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ABSTRACT Solvent plays a significant role in determining
the electrostatic potential energy of proteins, most notably
through its favorable interactions with charged residues and its
screening of electrostatic interactions. These energetic contri-
butions are frequently ignored in computational protein design
and protein modeling methodologies because they are difficult to
evaluate rapidly and accurately. To address this deficiency, we
report a revised form of the original Tanford–Kirkwood contin-
uum electrostatic model [Tanford, C. & Kirkwood, J. G. (1957)
J. Am. Chem. Soc. 79, 5333–5339], which accounts for the effects
of solvent polarization on charged atoms in proteins. The Tan-
ford–Kirkwood model was modified to increase its speed and to
improve its sensitivity to the details of protein structure. For the
37 electrostatic self-energies of the polar side-chains in bovine
pancreatic trypsin inhibitor, and their 666 interaction energies,
the modified Tanford–Kirkwood potential of mean force differs
from a computationally intensive numerical potential (DelPhi)
by root-mean-square errors of 0.6 kcalymol and 0.08 kcalymol,
respectively. The Tanford–Kirkwood approach makes possible a
realistic treatment of electrostatics in computationally demand-
ing protein modeling calculations. For example, pH titration
calculations for ovomucoid third domain that model polar side-
chain relaxation (including >2 3 1023 rotamer conformations of
the protein) provide pKa values of unprecedented accuracy.

Substantial advances in protein design (1–3) and homology
modeling (4–7) have resulted from the introduction of multicopy
sampling algorithms (8), which simultaneously evaluate the fit-
ness of multiple amino acids and side-chain rotamers at each
position in a protein structure. Electrostatic energies in current
studies have either been disregarded (1, 4–7, 9) or have been
approximated by a highly damped Coulomb potential and em-
pirical terms proportional to atomic solvent accessible surface
areas (10). These methods ignore the substantial interactions of
buried charges in proteins with solvent and incorrectly represent
the screening of charge–charge interactions. Electrostatic ener-
gies in proteins are not small (11), and inaccurate treatments of
the electrostatic potential would be expected to introduce large
energetic errors into modeling calculations.

One reason for the omission of electrostatic energies is the lack
of methods for their evaluation that are both rapid and accurate.
Free-energy perturbation calculations with explicit solvent mol-
ecules (12), as well as finite-difference and boundary-element
methods based on continuum solvent models (13), are thought to
well approximate electrostatic free energies, but the extensive
computation times they require prohibit their use in many protein
modeling calculations. Fast analytical expressions for the elec-
trostatic potential based on the Coulomb field approximation and
the generalized Born equation (14) provide remarkably accurate
small-molecule solvation energies but give rise to large errors
when applied to bulky solutes such as proteins.

To address these problems, we have revisited the classic
Tanford–Kirkwood (TK) electrostatic model (15). The basis for

the TK model is conceptually simple (Fig. 1). Regions of space
occupied by solvent and solute are treated as dielectric continua.
The solvent-excluded volume of the protein is equated to a sphere
of low-dielectric material, and the solvent is equated to a sur-
rounding high-dielectric material. Single charges and charge pairs
are mapped from the protein into the sphere, and their interac-
tions are evaluated in the spherical geometry by using Kirkwood’s
analytical series solution to the Poisson–Boltzmann equation
(16).

We have made three alterations to the TK model to facilitate
its use in protein modeling. First, we replace the original TK
point-charge representation by shell charges, so that the electro-
static self energies of buried atoms in proteins can be calculated
in a well defined manner (11). Second, we map charges between
the protein and sphere geometries on the basis of a Coulomb field
integral (17, 18), making the TK model sensitive to the structural
details of the protein in the vicinity of a charge. Finally, we
substitute Kirkwood’s equations with a complete and precise
image-charge solution to the potential of a charge in a spherical
dielectric cavity, which allows fast evaluation of electrostatic self
energies and interaction energies (19–21). The modified Tanford-
Kirkwood (MTK) model matches the speed of analytical small-
molecule electrostatic methods but accurately reproduces in
proteins the electrostatic free energies of computationally inten-
sive numerical methods.

