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ABSTRACT

The success of mapping genes involved in complex diseases, using association or linkage disequilibrium
methods, depends heavily on the number and frequency of susceptibility alleles of these genes. These
methods will be economically and statistically feasible if common diseases are usually influenced by one or a
few susceptibility alleles at each locus (common disease–common variant, CDCV, hypothesis), but not so if
there is a high degree of allelic heterogeneity. Here, we use forward-time population simulations to in-
vestigate the impact of various genetic and demographic factors on the allelic spectra of human diseases, on
the basis of two models proposed by Reich and Lander and by Pritchard. Factors considered are more
complex demographies, a finite-allele mutation model, population structure and migration, and interaction
between disease susceptibility loci. The conclusion is that the CDCV hypothesis holds and that the phe-
nomenon is caused by transient effects of demography (population expansion). As a result, we devise a
multilocus generalization of the Reich and Lander model and demonstrate how interaction between loci
with respect to their response to selection may lead to complex effects. We discuss the implications for
mapping of complex diseases.

ALLELIC spectra, i.e., the number and frequency of
susceptibility alleles, of genes involved in common

diseases are crucial for the success of mapping these
genes using association or linkage disequilibrium (LD)
methods. There are two main reasons for this: First,
a critical assumption of both association and LD map-
ping is that there is little allelic heterogeneity within
loci. Statistical power of these methods will be greatly
reduced if a gene contains many rare alleles, as is often
the case for rare Mendelian diseases (Terwilliger and
Weiss 1998). Second, the cost of identifying a large
number of rare alleles is much higher than that for a
few common alleles. The gene typing cost alone may
deter such studies, especially when there are a large
number of disease susceptibility loci (DSL) for the
disease. For a further analysis, see Yang et al. (2005).

The common disease–common variant (CDCV) hy-
pothesis proposes that common diseases usually are
caused by one or a few common disease susceptibility
alleles at each DSL (Lander 1996). Due to the difficul-
ties in mapping common disease genes, we have a
limited amount of empirical data. The best-known
examples include the ApoE e4 allele in Alzheimer’s
disease (Saunders et al. 1993), Factor V (C/A at 1691)
allele in deep-venous thrombosis (Bertina et al. 1994),

and CKR5D32 in resistance to human immunodefi-
ciency virus infection (Dean et al. 1996). Although this
limited evidence is generally in favor of the CDCV
hypothesis, it might be argued that these genes are
found exactly because they have common alleles, so
their abundance is an artifact of the ascertainment bias
(Smith and Lusis 2002).

Two theoretical models of human genetic disease
were proposed by Reich and Lander (2001) and
Pritchard (2001). They are called model RL and
model P, respectively. Their features are summarized
in Table 1. Both models RL and P use the ‘‘effective
number of alleles’’ (ne) to measure allelic spectrum
diversity. Model RL concerns the evolution of the ef-
fective number of alleles of a monogenic disease in a
human population that undergoes rapid population
expansion, whereas model P concerns the distribution
of the equilibrium total disease allele frequency ( f0) and
the effective number of alleles of polygenic diseases in
the current human population.

These different approaches lead to different conclu-
sions. Reich and Lander’s (2001) model RL leads to
the conclusion that the CDCV hypothesis holds and
that the phenomenon is caused by transient effects of
demography (population expansion). In the long run,
when a human population reaches mutation, selection,
and drift equilibrium, all diseases will have diverse spec-
tra. However, common diseases diversify their spectra
slower than rare diseases so they tend to have simpler
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spectra before the equilibrium state is reached. Pritch-

ard’s (2001) model P, on the contrary, concludes that
loci that contribute substantially to genetic variance are
more polymorphic than average, and such loci are the
result of high mutation rate, rather than of the com-
monness of the disease. Although Pritchard and Cox

(2002) argue that the differences between these two
models can be partly explained by the use of different
mutation rates, their respective levels of support for the
CDCV hypothesis cannot be easily reconciled.

In this article, we first simulate models RL and P,
following their original assumptions, and then try to
reconcile the two models or choose one over the other.
We also want to investigate the robustness of the models
by studying the impact of alternative or additional
genetic features on the models. Features considered
are more complex demographies, a finite-allele muta-
tion model, population structure and migration, and
choices of effective population size of the human pop-
ulation. In addition, we explore the effects of inter-
action of loci modifying the disease susceptibility locus.
The support for the CDCV hypothesis is discussed on
the basis of these studies.

METHODS

We simulate the evolution of human diseases using a
forward-time population genetics simulation environ-
ment simuPOP (Peng and Kimmel 2005). The reason
why we take a forward-time approach instead of a

backward-time (coalescent) approach is that we want
to observe the evolution of allelic spectra from the
founder to the current generation. The coalescent
approach, though successful in other such studies
(Kruglyak 1999; Pritchard 2001), does not suit this
purpose due to the fact that it discards ancestral infor-
mation that is irrelevant to the coalescent tree. Another
important reason is that it is more convenient to use a
forward-time approach when selection is modeled.

Simulated diseases are characterized by the number
of DSL, the mutation pattern and rate, and single- and
multilocus selection models. To reproduce the results of
the single-locus model RL and the multilocus model P,
we use different genetic models and parameter values
consistent with those used in the original publications.
These assumptions are summarized in Table 2. Fol-
lowing the notations in Reich and Lander (2001), we
let f be the total disease allele frequency at a given
generation, f0 be the equilibrium total disease allele
frequency—that is, the frequency expected under the
balance between mutation and selection— and fexp be
the total disease allele frequency just before population
expansion. Note that we frequently use f0 instead of f
to simplify discussions.

Several features of the models are not directly
simulated, the most significant one being penetrance.
Penetrance and fitness are different but related con-
cepts. Our simulations follow the allelic composition of
a population, which is the result of mutation, selection,
and genetic drift. The affection status is assumed to

TABLE 1

Summary of models RL and P

Reich and Lander’s model RL Pritchard’s model P

Assumptions
Single-locus model. Multilocus model.
Instant population growth from N0 ¼ 104 to N1 ¼ 6 3 109 at
�100,000 years ago.

Constant population size (N ¼ 104).

Current population not in equilibrium state. Current population in equilibrium state.
Selection acts independently at each locus.

Methods
Population-genetics analytic approach. Coalescent-like simulation.
Modeling the evolution of allelic diversity from founder to

current generation.
Using the MCMC method to explore the joint distribution of

model parameters.

Major results
Both rare and common diseases in the founder population

have simple spectra.
The majority of potential DSL will have essentially no genetic

variation unless the disease alleles are under weak purifying
selection.

Both rare and common diseases in the current population will
have diverse spectra, if the current population is in equi-
librium state.

At loci where the mutation rate is low, the susceptibility classes
usually are dominated by a single major mutation.

Rare diseases reach equilibrium faster than common diseases
so rare diseases have more diverse spectra than common
diseases.

Loci where the mutation rate is high contribute
disproportionately to the genetic variance but introduce
more allelic heterogeneity at the same time.

MCMC, Markov chain Monte Carlo.
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reflect the same underlying genotype as fitness, and its
impact on the allelic composition of the next genera-
tion is represented by fitness. Therefore, we bypass
modeling penetrance in our simulations.

Our selection model is a stochastic model based on
individual genotype. It might be more reasonable to
assume a more complicated model that involves affec-
tion. For example, we might select against an affected
individual at a given probability. However, since pene-
trance is also a stochastic process based on genotype,
this two-step penetrance/selection model can be re-
placed by an equivalent selection model that works
directly on the genotype. For example, if individuals
with genotype AA, Aa, or aa are affected with probability
0, 0.2, or 0.8, and affected individuals have probability
0.5 to be removed or not produce offspring, the cor-
responding selection model has fitness 1, 0.9, or 0.6
for genotype AA, Aa, or aa. Therefore, at least for our

simulations, a two-step model would not make any
difference.

Our selection model is more general than model P.
Model P assumes that selection acts independently at
each DSL and there is no interaction among loci. In our
model, the fitness value of an individual is the joint force
of fitness at all DSL. In this context, it is important to
examine interactions between loci. The basic models
of multilocus selection that we use are defined in Table
2. An example of interaction effects is provided in
results.

The overall mutation rate m in our k-allele mutation
model (Table 2) differs from the mutation rates in
models RL and P. More specifically, the mutation rate
in model RL is equal to the forward mutation rate mS

in model P and is denoted by mS instead of m to avoid
confusion. The relationships between m, mS, and the re-
verse mutation rate mN are

TABLE 2

Summary of simulation assumptions

Single-locus model RL Multilocus model P

Genotypic structure
One disease-susceptibility locus on one chromosome.

There are one wild-type (N) allele and k � 1 disease (S)
alleles.

Multiple (L) disease susceptibility loci on different
chromosomes, with the same maximum number of allelic
states (k).

Selection model
Fitness of an individual follows either an additive or a

recessive model. Fitness of an individual with genotype NN,
NS, or SS is 1, 1 � s/2, 1 � s for an additive model and 1, 1,
1 � s for a recessive model.

Each DSL follows either an additive or a recessive fitness
model as in the case of the single-locus model. The overall
fitness of an individual with fitness gi, i ¼ 1,. . ., L at each
DSL follows either a multiplicative (g ¼

QL
i¼1 gi) or an

additive (g ¼ 1�
PL

i¼1ð1� giÞ) multilocus model.

Mutation model
k-allele (Jukes and Cantor 1969) model with k . 105 to

approximate the infinite allele model. Given mutation rate
m, an allele will mutate to any other state with equal
probability m=ðk � 1Þ, regardless of its current allelic state.

k-allele model with smaller k (e.g., k ¼ 200) to be closer to a
bidirectional mutation model (S/N and N /S). The
mutation rate may vary from locus to locus.

Recombination
NA NA because all DSL are physically unlinked.

Demographic
Instant, linear, or exponential population growth model.

N0 ¼ 104, N1 ¼ 106 or 107.
Constant population size at N ¼ 104 or 105.

Population structure
Population may be split into equally sized subpopulations

(m ¼ 10 or 100) before population expansion. During
population expansion, these subpopulations may evolve
with or without migration.

NA

Migration
Cyclic stepping-stone model at rate 10�3. NA

Penetrance
Indirectly modeled, see explanation in the text. Indirectly modeled, see explanation in the text.
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mS ¼ PðN /SÞ ¼ mPðN ÞPðN /S jN Þ ¼ mð1� f Þ ð1Þ

mN ¼ PðS/N Þ ¼ mPðSÞPðS/N j SÞ ¼ mf

k � 1
: ð2Þ

For given m and f, mN is determined by the maximum
allele state k. mN is extremely small if a large k is used to
mimic the infinite-allele model. mS and m are close to
each other in the cases of rare diseases, but can differ
substantially for common diseases. Furthermore, since
total disease allele frequency ( f ) is changing during
evolution, mN and mS are not constant in our simula-
tions. We do not attempt to mimic these mutation rates
exactly since we believe that our mutation model is
closer to reality. We use large k (k . 104) to approximate
the infinite-allele model used in model RL and use
smaller k for a better approximation to model P.

Simulations are run under a variety of demographic
models and parameter settings. At the beginning, we
create a founder population of N0 individuals, each
having L chromosomes with one DSL on each of them.
We use L¼ 1 for the simulations of monogenic diseases
and L¼ 50 for polygenic cases. This founder population
is initialized with a given initial allelic spectrum (usually
with 90% wild-type alleles and five equally frequent
disease alleles) and it is then evolved for G0 generations
until it reaches mutation, selection, and drift equilib-
rium. The population is then expanded to size N1 after
G1 generations. Before expansion, the founder popula-
tion can be split into a given number of equally sized
subpopulations. During population expansion, these
subpopulations may evolve independently (without mi-
gration) or with a varying level of migration among them.

Allelic spectra and their summary measure, the ef-
fective number of alleles, are recorded throughout the
simulations. Since there is no direct measurement of ne

from the population, we estimate it from population
allele frequencies using

n̂e ¼
1

fdis

¼ 1

Pði ¼ j j i; j 2 SÞ ¼
f 2P
i2S f 2

i

¼
X
i2S

F 2
i

 !�1

;

ð3Þ

where fdis is the expected allelic identity among disease
alleles, f ¼

P
i2S fi is the total disease allele frequency of

the disease, fi is the allele frequency of allele i, and Fi ¼
fi/f is the proportion of allele i in the S class. ne reaches
its maximum value of k� 1 when all disease alleles have
the same frequency (Fi ¼ ð1=k � 1Þ) under a k-allele
mutation model, regardless of the value of f.

RESULTS

Single-locus model: Reich and Lander’s (2001)
model RL for monogenic diseases is studied. We first
verify this model using forward-time simulations and

then discuss the impact of various genetic and de-
mographic factors on the model. Although the theoret-
ical mutation rate (mS) and simulation mutation rate
(m) differ by a factor of 1 � f0 (see Equation 1), it is safe
to treat them as equal since f0 will not exceed 0.04 in this
section.

Verification of the basic model: Reich and Lander

(2001) employ theoretical estimates of the evolution
of the effective number of disease alleles (ne), using an
instant population-growth model. These estimates are
used as a baseline for later sections. Assuming that the
total disease allele frequency ( f ) is not far from its
equilibrium value f0 during evolution, the estimated ne,
under the infinite-allele model, is

ne ¼ 1 1 4N msð1� f0Þ; ð4Þ

where N is the effective population size and mS is the
mutation rate. f0 is determined by the nature of the
disease. For example, the equilibrium value of the total
disease allele frequency of rare recessive diseases can be
approximated by f0 ¼

ffiffiffiffiffiffiffiffiffi
ms=s

p
, where s is the selection

coefficient, provided that s?m.
Although the allelic spectra of both rare and common

diseases are similar in equilibrium states, the rates at
which these are approached differ greatly. For a popu-
lation that has been expanded instantly from size N0 to
N1, the proportion of alleles derived from before expan-
sion will decay exponentially with rate ðð1� f0Þ=f0Þms.
The effective number of alleles will increase with
expectation

NeðtÞ ¼ n�1
e1

1 ðn�1
e0
� n�1

e1
Þexp � ne1

2N1f0
t

� �� ��1

; ð5Þ

where ne0
¼114N0msð1�f0Þ and ne1

¼114N1msð1�f0Þ
(Reich and Lander 2001). Since ne0

and ne1
are similar

for rare and common diseases, the rate of reaching
equilibrium is determined by the total disease allele fre-
quency ( f0) within the exponential term of Equation 5.

To verify the above theoretical estimates, we ran an
extensive array of simulations using recessive diseases
with different combinations of parameters m, s, N0, and
N1. A summary of the results is shown in supplemen-
tal Figure 1 at http://www.genetics.org/supplemental/.
These simulation studies are in remarkable agreement
with the theory.

Impact of demographic models: Different human pop-
ulations have different demographic histories. Some
populations like the Scandinavian Saami isolate have
approximately constant population size, but most of
them have undergone a rapid population expansion
(Laan and Pääbo 1997). Among many population
expansion models, the exponential population-growth
model is a simple, yet reasonably realistic one. It is
widely assumed that the general human population had
constant size N0 ¼ 10,000 until G0 ¼ 5000 generations
before the present and then expanded exponentially to
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its present-day size of N1 ¼ 6 billion (Harpending et al.
1998; Kruglyak 1999; Reich and Lander 2001). G0 ¼
5000 corresponds to 100,000 years given a 20-year
generation time. Note that N1 ¼ 6 billion is the census
population size and should not be used as the effective
population size in model RL. We use N1 ¼ 106 or 107

here and discuss the impact of this parameter on the
model later. Besides the exponential growth model, we
also simulated the instant population-growth model to
reproduce the theoretical results in Reich and Lander

(2001) and a linear population-growth model for com-
parison purposes.

Choice of demographic models can have a large
impact on model RL. As pointed out in Reich and
Lander (2001), slower population expansion would
result in slower growth in allelic diversity. If we use an
exponential population-growth model, the human pop-
ulation increases rather slowly most of the time. This has
two consequences: During the slow-growing period,
small population size tends to limit the growth of the
effective number of alleles so that ne will increase slower
than in a faster-growth model; the ‘‘large population’’
stage is effectively shorter than in the instant growth
model and gives diseases less time to reach equilibrium.

Figure 1a plots the dynamics of ne in six simulations,
which use the same basic parameters (N0¼ 104, N1¼ 107,
m ¼ 10�5) but different selection coefficients (s ¼ 0.99
for rare disease and s ¼ 0.01 for common disease) and
demographic models (instantaneous, linear, or expo-
nential). Although equilibrium ne is close to 400 for all
six cases, the kinetics are quite different. The effective
number of alleles of common disease increases slower
than that of the rare disease, but the difference is
smaller for linear and exponential growth models than
that for the instant growth model. Due to the de-
mographic difference, ne of a rare disease under the
exponential growth model at generation 5000 is at the
same level as that under the instant population-growth
model at generation 1000.

Impact of the mutation model: Model RL uses the
infinite-allele model. When the effective population
size is large, this model leads to an unrealistically large
ne. For example, when N ¼ 109 and m ¼ 10�5, the equi-
librium ne¼ 3.2 3 104 for a common disease of size 0.2.
However, due to the constraints on gene length, silent
or recurrent mutations, effective number of alleles for
real human diseases is usually smaller than this number.

In the previous simulations, we used a k-allele model
with a large number of alleles (k . 104) to mimic the
infinite-allele model. Recurrent mutations do occur but
at such a small rate that they have almost no impact on
the proportion of alleles derived from before popula-
tion expansion or the equilibrium effective number of
alleles.

The probability of recurrent mutation increases with
decreasing k. This leads to smaller observed equilibrium
ne, compared to ne under the infinite-allele model. To

verify this, we simulate the evolution of ne of a disease
with s ¼ 0.1 in a population that has grown instantly
from N0¼ 104 to N1¼ 107 at 6000 generations ago, using
k-allele models with k¼ 100, 500, 1000, or 2000. Among
these k-values, only k ¼ 2000 reaches the ne expected
under the infinite-allele model (Figure 1b). Although it
is not clear how exactly ne will change with k when k . ne,
when k , ne and there are enough disease alleles to
fill every allelic state (high N and m or small s), ne will
be close to kðne � ððk � 1Þð1=ðk � 1ÞