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ABSTRACT The problem of simultaneous estimation of
the number of signals and frequencies of multiple sinusoids
is considered in the case when some observations are missing.
The number of signals is estimated with an information theo-
retic criterion, and the frequencies are estimated with eigen-
variation linear prediction. The strong consistency of the es-
timates of the number of signals and the frequencies is es-
tablished and the rate of convergence of these estimates is
provided. Besides, the limiting distributions of various esti-
mates are given.

1. Introduction

In resource prospecting and earthquake detection, telecom-
munications, biomedical engineering, radio location of
objects, etc., it is often necessary to detect the number of
signals. A commonly used model for signal processing is the
undamped exponential model

Po

y(n) = Z a;e" +w(n), n

=1

1,..., N, [1.1]

where i = v/—1, {« ;} is a set of unknown complex amplitudes,
{w;} is a set of unknown angular frequencies, and {w(n)} is
a sequence of independently and identically distributed com-
plex random noise variables, usually assumed to have mean
zero and finite variance o. Associated with this model, two
interesting problems are to determine the number of signals
and estimate the unknown parameters. Even when the number
of signals p, is known, it is not easy to find the least squares
estimates of @; and w; values because it would involve solving
a system of nonlinear equations with exponential functions.
To avoid this difficulty, various methods have been developed
in the literature. Among others, references may be made to
Bressler and MaCovski (1), Kay (2), Kumaresan et al. (3),
Kundu (4), Rao (5), Stoica (6), Tufts and Kumaresan (7), and
Ulrych and Clayton (8).

Missing or incomplete data of model 1.1 are usually failure
of sensors or recording. Because of this failure, the estima-
tion of both the number of signals and the amplitudes and
frequencies of the signals is of both theoretical and practical
interest. Kundu and Kundu (9) proposed a consistent estima-
tion of the frequency parameters. In this paper, we propose
a method for simultaneously estimating the number of signals
and the frequencies of the signals, and the asymptotic prop-
erties of the proposed method will be discussed.
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In Section 2, a method for simultaneous estimation of the
number of signals and the amplitudes and frequencies of the
signals is proposed when some observations in model 1.1 are
missing. In Section 3, the strong consistency of the estimators
is proved. In Section 4, we establish the limiting distributions
of the newly proposed estimators. In Section 5, the rates of
convergence of the estimators of the number of signals and
the frequencies of the signals are given.

In the following, 4 denotes the complex conjugate of the
matrix 4, A* denotes the complex conjugate transpose of A
and || 4|? = trace(A* A4).

2. Determination of the Number of Signals and Estimation
of the Frequency Parameters When Some Observations
Are Missing

Suppose that the data sequence {y(n)} is given as follows:

Po

y(n)=Y a" +w(n), n=1,...

j=1

, N, [2.1]

where i = v/—1, {« ;} is a set of unknown complex amplitudes,
{w;} is a set of unknown angular frequencies, and {w(n)} is a
sequence of independently and identically distributed complex
random noise variables such that

E(w(1)) =0, Ew(lw(l)=0c> Ew)* <=, [2.2]

with ¢ unknown. We assume that o; # w; if j # k, 0; €
[0, 277) for any j, and p, =< P < o,

In this paper, we are primarily interested in determining p,
and estimating the frequency parameters w;, j = 1,..., p,.
Once o ; values are estimated, the « ; values can be found by
the linear least squares fit to the data.

Denote
yp+1)  y(p) y(1)
y=| yp+2) yp+1) ¥(2)
yIN)  y(N-1) Y(N = p)
:[.Y1,.Y27~~~,J’pr]/~ [2'3]
Suppose that the observations {y(k), k € ky} are miss-
ing, where ky is a subset of the set {1,...,N}. Let Ay

be the matrix obtained from the matrix Y in 2.3 with the
rows having missing observations removed. Denote 6y
{n: y(n + p),...,y(n)) is a row of Ay ,}, and let ry , be
the number of rows of Ay ,. For brevity of notation, we omit
N in the above notations.
Define I'P) = r ' 4% 4, = (

~(p)

Yo )- Let

) -1 2. —
S, = min{r, | 4,677 [V = 1},
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for p = 0,1,..., P, where b = (b”, b{”, ..., by It is
clear that S, is the smallest eigenvalue of 7).

