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To restore skeleton function in 
the fi eld of orthopaedic and 
oral-maxillofacial surgery, 

bone tissue regeneration remains an 
important challenge. Spinal fusion, 
augmentation of fracture healing, 
and reconstruction of bone defects 
resulting from trauma, tumour, 
infections, biochemical disorders, or 
abnormal skeletal development are 
clinical situations in which surgical 
intervention is required. The types 
of graft materials available to treat 
such problems essentially include 
autologous bone (from the patient), 
allogeneic bone (from a donor), and 
demineralised bone matrices, as well as 
a wide range of synthetic biomaterials 
such as metals, ceramics, polymers, and 
composites.

Until recently, the use of autologous 
bone grafts has been the number 
one choice for bone repair and 
regeneration [1–5]. A patient’s own 
bone lacks immunogenicity and 
provides bone-forming cells, which 
are directly delivered at the implant 
site. Moreover, autologous bone 
grafts recruit mesenchymal cells and 
induce them to differentiate into 
osteogenic cells through exposure to 
osteoinductive growth factors [1,3,6,7].

Although there are many advantages 
to using autologous bone, there are 
major drawbacks to the harvesting 
procedure, and for centuries there 
has been a search for alternatives. The 
extra surgery involved in harvesting 
autologous bone causes morbidity 
at the donor site [1,3,6,8] and can 
cause post-operative continuous pain 
[3,9–11], hypersensitivity [3], pelvic 
instability [10–12], infection [6,9], and 
paresthesia [3,6]. These complications 
affect 10% to 30% of the patients [9]. 
Moreover, the amount of bone that can 
be collected is limited.

As an alternative, the use of allografts 
(from human to human) eliminates the 
harvesting procedure and the quantity 
of available tissue is no longer an issue. 

Nevertheless, the quality of allografts 
is worse than that of autologous grafts. 
Allografts have a poor degree of 
cellularity, less revascularisation, and 
a higher resorption rate compared 
to autologous grafts [3,6], resulting 
in a slower rate of new bone tissue 
formation, as observed in several 
studies [11,13–15]. In addition, the 
immunogenic potential of these 
allografts and the risks of virus 
transmission to the recipient are 
serious disadvantages [2,14,16]. 
Although processing techniques such 
as demineralisation, freeze-drying, 
and irradiation have been shown to 
reduce the patient’s immune response, 
processing also alters the structure of 
the graft and reduces its potential to 
induce bone healing (osteoinductivity), 
while the possibility of disease 
transmission still remains [3].

Bone Tissue Engineering

To overcome the drawbacks of the 
current bone graft materials, bone 

tissue engineering (BTE) using 
bone marrow stem cells has been 
suggested as a promising technique for 
reconstructing bone defects. Indeed, 
various animal studies have shown the 
capacity of BTE to produce bone, both 
in a non-bone environment (ectopic 
bone formation) [17–27] and in a 
bone environment (orthotopic bone 
formation) [25,28–37].

Surprisingly however, until recently, 
no convincing successes have been 
achieved in humans. In this article, 
we review the available clinical data in 
the area of bone tissue engineering 
together with our own clinical 
experience. We discuss possible new 
directions that need to be exploited to 
make bone tissue engineering a clinical 
success.

Search Strategy

We reviewed human studies published 
in international English language 
peer-reviewed literature regarding 
the treatment of osseous defects with 
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Five Key Papers on Bone Tissue 
Engineering
Caplan,1991 [19] This author postulated 
that isolation, mitotic expansion, and 
site-directed delivery of autologous stem 
cells can govern the rapid and specifi c 
repair of skeletal tissues.

Friedenstein et al.,1987 [43] The authors 
showed that a specifi c set of cells (colony 
forming unit fi broblasts—CFU-F or MSC) 
existing in bone marrow can differentiate 
to different cell types, including 
osteoblasts.

Quarto et al., 2001 [52] The fi rst clinical 
paper to report repair of large bone 
defects with the use of autologous bone 
marrow stromal cells. 

Schimming et al., 2004 [53] The fi rst study 
in humans showing that periosteum-
derived osteoblasts can form lamellar 
bone within three months after 
transplantation.

Urist, 1965 [7] The author showed that 
bone tissue contains specifi c growth 
factors that can induce bone formation in 
ectopic sites.
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tissue engineered constructs. We 
searched for studies in the Cochrane 
Central Register of Controlled Trials 
(Cochrane Library 2006, issue 2) and 
Medline (from 1966 up to March 
2006). The search terms included 
culturing cells, mesenchymal, clinical, 
human study, orthotopic, ectopic, and 
bone formation. Publications presented 
in abstract form were ignored and case 
reports were excluded.

