the Péclet
number, the larger the ds value. In fact, it is expected that dsyR
} R*22, as follows from a crude analysis based on the Langevin
equation accounting for the diffusion in a gravitational field
(13). It appears therefore that the usual RSA model is not a
limiting case of the ERSA model, basically because the RSA
model does not account explicitly for the diffusion of the
particles. It can, however, be recovered when ns is preset to
unity. Any overlap then produces the immediate rejection of
the trial particle, whatever the value of ds. On the other hand,
when R* increases, it is known that the rolling mechanism over
deposited particles becomes increasingly important. This
mechanism is imitated in the ERSA model by decreasing ds

and increasing ns. In the limit of a virtually infinite R*, the BD
model is recovered when ns3 ` and ds3 0, the product ds 3
ns being on the order of magnitude of some R. Thus, in contrast
to the RSA model, the BD model is actually a limiting case of
the ERSA model. Finally, it may be stressed that the values of
ds and ns corresponding to a particular value of R* must also
account for the possibility a particle has to escape from a trap
formed by at least three deposited spheres, as is observed
experimentally. The comparison of the ERSA model predic-
tions to experimental results will reveal that the model cor-
rectly reflects the physical mechanisms governing the adsorp-
tion process.

In addition to the parameters ds and ns, an effective particle
radius, Re, is introduced in the model. This supplementary
degree of freedom is necessary on the one hand to account for
the electrostatic interactions (7, 14) and on the other hand to
correct for the fact that the particle radius is never known
exactly, its measured value being in addition partially depen-
dent on the determination technique.

It may also be emphasized that the ERSA model, which
covers the entire range of Péclet numbers, includes the diffu-
sion in the bulk and in the vicinity of the adsorbing surface.
This means that it includes de facto the influence of the
lubrication forces, as expressed by the nonisotropic friction
tensor in more theoretical approaches (13).

MATERIALS AND METHODS

Experiments. The experimental procedure has been de-
scribed extensively in previous publications (4, 6, 15) and will
thus be only briefly outlined here. The experiments were
performed by depositing polystyrene particles of radii ranging
from '0.8 up to 2.5 mm and of density 1.05 gzcm23 on a cover
glass slide on which fibrinogen, a plasma protein, is first
adsorbed. This coating is performed to render the adsorption
irreversible. The particles of six different sizes (Table 1) were
purchased from Duke Scientific (Palo Alto, CA) and used after
dilution in an aqueous HCl solution at pH 4.

After deposition of the particles, 900 mutually independent
pictures, each covering the same area Ap of the surface (Table
1), were taken with a charge-coupled device video camera with
256 3 256 picture elements. Such a large number of pictures
is required to reduce the scattering of s2y^n&. These pictures
were subsequently treated by an image analysis software
(VISILOG, Noesis, Orsay, France) to determine on each picture
the position of the centers of the deposited particles and then
the number of particles. The radial distribution function g(r)
and the reduced variance of the distribution of the number of
particles in the pictures were derived from these data. To
determine the dependence of s2y^n& on the area Ap covered by
a picture, each picture was subdivided into 4, identical rect-
angles (1 # , # 6). One thus creates a new assembly of
subsurfaces of equal area Apy4,, characterized by a new value
of s2y^n&. Finally, for each experiment, which corresponds to
a given surface coverage u, we obtained the radial distribution
function g(r) and a series of s2y^n& values related to the values
of the integer ,, including , 5 0 for which the original area is

FIG. 1. Schematic representation of the diffusing trajectory of a
depositing particle (E). U represents the deposited particles, and the
dashed circles represent the intermediate positions of the trial particle.

Table 1. Characteristics of the particles (mean radius and SD given by the manufacturer), size of the pictures, and fitting parameters derived
from the ERSA model

System
name

Mean radius R
6SD, mm R* Pe

Zeta
potential,

mV
Picture size,

ApyR2 ReyR dsyR ns (dsyR) ns
2y3

P07 0.7940 6 0.0080 0.666 0.197 256.8 42.88 3 36.59 1.10 10 6 2 40 6 10 117.0 6 42.9
P08 1.0065 6 0.0110 0.845 0.509 259.5 38.53 3 32.68 1.10 7 6 1 2025

110 51.6216.0
124.6

P11 1.2250 6 0.0130 1.03 1.12 236.4 49.58 3 42.53 1.10 5 6 1 30 6 10 48.3 6 20.4
P13 1.5315 6 0.0150 1.29 2.73 233.5 40.54 3 34.77 1.05 3 6 0.2 80 6 20 55.7 6 13.0
P17 2.0000 6 0.0200 1.68 7.94 232.7 42.62 3 36.35 1.05 1.5 6 0.2 200 6 20 51.3 6 10.3
P21 2.4955 6 0.0300 2.09 19.2 237.1 34.16 3 29.13 1.05 1.3 6 0.2 220 6 20 47.4 6 10.2
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recovered. This provides an additional information that can be
exploited when these experimental data are compared with the
predictions of the model obtained by computer simulations.