MATERIALS AND METHODS
Definitions. The symbols R, «s, and «p denote, respectively, the

radius of the low-dielectric sphere (LDS) used in the TK model,
the dielectric constant assigned to the solvent, and the dielectric
constant assigned to the protein interior. The symbols qi, bi, and
di denote the charge, Born radius, and depth (distance to the
surface of the LDS; negative when an atom is outside the sphere)
of atom i. The symbol rij denotes the distance between atoms i and
j. The symbols Sk and dSk denote the geometric-mean radius and
thickness of a probe shell indexed k. The symbols ^k

i, pro and ^k
i, sph

denote the fractional surface area of probe shell k concentric with
atom i that falls inside the volume of low dielectric material in the
protein and sphere geometries respectively. DW (xW) and F(xW) denote
the dielectric displacement field and electrostatic potential as
functions of spatial position (we assume a linear, osotropic
dielectric medium). The self energy of atom i, Wi, is taken to be
the electrostatic free energy with atom i charged and all other
atoms of the solute neutral. The interaction potential, Iij, of atoms
i and j is defined Iij 5 Wij 2 Wi 2 Wj.

Overview. Solute atoms are modeled as shells of charge (total
charge qi) characterized by a Born radius (bi). The electrostatic
free energy, WElec, is expressed as a sum over interactions
between shells: WElec 5 1/2 Si, j qiFj. To determine qtFj, charges
i and j are mapped from the solute into the LDS, where Fj is
approximated by the potentials of a set of suitably chosen image
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charge shells (of charge qj
im and radii bj

im). If neither shell i nor
j crosses the LDS boundary, then qiFj 5 Sshells

image qiq j
im/aij

im, where

aij
im 5 5

r ij
im for rij

im $ ~bi 1 bj
im!

Max~bi, bj
im! for r ij

im # ubi 2 bj
imu

@Finybi 1 Foutz2y~r ij
im 1 bi 1 bj

im!#21

for ~bi 1 bj
im! . r ij

im . ubi 2 bj
imu

. [1]

FinyFout denotes the surface fraction of image shell j that lies
insideyoutside of shell i.

Shell charges crossing the LDS boundary are treated as trans-
parent to the two dielectric media (22) and are divided by the
boundary into two independent charge caps. Each cap is replaced
by a set of image caps, whose electrostatic potentials are evaluated
according to Jackson (page 128 of ref. 19; available as supple-
mental data on the PNAS web site, www.pnas.org). If shells i and
j both cross the dielectric boundary with rij , (bi 1 bj 1 2 Å), the
potential of one shell is sampled over the surface of the other
shell. To accelerate calculations, all interactions that occur at rij $
(bi 1 bj 1 2 Å) are treated as though between point charges,
regardless of the proximity of either i or j to the dielectric
interface.

Charge Mapping. For an atom i in a solute molecule, we seek
a position in the LDS that preserves electrostatic self energy
expressed as a spatial integral over energy density:

Wi 5
1

8p«s
E

solvent
protein

DW i
2~xW!d3x 1

1
8p«p

E
protein

DW i
2~xW!d3x

5
1

8p«s
E

solvent
sphere

DW i
2~xW!d3x 1

1
8p«p

E
sphere

DW i
2~xW!d3x.

[2]

We replace the electric displacement with the displacement field
of a point charge in a uniform dielectric medium appropriate to
the domain of integration. This simplification is known as the
Coulomb field approximation; implications of its use are dis-
cussed in refs. 17 and 18.

The integrals in Eq. 2 are approximated by discretely sampling
points on a series of shells external to and concentric with atom
i (Fig. 1) (supplementary material to ref. 15). Each point may be
defined to be located in solvent or solute by using the prescription
of ref. 23. Because of the spherical symmetry of the Coulomb
field, knowledge of the fraction of each shell that is within the
solute is sufficient to determine the self energy:

Wi 5
q2

2 O
shells

S ~1 2 ^k
i !