Let
R,=S8,+pCy, p=0,1,...., P [2.4]
where Cy is assumed to satisfy
7,C
lim Cy =0, fim Y 2N o [2.5]

N=ee N== Jloglogr,

Then, we find a nonnegative integer p < P such that R, =
ming- ,-p R,. We use p as an estimate of p,.

Further, we find a unit (§ + 1) X 1 complex vector (")
B, 67, by such that

-1 2(P)|12
Sy =154 [2.6]
Let ﬁje‘”"f, j =1,...,p, be the solutions to the equa-
tion B(2)= AZIP:O bzl =0, where p; > 0, @; € [0,2m),
j=1,...,p. Then we use @; values as estimates of w;

values.
We need the following assumption:
ASSUMPTION (A). Assume that r
O(1) for any real number a # 0.
Rema(k 2.1: It is easy to show that r, tends to % and
Zjeeﬂ e’ = O(1) for any real number a # 0 when ky is
bounded.

ija _
p > and ) e, e =

3. Strong Consistency of the Detection and Estimation
Procedures

The following theorem contains the main results of this sec-
tion.

THEOREM 3.1.  Suppose that {w(n)} is an iid sequence
of complex random variables satisfying 2.2 and that Assump-
tion (A) holds. Then

(i) p = p, for large N; .
(ii) there exists a unique (p, + 1) X 1 unit vector b (up to
a complex factor with modulus one) which satisfies 2.6,
and
(iii) for appropriate ordering
2

o, > w;, j=1,...,py S;—> 07,

i i as N — o,

The following two lemmas are needed in the proof of The-
orem 3.1.

LEmmA 3.1. Let {x,, n = 1} be a sequence of in-
dependent real random variables with zero means. Write
sp =21 E(x})and S, ="}, x; If liminf,_. s2/n > 0 and
E(|x;|*™) = K < o, j =1 for some constants K and p > 0,

then limsup, _, ., S, //2s2loglogs? =1, a.s.

Proof: For a proof, see Petrov (10). [ ]
Let
I = g1, + QDD*Q* = (v7)), [3.1]
where D = diag(e, ..., a, ) and
o1
= 7 0T [3:2]
eipor ... elPoy

LEMMA 3.2.  Suppose that {w(n)} is an iid sequence satisfy-
ing 2.2 and that Assumption (A) holds. Then, as N — =,

»=r® 4o (r;I/Z log log ), as. [3.3]
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Proof: For 0 = p = P, and m, ¢ = 0,1,...,p, 3 =
r;1 Zne(ap y(n—m)y(n —¢) = iuh:L#h aj&hei(mwh_lw/)rgl
Zneop entemen 4 Z]p;] ajei(m“)“’f r;l X ZnEGP eitm—m)o;
w(n—m) + 31 &m0t 3, e 0w — ) +
! Znee,, w(n — Hw(n —m) + Z;’il |aj|2ei(m—e)w/ ZJy +

Jon + sy + Juy + v, Because r, = ® as N — o and

> jes, e = O(1) for any real number a # 0,

Iw=0(r"). [3.4]

Using the condition 2.2 and Lemma 3.1, we obtain

Iy =0 (r;l/2 [loglogr,), a.s.
Jiy = O (r;W floglogr,), a.s. [3.5]

In terms of the law of iterated logarithm of M-dependent se-
quence, it follows that

O( loglr& , a.s. for m # ¢,

Jin = [3.6]
o-z—i—O(‘/loglr&’,a.s. for m = ¢.

By 3.4-3.6, 3.3 follows. |

We begin to prove the Theorem 3.1. .
Proof of Theorem 3.1: Because both I'”) and 1'® are
positive-definite Hermitian matrices, their eigenvalues and

i . 3 (P) 5 (P)
trace(IPT(?) are nonnegative. Let A" = ... = A,
be the eigenvalues of [, and let A = ... = /\;’21

be the eigenvalues of I'”. Then, by von Neumann (11),
Zf:ll AE‘")X;”) = trace(I» ("), Hence,

ptl
ST = AN = trace(IM®) — T2, [3.7]

j=1

By 3.1, it is easy to see that

)\(p’:r)l > g*for p < p,, and /\;’21 = o’for p = p,. [3.8]
Hence, by Lemma 3.2,3.7, and S, = 5\;’21, we have
lim S, = /\(;21 > g2, a.s. for P < Po» [3.9]

N

and

1S, — 0% = o(r;W flog logrp), as. for p= p,. [3.10]

Assume that p < p,. Then by 3.9, 3.10, 2.4, and 2.5,

p+1

: 2 (p)
}%II_Izlx(RpO -R,)=0"-X,/, <0, as. [3.11]

Hence, with probability one, for large N,
R, <R, for p < p,.