Two Promising Approaches

To engineer the ideal bone graft 
material, factors that are capable 
of triggering osteogenesis must be 
included. Osteoinductive growth 
factors or progenitor cells [38] should 
be present or recruited. Apart from 
the use of gene therapy and embryonic 
stem cells, two novel bone engineering 
technologies promising to enhance 
bone healing have been introduced. 
Both techniques comprise three-
dimensional scaffold structures that 
function as a carrier for growth factors 
or cells [3,6]. These technologies are 
therefore either growth factor–based or 
cell-based.

In the fi rst approach, growth factors 
such as bone morphogenetic proteins 
of the TGF-â family are applied 
[6,39,40]. A potential drawback of this 
approach, however, is that high, supra-
physiologic concentrations are needed 
to obtain the desired osteoinductive 
effect, with possible related side effects 
and high costs [41,42]. Furthermore, 
most if not all current techniques in 
which bone growth factors are used 
result in a burst-release of the growth 
factor shortly after placement followed 
by a limited release over longer time 
periods, thus in principle limiting the 
effectiveness of such an approach.

The second and more exciting 
approach is cell-based and combines 
living osteogenic cells with biomaterial 
scaffolds ex vivo to allow the 
development of a three-dimensional 
tissue structure. Below, we discuss this 
approach in more detail and focus on 
the fi rst clinical results.

The Cell-Based Approach

Since Friedenstein and colleagues’ 
fi rst publications in the 1980s [43], we 
have known that mesenchymal stem 
cells (MSCs) can be used to engineer 
mesenchymal tissues, such as bone 
and cartilage. Therefore, scientists 
worldwide are working to provide the 

right carrier and the appropriate set 
of cells that, once re-transplanted, will 
ensure bone repair.

Bone marrow has been claimed to 
be the most abundant source of MSCs, 
which have a high proliferative ability 
and great capacity for differentiation 
[17,44]. Also, from a practical point 
of view, bone marrow is an accessible 
source of osteogenic cells since it can 
be collected using a relatively simple 
aspiration procedure. As such, this 
method is less invasive than collecting 
osteogenic cells by taking biopsies from 
calvarium [45,46], periosteum [47], or 
trabecular bone [48]. Also, adipose-
derived cells [49] and stem cells 
obtained from deciduous dental pulp 
[50] show osteogenic potential.

Caplan and colleagues combined 
MSCs with a scaffold to allow paracrine 
and host-derived factors to produce 
bone matrix after implantation. 
However, the proof of concept was 
mainly shown in ectopic rodent models 

[17–27], as well as in critical size defects 
in rodents [25, 28–31].

At this point, more than 300 papers 
about bone tissue engineering in 
rodents have been published indicating 
the feasibility of the technology. On the 
other hand, less than 10 studies have 
reported that orthotopic application 
(meaning in an osseous defect) is 
possible in, for example, segmental 
femur defects of larger animals 
such as dogs [32] or sheep [33,34]. 
Successful bone formation has also 
been reported in reconstructed skull 
[35] and mandibular defects [36] 
in sheep, and in iliac wing defects in 
goats [37]. Surprisingly, despite the 
promising future predicted by many 
of the above mentioned authors, only 
two studies have been published to date 
in humans, both claiming successful 
reconstructions [51–53].

Clinical Studies. The fi rst clinical 
report described the treatment of three 
patients with various segmental defects 

doi:10.1371/journal.pmed.0040009.g001

Figure 1. Alveolar Defect and Reconstruction with Tissue Engineering
Patient (male, 20 years) has lost his upper left incisor during an accident. The alveolar defect was 
reconstructed with tissue engineering techniques.
(A) Radiograph of the signifi cant alveolar defect as a result of the accident. 
(B) Radiograph of the defect reconstructed with ceramic scaffold (HA) covered with cultured MSCs 
(white arrow). 
(C) Radiograph; four months later a dental implant was installed. 
(D) Intra-oral view; arrow points to the crown, which was fi xated on the implant.
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(4 cm bone segment loss in the right 
tibia, 4 cm in the right ulna, and 7 cm 
in the right humerus), using ex vivo 
expanded human MSCs, loaded on a 
three-dimensional scaffold of the shape 
and size of the missing bone fragment 
[51,52]. External fi xation was provided 
for stability and removed after 6.5, 6, 
and 13 months, respectively. All three 
patients presented a repair of the 
fracture site: the implants showed good 
integration of the newly formed bone 
and abundant callus formation.