Computer Simulations. For each experimental system (i.e.,
each particle size) computer simulations were performed in
which a large surface was covered by particles according to the
deposition model described above. The size of this surface, to
which periodic boundary conditions were applied, was chosen
such that it corresponds to the area covered by 900 experi-
mental pictures. The ratio of the area of each of the 900
subsurfaces to the projected area of a particle in the simulation
was equal to its experimental counterpart. Moreover, the
aspect ratio of the surface was also the same. It should be
emphasized that the (x, y) coordinates defining the position of
the adsorbed particles were pixelized as were those from the
experimental pictures. The particle radius was first set equal to
the particle radius given by the manufacturer, and the param-
eters (ds, ns) were adjusted so as to obtain the best possible
agreement between the computed s2y^n& and the one derived
from the experiments for all the seven subsurface areas. Once
this was achieved, the radial distribution function predicted by
the simulations usually had a shape quite similar to the
experimental one, but a homothetic transformation of the
interparticle distance, r, had to be carried out to bring them in
closer agreement. This is equivalent to changing the radius of
the particles to an effective radius Re. However, because both
effects are embodied in a unique parameter, it is not possible
to quantify their respective importance. In any case, R* given
in Table 1 is calculated by using R. Even whether Re was to
correct only for the geometrical size of the particles, their R*
would not be affected by .10% for the particles considered
here, because ReyR # 1.10. The simulations were then re-
peated to optimize the triplet of parameters (ds, ns, Re) with
respect to the reduced variances as well as to the radial
distribution functions.

RESULTS AND DISCUSSION

Figs. 2 and 3 represent, respectively the comparison of the
experimental reduced variance s2y^n& for the two extreme
particle radii investigated experimentally (systems P07 and
P21) and of the radial distribution function g(r) for the six
systems (from P07 to P21), with the computer simulation
results corresponding to the optimized parameters (ds, ns, Re).
The agreement between experimental results and model pre-
dictions for s2y^n& are very satisfactory for both the P07 (Fig.
2A) and P21 (Fig. 2B) systems for all of the subsurface sizes
and over the full coverage range. These results are typical for
the entire series of investigated systems. The ideal agreement
for the smallest subsurface size comes from the fact that in this
case, each subsurface contains the center of at most one
particle so that the limiting Bernoulli law is recovered. On the
other hand, the area covered by the initial pictures (which
represent the largest subsurface area considered) is large
enough for the limiting law, in which s2y^n& becomes insensi-
tive to the size of the subsurfaces to be reached. This has been
verified by direct comparison between simulation results with
the known expressions for s2y^n& as a function of the coverage
for the RSA and the BD models in the limit of infinitely large
subsurfaces (15). One can thus state that the experimental
results and those derived from the ERSA model, as far as
s2y^n& is concerned, are in good agreement for all the sub-
surface sizes and over the full coverage range.

As to the radial distribution function g(r), an excellent
agreement is reached at high coverage (u on the order of 0.4,
Fig. 3A) for all particle sizes between the experimental results
and our model predictions. The agreement is still very good for
intermediate coverage (u on the order of 0.25, Fig. 3B), and
some deviations only appear at low coverage (u on the order
of 0.1, Fig. 3C). These deviations in g(r), which seem not to
appear in s2y^n&, can be due to the fact that the particles are
assumed to be hard spheres with an effective radius. This is

FIG. 2. (A) Reduced variance s2/^n& as a function of the coverage u for the P07 system. The symbols correspond to the experimental values,
and the lines correspond to the simulations. The results corresponding to the different subsurface areas considered have been successively shifted
by 0.1 for the sake of clarity. The symbols appearing on the y axis are ranked in order of decreasing size of the subsurfaces from top (, 5 0) to
bottom (, 5 6). (B) Same as A, except that s2/^n& corresponds to the P21 system.
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FIG. 3. (A) Radial distribution functions g(r) for the six particle systems investigated as a function of the interparticle distance r, at u on the
order of 0.4. The symbols correspond to the experimental results, and the lines to the model results. The data have been successively shifted by
0.5 for the sake of clarity. From top to bottom: P21 (u 5 0.404), P17 (u 5 0.381), P13 (u 5 0.381), P11 (u 5 0.388), P08 (u 5 0.366), and P07 (u 5
0.403) particle systems. (B) Same as A, except that u is on the order of 0.25. From top to bottom: P21 (u 5 0.253), P17 (u 5 0.267), P13 (u 5 0.267),
P11 (u 5 0.250), P08 (u 5 0.258), and P07 (u 5 0.261) particle systems. (C) Same as A, except that u is on the order of 0.1. From top to bottom:
P21 (u 5 0.113), P17 (u 5 0.126), P13 (u 5 0.126), P11 (u 5 0.116), P08 (u 5 0.130), and P07 (u 5 0.124) particle systems.
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certainly an oversimplification that might affect more strongly
g(r), which is a direct measure of the very local particle
interactions, than s2y^n&, which depends more directly on the
ability of particles to hinder new ones to adhere. It may be
noted that the computed g(r) values do not vanish at r , 2R
merely because the coordinates were pixelized, as already
indicated.