Now we assume that p > p,. Then by 3.10, 2.4, and 2.5,
with probability one, for large N,

R, —R,=S, =S,—(p—py)Cy

loglogr
= 0( /r”) —(p—py)Cy <0. [3.12]
14

Therefore, with probability one, for large N, p = p,, which
establishes (7).

To prove (ii) and (iii), we can use the similar methods found
in the literature, e.g., Bai and Rao (12). The details are omit-
ted.
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4. Limiting Distributions of S; and {®;, j = p}.

Because p — p,, a.s., as N — «©, we use p, instead of p
when we consider the limiting properties of various estimates
involving p. For further simplicity, we shall use p for p,, but
we keep all other notations defined in previous sections. In
the following, () in 3.2 is a (p + 1) X p matrix.

Throughout this section, we assume that {w(n)} is a se-
quence of iid complex r.v.’s such that

E(w(1)) =0, Ew(lw(l) = o?,

Var(|w(1)*) = co* with ¢ > 0. [4.1]
Let v; ~ N(0,0?), j=1,..., p, uy ~ N(0, co*), and u; ~
N(0,0%), j=1,..., p. Assume that v; and u; values are in-

dependent of each other. Denote

u(] ul u

N P

U — u] uo “ee up—l

U, U, 7
V=g, 00,). Gy = 7S, — ) g = 7G5~ 1,
Ay = (0 — w), v = (Ty15-.-,7y,), and Ay =

(Ayis-.-»Ay,). Define B(z) = Y7 ,bjz/ where b =
(b, by,...,b,)y is the eigenvector of T'?) correspond-
ing to the eigenvalue o? such that ||| = 1. Write G =
diag(iz%-B(e™), ... , idL%B(e—f%)). Then the limiting
distributions of /7,(S, — o%) and /7, ((p; — 1) — (&, —
wy),...,(p, —1) —i(w, — w,)) are given in the following
theorem.

THEOREM 4.1.  Suppose that condition 4.1 is satisfied and
that Assumption (A) holds. Then,

{n 5 (2bUB, [4.2]
and

Ty —iAy —> G-{(DD*)(Q*Q)'Q*Ub.  [43]

The following lemma is needed to prove Theorem 4.1.
LEmMMA 4.1.  Suppose that condition 4.1 is satisfied and that

Assumption (A) holds. Then r, " Znee” e =09 yw(n—2L) £
. 172
v, forj=1,...,p,€=0,1,...,prp / e, (Jw(n—20)>—

a?) N uy fort =0,1,...,p, r;l/z > neq, W(n—Lw(n —m)

c
— U, for0=m<L=p

Proof: Since ), €’ = O(1) for any real number a # 0,
the normality of v, ;40, and u; follows from the central limit
theorem. u

Proof of Theorem 4.1: Let W = r,">(D(?) — T(®) = (4f,.,).
By Lemma 4.1, we have ¥ £ v=O(DV 4+ DV)Q* + U. Be-
cause S, is the smallest eigenvalue of I'?), we have

0=det[l'” —5,1,,]
= det[QDD* O + 7, W — (S, — 0P ,,,].  [44]

Let O be a unitary matrix such that Q*QDD*()*Q =
diag(¢y, ..., £,,0), & = ... = £, > 0. Note that the
last column of Q is the eigenvector of T'”) corresponding
to the eigenvalue o?. We choose this column as b. Write
:,\1,2: dlAag(fI —(S,—0%),....£,—(S,—0%),—(S,—0%)) +
r,20*¥Q. By 44, det[Ey] = 0. Multiply by /7, the last
row of the matrix E,. Because N7 N W, by Skorohod’s rep-
resentation theorem [see Skorohod (13)], ¥ — W, as. as
N — oo, Therefore,

Ly = L =b*Vb=b*Ub, a.s. [4.5]
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Note that 4.5 reveals only that there exist some versions of
{ny ¢, ¥, and U which have the same distributions as {y, ¢,
Y, and U, respectively, such that 4.5 holds. Hence we only
get 4.2. The principle of this statement also applies to the
following proof of 4.3 and so on.