However, conclusions were drawn 
based solely on radiographs; no 
biopsies were taken. Moreover, it 
would have been virtually impossible 
to observe bone formation in ceramic 
scaffolds on radiographs. Due to 
the high radiopacity of the ceramic 
material, the gain in radiopacity due to 
new bone formation is overshadowed 
by scattering. It is furthermore unclear 
if the callus formation is induced by the 
implanted human MSCs or by bone-
forming cells in the periosteum.

The second published clinical study 
[53] describes the augmentation 
procedure of the posterior maxilla 
in 27 patients, using matrix derived 
from mandibular periosteum cells 
on a polymer fl eece (Ethisorb; 
Ethicon, http:⁄⁄www.ethicon.com). 
In 12 patients, only radiographic and 
clinical assessments were performed. 
Limited conclusions can be drawn 
from the radiographic fi ndings, as 
discussed above. The other 15 patients 
were treated according to a two-step 
method. First, reconstruction of the 
host area was performed. After a 
healing period of three months, in 
advance of dental implant placement, 
a biopsy was taken. In eight of these 15 
patients an unsuccessful outcome was 
observed; a replacement resorption 
with connective tissue was found. In 
the case of a positive biopsy (seven 
patients), the authors failed to mention 
if the observed bone formation was 
possibly induced by the implanted cells 
(osteoinduction) or by the osteoblast 
from the pre-existing bone surface 
(osteoconduction).

In our own studies, we found that 
implanted cells were incapable of 
producing bone matrix in humans. In 
a pilot study (unpublished data), 10 
patients with various intra-oral defects 
underwent reconstruction with cells 
cultured on a coralline hydroxyapatite 
(HA) scaffold. In only one patient did 

we fi nd bone formation with histology 
strongly suggesting that the new bone 
was produced by the implanted cells 
(Figures 1 and 2). However, in a 
synchronously conducted control study, 
comparable cultured samples induced 
ectopic bone formation in seven out of 
10 mice, underlining the weakness of 
the ectopic model in rodents to predict 
a successful clinical result.

New Directions

From the above data it is apparent that 
clinical bone tissue engineering has not 
yet been a success. The crucial question 
therefore is: why do human MSCs fail 
to produce bone in an osseous defect, 
while the same cells do produce bone 
in an ectopic environment in mice?

For a successful outcome, four 
prerequisites are needed: (1) suffi cient 
numbers of cells with osteogenic 
capacity; (2) an appropriate scaffold to 
seed the cells; (3) factors to stimulate 
osteogenic differentiation in vivo; and 

(4) suffi cient vascular supply [19]. 
Evidently, all these four conditions 
are fulfi lled ectopically and in critical 
size defects in rodents, because in 
these models MSCs seeded on a 
porous ceramic scaffold convincingly 
generated bone [18–23,25,28–31]. Up-
scaling to humans appears to be highly 
challenging, as shown by the limited 
clinical reports [51–53].

The fi rst three prerequisites can 
be fulfi lled by engineering, while 
prerequisite number four is dependent 
on patient factors, such as the size of 
the defect. Lack of suffi cient vascular 
supply, resulting in immediate cell 
death after implantation, is generally 
thought to be the cause of failure of 
BTE in patients [54].

The success of bone tissue 
engineering in ectopic rodent models 
is explained by the far more favourable 
biological environment for implanted 
cells. Often only a few small samples are 
subcutaneously implanted, which are 

doi:10.1371/journal.pmed.0040009.g002

Figure 2. Samples and Histology of the Patient Shown in Figure 1
(A) HA particles stained with methylene blue immediately after seeding of the MSCs, showing cell 
distribution. 
(B) Idem stained with trypan blue after one week of culturing, showing cell vitality. 
(C) Histology six weeks after subcutaneous implantation in mice, showing in vivo bone formation 
(white arrow) in contact with HA particle (black arrow). 
(D) Histology after four months of implantation in the upper left tooth region, showing bone 
formation (white arrow) induced by the implanted cells in contact with the HA (black arrow).
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in direct contact with the surrounding 
well-vascularised tissues. This shortens 
the diffusion depth, allowing the 
seeded MSCs to be optimally supplied 
by oxygen and nutrients. In addition, 
osseous defects in rodents are attractive 
sites for reconstruction. Defect sizes do 
not exceed the maximum distant depth 
of 5 mm, therefore allowing suffi cient 
infl ux of oxygen and nutrition [55]. 
Moreover the remodelling speed in 
rodents is at least three times higher 
compared to humans [56].