«s
1

^k
i

«p
DdSk

Sk
2 . [3]

This approximate Wi is used only for mapping; a more accurate
self-energy is derived by using the image charge solution de-
scribed below.

We define two methods for mapping atoms in proteins. Fine
mapping is used for interactions within amino-acid residues
whereas coarse mapping is used for interactions between resi-
dues.

Fine mapping. To map a single atom into the LDS, we find the
di and R, which minimize the quantity

5~i! 5 O
k

~^ k
i, sph 2 ^ k

i, pro!2
dSk

Sk
2 , [4]

by using a golden section search (24). This is equivalent to
demanding that the Coulomb field integral be preserved between
geometries. Pairs of charges i j are mapped into the LDS by
minimizing at fixed rij the quantity (5(i) 1 5(j)) with respect to
di, dj, and R. We accomplish this via a Powell search (24). For
pairs of charges, ^ k

i, sph is defined to be the fraction of shell k
inside either the LDS or atom j (see supplemental data at
www.pnas.org). Equations for computing this three-body ^k

i, sph

have been described by Richmond (25).
Coarse mapping. We fix R such that 4y3pR3 gives the Connolly

volume of the protein (26). For each atom, we minimize the
quantity

5~i! 5 SO
k

~^k
i, sph 2 ^k

i, pro!
dSik

Sk
2 D 2

, [5]

yielding a complete set of dis. The mapping of pairs of charges i
j is geometrically specified by di, dj, R, and rij. There exist rare
instances in which rij is incompatible with di, dj, and R. On these
occasions, when rij , udt 2 dju or rij . (2R 2 di 2 dj), we adjust
di by Dzudiu/(udiu 1 udju) and dj by Dzudju/(udiu1udju), where D 5 udi 2dju
2 rij in the former case and D 5 rij 2 2R 1 di 1 dj in the latter.
This method of partitioning D preferentially modifies the depths
of atoms furthest from the dielectric boundary.

Image-Charge Solution. Let xq, xobs denote the radial coordi-
nates of a real charge and an observation point relative to the LDS
center. The potential inside the LDS (xobs , R) due to a charge
inside the dielectric interface (xq , R) is expressed exactly as a
series of Legendre polynomials, which may be decomposed into
Coulombic and solvent reaction contributions. It has been shown
that the reaction potential can be approximated by an image point
charge (20), either alone or in conjunction with the image shell
charge at the dielectric boundary (21). Following Abagyan and
Totrov (21), we approximate the electric potential at xobs , R due
to a charge at xq , R with two point charges and a shell charge
at the dielectric boundary:

for xq # R, xobs , R: S q
«pDU xWq

,

S2
q~«s 2 «p!

~«s 1 «p!

1
«p

R
xqDU

xWinv

,

S2
q~«s 2 «p!

~«s 1 «p!

1
«sD U

boundary

, [6a]

where xinv denotes the inverse point, colinear with xq and the LDS
center, at radius R2/xq. If either xq . R or xobs . R, the series

FIG. 1. The TK model. The TK model equates the solvent-excluded
volume of a solute (yellow) with a sphere of low dielectric material.
Atoms in the solute (black and gray circles) are mapped to corre-
sponding locations in the sphere. Electrostatic energies can be calcu-
lated rapidly in the simplified spherical geometry. Fractional solvent-
accessible surface areas are determined for a series of concentric probe
shells (dashed lines) centered on each charged atom of the solute
(black circles). Charged atoms are mapped into the sphere such that
a weighted average of the probe-shell accessible surface area is
identical in the solute and sphere geometries.
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solution for the potential takes on a different form. Analogous
manipulations yield the following image charge sets, which define
over all space the potential of arbitrarily placed charges:

for xq # R, xobs $ R: S 2q
~«s 1 «p!DU xWq

,

S2
q~«s 2 «p!

~«s 1 «p!

1
«sDU

boundary

; [6b]

for xq . R, xobx . R: S q
«s
DU xWq

,

Sq~«s 2 «p!

~«s 1 «p!

1
«s

R
xq
DU xWinv

S2
q~«s 2 «p!