Because (F(f) —S8,1,,1)b=0and T - o?1,.1)b = 0 with
the choice of b such that b — b, a.s. and ¥ — V¥, a.s., by 4.5,
we have

0=(I" - ‘721p+1)"IN + I, —bb*)Ub
+o(1), a.s. [4.6]

where ny = /75 (b —b)Z(nyps - - -, My,) -

Write my = my; + My, such that ny, = QBy for some
complex random vector By and Q*ny, = 0. Because ([P —
o, )y = QDD*QW*ny = QDD*Q*ny; = QDD*Q OBy,
by 4.6, we obtain

By — —(Q*Q)"(DD")1(Q*Q)'Q*Ub, as.

which implies that ny, — —-Q(Q*Q)"Y(DD*)"1{(Q*Q)~! -
Q*Ub, a.s. Hence

Oy = Oy, — —(DD) (' Q)'Q*Ub, as. [4.7]

Because b — b, a.s., p; = 1, as., and &; - w;, as., for ap-
propriate ordering and for j =1, ..., p, with probability one,
we have

Wy + G(ry —iAy) +o(llry [ + [Ay[) =0 [48]

for large N. Because e i is a simple root of the multinomial
B(z), we have - B(e~™1) # 0 for j=1,..., p, and thus G is
nonsingular, which, together with 4.7 and 4.8, implies that

Ty — Ay — tGYDD)TH(Q*Q)'Q'Ub, as. [4.9]
Hence, 4.3 follows. |

5. Rate of Convergence of the Estimates of the Number of
Signals and the Frequencies

The main results of this section are included in the following
four theorems. The first theorem gives the rates of conver-
gence of p.

THEOREM 5.1.  Suppose that {w(n)} is an iid sequence of
complex random variables with zero mean and finite variance
and that Assumption (A) holds. If Cy in 2.4 satisfies the follow-
ing conditions

lim Cy =0, jlliin%\/ﬁc,\, =, [5.1]

N—>w
then E(Jw(1)|**) < o, w > 1, implies that
P(ﬁ # pO) = O(rp(rpcn)_#) + 0((rpC12\7)_s)a [5-2]

Thw(D?

as N — o, for any s > p, and E(e ) < oo, 7> 0 implies

that
P(p # py) = O(e™ "), [53]
as N — «, for some n > 0.
Let

b = gy [I — (P — SPUI)JF(f(p“) _ Spuf)]b(P"), [5.4]

where ay > 0 such that |5»)| = 1, and G* denotes Moore—
Penrose inverse of the matrix G. By 3.3 and 3.10, b is well
defined and ay = |[I — (T — 8, [y* (T — 5, I)]pr0|-1.
The following theorem gives the rates of convergence of b0,



Statistics: Bai et al.

THEOREM 5.2. Suppose that {w(n)} is an iid sequence
of complex random variables with zero mean and finite
varianc e and that Assumption (A) holds. If Cy sat-
isfies 2.5, then E(Jw(1)|*) < o wu > 1, implies that
PO — Br| = &) = 0(r,(r,C) ") + O((r,CGR))
as N — o, for some s > p, and E(e™" ") < oo, 7> 0 implies
that P(|p») —p»)| = g) = O (e*"’vci’), as N — o, for some
n >0

Because the roots of a polynomial are continuous func-
tions of coefficients of the polynomial, we have the follow-
ing theorem, which describes the rates of convergence of
(pe™'r, ..., pe~'®).

THEOREM 5.3.  Suppose that {w(n)} is an iid sequence
of complex random variables with zero mean and finite vari-
anc e and that Assumption (A) holds. Assume that &; and
w; j =1,..., p, are both arranged in increasing order. Let
2 = (pe, ..., pe 'Y and z = (e7',...,e"nY. If
Cy satisfies 2.5, then E(Jw(1)|**) < o, u > 1, implies that
P(z—z| = &) = O (r,(r,C,)™") + O((r,C})™*), as N — o,
for some s > u, and E(e™P) < o 1 > 0 implies that
P(—z| = &) =0(e %), as N — =, for some n > 0.

Hence it is obvious that the following results regarding the
rates of convergence of {f,} and {&;} hold.