New directions in research should 
therefore either be directed to the 
issue of solving the problem of 
inadequate diffusion and insuffi cient 
oxygen and nutrient supply for the 
cell-based approach, or to using 
biomaterial scaffolds that will recruit 
the appropriate osteogenic cells after 
implantation in the body. With regard 
to the former, only a suffi cient number 
of new blood vessels within a short 
period of time guarantees an optimal 
survival rate of implanted cells. It has 
already been shown that improving 
vascularisation of tissue-engineered 
constructs can advance in vivo cell 
performance [57,58].

Approaches to Improving Oxygen 
and Nutrient Supply

In the near future, several approaches 
to improve the oxygen and nutrient 
supply will be further investigated. 
One approach is to stimulate vessel 
growth by adding angiogenetic growth 
factors or endothelial cells to the tissue 
engineered construct. Especially in the 
case of the cell-based approach, vessel 
growth will be stimulated immediately 
after application [59].

A second method simply bypasses the 
problems linked to orthotopic bone 
formation by creating an engineered 
bone construct in a muscular 
environment (ectopic bone formation). 
Warnke et al. [60] reported a successful 
reconstruction of an extended 
mandibular discontinuity defect by 
growth of a custom bone transplant 
inside the latissimus dorsi muscle of 
an adult male patient. A prefabricated 
titanium mesh cage was fi lled with 
bone mineral blocks and infi ltrated 
with 7 mg of recombinant human bone 
morphogenetic protein 7 and 20 ml 
of the patient’s bone marrow. Thus 
prepared, the transplant was implanted 
into the latissimus dorsi muscle and 
seven weeks later transplanted as a 

pedicle bone-muscle fl ap to repair 
the mandibular defect. Although this 
experiment was considered successful, 
not only did the patient have to be 
operated upon twice and suffer from 
extra morbidity at the fl ap site, but no 
reliable assessment of bone formation 
was performed.

As a third approach, we suggest 
postponing the application of 
human MSCs for a few days after 
applying the scaffold. Immediately 
after implantation of the scaffold, a 
haematoma is formed [61,62]. On the 
third or fourth day, during the chronic 
infl ammation phase, blood vessels and 
fi broblasts proliferate in the fi brin clot, 
thus forming granulation tissue [63]. 
By injecting the culture expanded 
MSCs at this time point, this approach 
ensures that the new blood vessels 
are already invading the haematoma, 
thereby guaranteeing a suffi cient 
supply of oxygen and nutrients and 
thus securing the survival of the 
implanted cells. In addition, cells will 
be implanted at a time point during the 
wound healing process that the body 
would normally recruit stem cells to 
the defect site. Our recent unpublished 
data, comprising maxilla defects 
in goats, support this hypothesis. A 
comparative approach is advocated to 
regenerate heart tissue after infarction 
with the use of embryonic stem cell–
derived cardiomyocytes [64].

An alternative direction for bone 
tissue engineering does not involve 
the pre- or peroperative use of stem 
cells and/or angiogenetic factors, but 
uses appropriate scaffolds that attract 
the patient’s own stem cells post-
implantation. This would circumvent 
all disadvantages of a cell therapy 
approach (MSC harvest and/or 
expansion prior to clinical use), and we 
have previously shown that such an in 
situ bone tissue engineering approach 
is feasible [65,66].

Conclusions

Cell survival is the most important 
requirement for achieving clinical 
success in cell-based bone tissue 
engineering. Such cell survival can 
be promoted by various means such 
as: (1) co-culturing endothelial cells; 
or (2) bypassing the deleterious 
effect of the haematoma and lack 
of early vascularisation by a two-step 
implantation procedure: fi rst the 
scaffold and approximately one week 

later injection of the MSCs. Another 
approach would be to ectopically 
implant the tissue engineering 
construct in a well-vascularised site in 
the body, i.e., muscle, to allow bone 
formation, followed by transplantation 
to the defect site. On-the-spot repair, 
which is currently obtained by 
autologous bone grafting, is still the 
optimal approach. What is indisputable 
is that MSCs are crucial for the healing 
of bone defects.

Besides the above mentioned cell-
based techniques, another approach 
would be to recruit MSCs to the 
implantation site by growth factors or 
“smart” scaffolds. The use of these so-
called osteoinductive scaffolds or one 
of the other mentioned alternative 
approaches could well revolutionise the 
future of regenerative medicine. �
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