~«s 1 «p!

1
«s

R
xq
DU

boundary
; [6c]

for xq . R, xobs # R: S 2q
~«s 1 «p!

DU xWq
,

S2
q~«s 2 «p!

~«s 1 «p!

1
«s

R
xq
DU

boundary
. [6d]

Application of Eqs. 6a–6d to charge shells and caps gives rise to
image shells and caps (see supplementary material). The elec-
trostatic interaction of atoms i and j is obtained by summing in
vacuo the interactions of atom i with the appropriate charge set
representing the potential generated by atom j.

The image charge method does not account for salt effects.
In principle, these effects could be incorporated in the MTK
model by recourse to the original polynomial expressions for
the electrostatic free energy derived by Kirkwood (16).

Small Molecules and Bovine Pancreatic Trypsin Inhibitor
(BPTI). All small-molecule coordinates were kindly provided by
D. Sitkoff (Bristol-Myers Squibb). Free energies of cavity for-
mation in water for the small molecule were taken directly from
ref. 27. For BPTI studies, the 4PTI structure (28) with no bound
water molecules was used. Side-chain self energies were com-
puted as the electrostatic free energy of the charged side chain in
an otherwise neutral protein. Side-chain interaction energies
were computed as the difference between the electrostatic free
energy with both side chains charged and the sum of two
side-chain self energies. DelPhi calculations were carried out on
a 0.34-Å grid at 0 ionic strength with full Coulombic boundary
conditions and a 1.4-Å probe sphere. The electrostatic free
energy was evaluated as WElec 5 W «54

Born 1 W «p54, «s580
DelPhi

2 W «p54, «s54
DelPhi with W «

Born 5 1/2S i,jqiqj/«aij and aij defined by Eq.
1. DelPhi reaction-field energies were used for the test-charge
calculations. Grid focusing and the DelPhi grid energies (29) were
used for calculation of side-chain self energies and interaction
energies in BPTI.

Timings. The time (Ttotal) required to obtain electrostatic
energies for a modeling calculation can be written in two terms
that grow linearly and quadratically with the total number of
rotamers n:

Ttotal 5 Ln 1 Q
n~n 2 1!

2
. [7]

At a minimum, L and Q represent the average times required to
calculate rotamer self and interaction energies respectively. L also
includes the time spent obtaining depths for the MTK model.
From the BPTI calculations, we have for the MTK model L 5 11
secyresidue and Q 5 0.13 secypair. For DelPhi, we find L 5 111

secyresidue and Q 5 106 secypair. The quadratic term dominates
in most multicopy sampling problems (n . 170). In this regime,
the MTK potential is evaluated nearly three orders of magnitude
faster than the DelPhi potential.

pKa Values. For pKa calculations, the protein was described by
a conformational ensemble consisting of a fixed backbone and a
probability-weighted set of allowable rotamers at each position.
Backbone coordinates were taken from 1TUR (30) or 1PPF (31),
as were side-chain coordinates in calculations using fixed struc-
tures. The rotamer library of Tuffery et al. (32), as modified by
Koehl and Delarue (6), was used to represent side-chain confor-
mational freedom in calculations incorporating side-chain relax-
ation. Side-chain flexibility was modeled for all amino acids
except alanine, glycine, isoleucine, leucine, proline, and valine.
Side chain coordinates were built by using CHARMM19 geometric
parameters (33). Protons for acidic side chains were placed trans
to the preceding methylene group. One deprotonated rotamer
was included for each protonated rotamer to prevent entropic
bias for the protonated state (34).

The energy function for all calculations consisted of the MTK
electrostatic potential, W Elec, the CHARMM19 Lennard–Jones
potential (33), W LJ, and a protonation potential, W H,p.

WTotal 5 W Elec 1 WIJ 1 W H,p. [8]

The protonation potential is derived from a thermodynamic cycle
connecting a titrating site in a protein to an equivalent site in an
isolated N-formyl, N-methyl amino amide (FMAA) of known
pKa (35, 36) (see supplemental data). The protonation potential
consists of the transfer free energy of the deprotonated FMAA
from the protein into aqueous solution, W deprotonated

p3aq , the free
energy of protonation of the FMAA in aqueous solution, W H,aq,
and the transfer free energy of the protonated FMAA back into
the protein, W protonated

aq3p :

W H, p 5 W deprotonated
p3aq 1 WH, aq 1 W deprotonated

aq3p . [9]

W H,aq is evaluated as 2.3zRT(pH 2 IpKa), where IpKa is the
intrinsic pKa of the appropriate FMAA. Transfer free energies
were calculated as the difference in the potential energy of the
FMAA in the protein and free in solution. In all cases, the f and
c dihedral angles of the isolated FMAA were set to the values in
the protein, and the side-chain dihedral angles were set to the
values of the most commonly occurring rotamer. Intrinsic pKa
values for the formulated amino amides were assigned as Glu, 4.4;
Asp, 4.0; His, 6.3; peptide C terminus, 3.8 (37).

A mean-field method (6) was used to refine the rotamer
probabilities such that the free energy of the ensemble was
minimized. Because of the inclusion of a protonation potential,
the rotamer distributions that minimized the free energy varied
with pH. Each titrating site’s pKa was assigned as the pH at which
protonated and deprotonated states were equally populated.
These values represent averages over many rotamer states of the
protein, each with a likelihood equal to the product of the
individual rotamer probabilities (see ref. 6).

For all calculations, experimentally determined atomic coor-
dinates were used to define the shape of the low-dielectric region.
Consequently, the effects of rotamer changes on the dielectric
boundary were not treated, and the pairwise factorization of the
electrostatic potential was preserved.

RESULTS
Tests of the Modified TK Potential. We have introduced

modifications into the TK electrostatic model that improve
charge representation, charge mapping, and the speed with which
the electric potential can be evaluated. Our first test of the MTK
potential was to calculate small molecule vacuum-to-water trans-
fer free energies (Table 1). Using the parameters for solvation
energy (PARSE) set of Born radii and partial charges (27), the
calculated transfer free energies for a set of 53 canonical com-
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pounds (the training set of ref. 27) ranged over 80 kcalymol with
rms and (maximum) errors from experimentally measured values
of 1.05 (3.54) kcalymol.

We next tested the accuracy of the MTK model in the protein
BPTI. All energies calculated by the MTK method were com-
pared with values derived from the program DELPHI (29), which
is based on a finite-difference solution to the Poisson–Boltzmann
equation (FDPB). The protein dielectric constant was set to 4 and
the solvent dielectric constant to 80. In Fig. 2B, the self-energy of
a 1-Å shell charge passing along a line through the center of mass
of BPTI is plotted against position. The MTK potential of mean
force exhibits close agreement with the FDPB potential, even in
the rapidly varying region near the molecular surface.

As a further test, we superimposed a 4-Å grid of test charges
onto BPTI originating at the center of mass and aligned along the
principle axes of inertia of the protein (Fig. 2A). A 1-Å shell with
one electron unit of charge was placed at each grid point. The
MTK self energies of the 441 test charges give an R-factor with
respect to the DelPhi self energies of 8% (R-factor 5 SiuWi

MTK 2
Wi

DelPhiuySiuWi
DelPhiu). Thus, the summed absolute values of self-

energy errors represented 8% of the cumulative DelPhi self-
energy. By comparison, the Coulomb field integral as imple-
mented in the analytical algorithm ACE (18) gives a self-energy
R-factor with respect to DelPhi of 25%. As illustrated in Fig. 2B,
the Coulomb field integral tends to underestimate self-energies
for buried charges and overestimate them for surface charges.

The interaction energies of each test charge with a test charge
at the center of mass also were evaluated. The MTK interaction
energies give an R-factor with respect to DelPhi of 15% (i.e., the
cumulative unsigned error is 15% of the summed unsigned
interaction energies). By comparison, the generalized Born equa-
tion (14) (based on MTK self-energies) gives an R-factor of 42%.
The generalized Born equation reliably describes the interaction
of charges separated by long distances in proteins, but it incurs
large errors for nearby charges.