THEOREM 5.4.  Suppose that {w(n)} is an iid sequence of
complex random variables with zero mean and finite variance.
Assume that r,, the number of rows of A, tends to © and

.. P
> ieo €’ = O(1) for any real number a # 0. Assume that &;
p
and w; j =1,..., p, are both arranged in increasing order.
Let 7 = (pe™™™,...,pe" %Y and z = (e7™,..., e "“n).

If Cy satisfies 2.5, then E(Jw(1)|**) < o« u > 1, im-
plies that for some s > p, P(max,oj=;|p; — 1| = &) =
O (r,(r,C)™) + O((r,C})™*), and P(max, ;< p,,, |®; —
| = &) = 0(r,(r,C)™*) + O((r,CX)*), as N —
o, and E(e™OF) < o 1 > 0 implies that for some
1 = &) = O(e‘”’ﬁC12V>, and
P(max,<j<s,, |®; — 0| Z&)=0 (e*”'vci'>, as N — .

The following two lemmas are needed in the proofs of the
theorems.

n > 0, P(maxlsjgﬁmj -

LeEmMA 5.1. Let z, z,, ... be independent and identically
distributed complex random variables with mean 0 and E|z,|* <
o for some u > 1 and a,, a,, ... be a sequence of real numbers.

Assume that n(ne,)™ — 0 and na? — . Then for any s >

and, we have
n
P Ze”’fzj = na,
=1

= O (n(na,)™) + O ((na;)™).

Proof: The lemma can be proved following the same lines
of the proof of lemma 2.2 of Bai, Krishnaiah, and Zhao (14).

|

LEMMA 5.2. Let zy, z,, ... be independent and identically
distributed complex random variables with mean 0 and Ee™*! <
© for some T > 0 and ay, a,, ... be a sequence of real numbers.

Assume that o,, — 0 and na? — . Then

(]

n
ia
Z €z
j=1

_ 2
= na,,) = ce M

for some m >0 and ¢ > 0.

Proof: The lemma can be proved in the same way as in
lemma 2.3 of Bai, Krishnaiah, and Zhao (14).

Proof of Theorem 5.1: In view of the structure of I'”), it is
clear that for p = 1,

Agp) = A(lpfl) = /\(217) = )\gpfl) =
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= AP = ApD =20 = g2
and for p = p,,
AP =A== = o [5.5]
AP = (D) > g2,

Now, let v = A\

— 0% Because A"} =S, by 3.7 we have

1S, — /\(pp+)1| = \Jtrace(T'® —T®»)2,  p=0,1,...,P. [5.6]
If p < p,, then by 5.5,
trace(I'® — T(")? < C% /4,
and
trace(I'P) — T(P)? < 2 /4, [5.7]
which imply that R, — R, =S, -5, +(p — py)))Cy =

Cy — (\/trace(f(l’) —T'»)2 +\/trace(f(ﬂn) — F(P«v))2> > 0.
Therefore,

p#p, forp> p,. [5.8]

If p < py then by 5.1, trace(I® — TW)? < (% /4,
which, together with 5.7, implies that R, — R, = S, —

Sp, = (po — P))Cy = )‘Eﬁr)l - o= (\/ trace(l») —T(#))2 +

Jtrace(Pm) — T4 (py = p)Cy) = v = (po+1)Cy > 0,
for large N. Therefore,

p#p, forp<p,. [5.9]

In view of 5.8 and 5.9, we have

P
P(p# pp) =P (U[trace@“’) —1) =G}y ‘”)'

p=0

By the definition of iff,f?, for 0 = p = P, and m,¢ =
0,1,..., p,
( _ —
Bt =1, Y yn—m)y(n—0)
neo,
= [5.10]
Po
+ Z ajo—(hei(mwh—lw/)rgl Z ein(wj—w,,)
joh=1,jh €,
Po
+ Z ajei(m—l)wjrljl Z ei(n—m)w,w(n — m)
j=1 n€o,
Po
Jj=1 neo,

+r,! Z [w(n — Ow(n —m) — ?8,,], [5.11]

neo,

where §,,, denotes the Kronecker delta. If E(jw(1)**) < e,
w > 1, by 5.11 and Lemma 5.1, 5.2 follows. If E(e"*MF) <
o, 7 > 0, by 5.11 and Lemma 5.2, 5.3 holds. The proof of
Theorem 5.1 is complete. |

Proof of Theorem 5.2: The proof of Theorem 5.2 can be
given based on the same idea of the proof of Theorem 5.1.
The details are omitted.
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