The values of ds and ns corresponding to the best agreement
between experiments and simulations are given in Table 1 and
represented in Fig. 4 A and B as a function of R*. From Fig.
4A it is revealed that dsyR varies as bR*2a, with a 5 1.92 6
0.13 and b 5 4.88 6 0.28. This result confirms our expectation
that ds characterizes the distance over which a particle can
diffuse during the deposition process and that dsyR should vary
as R*22, as suggested above. Fig. 4B shows that the parameter
ns first remains stable for R* smaller than or near 1 and then
increases rapidly with R*. In fact, the two parameters ds and ns
cannot be fully independent: for large values of R*, once the
depositing particle interacts with an already adsorbed one, it
diffuses closely along the deposited particle toward the sur-
face. In the ERSA model, because ds becomes small when R*
is large, this movement requires a larger number of steps,
which leads to an increase in ns (Fig. 4B). On the other hand,
ns is also related to the escape probability of a particle from a
trap: the larger ns, the higher is this escape probability provided
that ds remains larger than Ry=3. The connection between ds
and ns seems to be confirmed by the fact that the product
(dsyR)ns

2y3 determined experimentally is constant (within the
experimental uncertainties) with respect to R* except for the
smallest value of R*. In this case one can, however, expect
electrostatic interactions to come into play and thus to add new
features to the process not taken into account in the model.
Because traps form only at high coverage, it is expected that
the model becomes more sensitive to ns at large coverage, as
was indeed observed during the adjustment procedure. It was
also observed that the model is more sensitive to ns for the

larger subsurfaces, whereas it is more sensitive to ds for the
smaller subsurfaces and over the entire coverage range; in fact,
it becomes more sensitive to ds already in the small coverage
domain for the smaller particles. This observation has greatly
facilitated the adjustment procedure and can be explained as
follows: for small particles, the diffusion distance of a particle
during the deposition process is large. This result implies that
after interaction with an already deposited particle, the de-
positing one can diffuse over a long distance before finally
reaching the deposition surface. If, during this process, it
diffuses over such a distance as to leave of the subsurface over
which it had originally landed, it is lost for this subsurface. This
is equivalent to a new particle landing randomly over the
deposition plane, as far as s2y^n& is concerned. Thus, this latter
becomes very sensitive to ds for subsurfaces having a charac-
teristic size of the order of ds and less sensitive for larger
subsurfaces. Moreover, this effect should appear over the
whole coverage range. Finally, it was also noticed that s2y^n&
is not very sensitive to the effective radius of the particle,
whereas g(r) depends critically on this parameter.

CONCLUSION

We have introduced in this study a statistical model that takes
into account irreversible deposition processes under the in-
fluence of gravity. This model depends on three parameters:
ds, which proves to be essentially a maximum diffusion dis-
tance; ns, the maximum number of deposition attempts of a
given particle; and Re, the effective radius of the particles
considered as hard spheres. Many experiments, at various
surface coverages, have been performed for six particle sizes
covering the transition region from a BD-like to an RSA-like
behavior. It has been shown that it is possible to adjust these
three parameters to account for all of the structural parame-
ters that were determined experimentally (radial distribution
function and reduced variance over the full coverage range and

FIG. 4. (A) Representation of the diffusion distance ds as a function of the reduced radius R*, corresponding to the six particle systems
investigated (F). The solid line is the least-squares fit to the experimental data. (B) Representation of the maximum number of attempts ns as a
function of the reduced radius R*, corresponding to the six particle systems investigated.
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for different subsurface sizes). This is a very strong indication
for the general validity of this model aimed at describing such
irreversible processes.

In addition, it has been shown that dsyR seems to scale as
R*22, as expected from the Langevin equation. Moreover, the
experiments also seem to indicate that both ds and ns are
connected through the relation (dsyR)ns

2y3 ' 50, for which no
theoretical explanation has been found so far by the authors.
Further experiments performed in the low-R* domain would
be necessary to validate this relation.

The usually undesirable finite size effects were thoroughly
exploited here to ‘‘measure’’ the power of the model. This
method should be very useful as a complement to the radial
distribution functions to characterize other systems like ad-
sorbed protein monolayers by atomic force microscopy or
electron microscopy.
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