Finally, we measured the electrostatic self- and interaction
energies of the entire set of 37 polar side chains in BPTI. These
values represent the electrostatic inputs required for multicopy

sampling algorithms. Relative to DelPhi, the MTK potential of
mean force gives rms and (maximum) errors of 0.6 (1.27)
kcalymol for the 37 self energies (Fig. 3A) and rms and (maxi-
mum) errors of 0.08 (1.21) kcalymol for the 666 side-chain
interaction energies (Fig. 3B).

pKa Calculations. As a functional application of the MTK
model, we calculated pKa values for titratable groups in turkey
ovomucoid third domain, which have been measured experimen-
tally at low ionic strength (38, 39). Protonated and deprotonated
forms of each titratable side-chain were treated as rotamers of the
same amino acid. The free energy for side-chain protonation in
the protein was calculated relative to the free energy for proto-
nation of the corresponding N-formyl N-methyl amide free in
solution (40) (see Materials and Methods). At pH values between
1 and 10, the protonation states of the interacting titratable
groups were relaxed by a conventional mean-field optimization
algorithm (6). The pH at which each titratable group became 50%
deprotonated was designated as its pKa. Although the mean-field
approximation is known to give imperfect titration curves for
strongly interacting sites of degenerate pKa (36, 41), we wished

Table 1. Vacuum to water transfer free energies for
small-molecule side-chain analogues

Residue Small molecule DGexp DGDelPhi DGMTK DGerror

Arg1 N-propyl guanidinium – 266.07 264.49 –
Lys1 N-butyl ammonium 269.24 269.44 269.11 0.13
His1 Methyl imidazolium 264.13 264.36 264.81 20.68
His0 Methyl imidazole 210.25 210.22 29.32 0.93
Asp2 Acetate 280.65 280.44 279.05 1.60
Asp0 Acetic acid 26.70 26.63 25.57 1.13
Asn Acetamide 29.72 29.76 28.85 0.87
Glu2 Propionate 279.12 279.21 277.53 1.59
Glu0 Propionic acid 26.47 26.41 25.25 1.22
Gln Propionamide 29.42 29.42 28.55 0.87
Cys2 Methylthiol ion 276.79 276.66 275.85 0.94
Cys0 Methylthiol 21.24 21.35 21.08 0.16
Tyr2 p-cresol ion 275.01 274.88 271.90 3.11
Tyr0 p-cresol 26.13 26.11 24.74 1.39
Ser Methanol 25.08 25.44 24.83 0.25
Thr Ethanol 24.90 25.02 24.55 0.35
Met Methylethyl sulfide 21.49 21.46 21.07 0.42
Trp Methyl indole 25.91 25.84 24.76 1.15
Phe Toluene 20.76 20.77 20.37 0.39
BB N-methyl acetamide 210.08 210.00 29.53 0.55

Shown are experimental and calculated vacuum («p 5 2, «s 5 1) to
water («p 5 2, «s 5 80) transfer free energies (kcalymol) for
small-molecule analogs of the amino-acid side chains. DGexp indicates
the experimental transfer free energy. DGDelPhi indicates the transfer
free energy reported by Sitkoff et al. (27) using the DELPHI program
(29). DGMTK and DGerror indicate the MTK transfer free energy and its
error with respect to the experimentally measured value.

B

A

FIG. 2. The MTK potential in BPTI. (A) To test the MTK
electrostatic potential, a grid of 1-Å unit test charges was superim-
posed onto the protein BPTI. The edges of the grid (green spheres and
lines) are aligned along BPTI’s principal axes of inertia. The grid
originates at the center of mass of BPTI. Two points located on the axis
of inertia with the largest moment also are shown (magenta spheres).
(B) The self energy of a 1-Å unit test charge is plotted at positions
along a principal axis of inertia of BPTI. The DelPhi self energy is
indicated by a solid line. Self energies calculated by MTK (solid
circles), the Gaussian-atom Coulomb field integral of ACE (18) (open
circles), and MIMEL (21) (cross hatch) are also shown. The fractional
solvent-accessible surface area (SAS) of the test charge (dashed line)
is plotted against the vertical axis on the right.
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to evaluate the electrostatic potential under conditions used for
protein side-chain repacking studies.

Following the convention of ref. 37, the protein conformation
was represented by fixed coordinates, the protein dielectric

constant was evaluated as 20, and atoms were assigned Born radii
and partial charges according to the PARSE parameter set (27).
The pKa values for ovomucoid third domain calculated with the
modified TK model give an rms deviation from the experimental
values of 0.62 pH units and a maximum error of 1.0 pH unit.
These values compare favorably (Table 2) with the best results
obtained by conventional FDPB methods [rms error 0.59 pH
units (37)]. The MTK pKa values are significantly better than the
null model, which assumes no pKa shifts from intrinsic values
(rms error 1.1 pH units).

Side-Chain Conformational Freedom. By coupling the speed
of the MTK methodology with a rotamer repacking algorithm, we
have examined how global side-chain motions perturb the calcu-
lated pKa values of titratable sites in ovomucoid third domain
(Table 2). All polar side chains were allowed full rotamer
freedom, giving rise to .2 3 1023 possible rotamer conformations
of the protein. At pH values between 1 and 10, the rotamer
distribution was refined to the free-energy minimum defined by
the MTK potential, the Lennard–Jones potential, and a proto-
nation potential (see Materials and Methods). The pH at which
each titratable group became 50% deprotonated was designated
as its pKa. With a protein dielectric constant of 20, side-chain
conformational sampling produced modest improvement in the
agreement between calculated and observed pKa values (Table 2)
(Drms 5 0.09 pH units). However, when the protein interior was
assigned a dielectric constant of 4, the pKa values calculated with
side-chain flexibility were dramatically improved relative to pKa’s
calculated with a static structure (Drms 5 1.42 pH units), yielding
computed values of unprecedented accuracy (rms error 0.48 pH
units). In conjunction with explicitly modeled side-chain motion,
the dielectric response of the protein is better represented by a
constant of 4 than by a constant of 20.

DISCUSSION
To fully represent the electrostatic properties of proteins, it is
necessary to model protein structural plasticity. For example,
although pKa calculations on proteins have generally been carried
out with static structures, charge changes at titratable sites are
known to induce substantial rearrangements in protein side-chain
conformation (42). These structural adjustments presumably
diminish the energetic penalties associated with protonation and
deprotonation. Unfortunately, the computation times required by
conventional electrostatic potentials prohibit modeling of such
global side-chain motions. Consequently, fixed-structure calcula-

FIG. 3. Comparison of electrostatic energies calculated by using
the FDPB solver of DelPhi (29) (x axis) with energies calculated by
using the MTK potential (y axis). The diagonal is shown as a solid line.
(A) Electrostatic self energies for the 37 side chains of BPTI. (B)
Electrostatic interaction energies for the 666 pairs of polar side chains
in BPTI.

Table 2. Calculated pKa values for turkey ovomucoid third domain

Site

rms ErrorAsp 7 Glu 10 Glu 19 Asp 27 Glu 43 CTER 56

Experimental* 2.7 4.1 3.2 2.3 4.8 #2.7 –
Null model† 4.0 4.4 4.4 4.0 4.4 3.8 1.12
FDPB‡ (NMR§, «p¶ 5 20) 3.5 3.3 2.9 3.1 4.5 2.3 0.59
MTK\ (NMR, «p 5 20) 3.7 3.4 2.9 2.8 4.8 3.4 0.62
FDPB (X-ray**, «p 5 20) 2.9 3.4 2.6 3.6 4.4 2.4 0.69
MTK (X-ray, ,«p 5 20) 3.0 3.5 2.7 3.7 4.7 3.2 0.70
MTK (Relaxed††, «p 5 20) 2.0 3.8 2.1 3.0 4.6 2.7 0.61
FDPB (X-ray, «p 5 4) – – – – – – 1.60
MTK (X-ray, «p 5 4) 2.7 3.3 20.2 20.7 5.0 3.3 1.90
MTK (Relaxed, «p 5 4) 2.1 4.0 3.1 2.9 5.6 2.6 0.48

*Experimentally measured pKa values (38).
†Intrinsic model compound pKa values (37).
‡FDPB: literature pKa values calculated by using an FDPB electrostatic potential of mean force (37).
§NMR: pKa values were determined for 12 NMR structures [1 TUR (30)] and were averaged.
¶«p: the protein dielectric constant used for the calculation.
\MTK: pKa values calculated by using the MTK electrostatic potential with PARSE charge parameters (27).
**X-ray: pKa values determined by using the X-ray crystal structure of turkey ovomucoid third domain [1PPF (31)].
††Relaxed: pKa values determined by using backbone coordinates from the X-ray crystal structure of turkey ovomucoid third domain [1 PPF (31)].

Rotamer conformations for all polar side-chains (32) were relaxed to their free-energy minima by a self-consistent mean-field algorithm (7). The
conformational potential consisted of the PARAM19 Lennard–Jones potential (33), the MTK potential, and a protonation potential (see Materials
and Methods).
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tions have been performed. The dielectric response that would
result from side-chain rearrangements has been represented
implicitly by assigning an artificially large dielectric constant to
the protein. Whereas the bulk dielectric constant of crystalline
acetamide (a molecular analogue of the protein backbone) is 4,
a protein dielectric constant of 20 is conventionally used for
fixed-structure pKa calculations (37). Because it subsumes the
effects of structural plasticity, the protein dielectric constant has
come to be viewed as an adjustable parameter that depends on
spatial position within the protein and on the electrostatic prop-
erty being studied (43). Efforts to incorporate limited side-chain
flexibility into electrostatic calculations have been reported [in-
cluding allowance for hydroxyl rotamer relaxation (34), inclusion
of multiple dihedral conformers at titrating sites (35, 44), and
sampling of multiple protein conformations along a molecular
dynamics trajectory (45–49)], but no methods exist to model the
global rearrangements in protein structure that accompany pH
changes.

The MTK potential was developed specifically to allow an
accurate treatment of electrostatics in multicopy sampling calcu-
lations that treat global variation in side-chain chemistry and
conformation. Using the MTK potential in conjunction with a
side-chain repacking algorithm, we demonstrate that changes in
the rotamer populations of polar residues contribute substantially
to the dielectric response of a protein. The accuracy of calculated
pKa values for ovomucoid third domain are improved by mod-
eling these rearrangements. Moreover, when structural reorga-
nization is treated microscopically, the remaining dielectric re-
sponse of the protein is well represented by the dielectric constant
of bulk crystalline acetamide («p 5 4). Macroscopic and micro-
scopic estimates of the protein dielectric constant are thus
reconciled. When the effects of protein structural reorganization
are factored out of the electrostatic model, the protein dielectric
constant can be treated as a uniform transferable property of the
protein solute, as envisioned in the classical theory of dielectrics.
We expect that the side-chain repacking approach presented here
will prove generally useful for the computational analysis of
sequence mutations in proteins. Indeed, fixed-structure calcula-
tions predict the destabilization resulting from single charge-to-
neutral residue substitutions to be much larger than is measured
experimentally (50).

Current protein design methods sidestep the consideration of
large electrostatic energies by restricting polar residues to the
surface of designed proteins (9, 10, 51). This simplification would
appear to be justified by the argument that buried polar interac-
tions universally destabilize proteins (52). In at least two situa-
tions, however, buried charges and hence accurate electrostatic
potentials are required. First, buried polar residues are essential
for enforcing structural specificity in some protein folds, even if
they are also destabilizing. For example, core asparagine residues
have been shown to control the strand number (53), helix
orientation (54, 55), and specificity of helix association (56) in
dimeric coiled-coils. Furthermore, buried polar residues play a
central role in catalysis by protein enzymes (57). As the breadth
of computational protein design grows to encompass protein
function and the specificity of protein-protein interactions, the
electrostatic potential will lie at the heart of the problem.
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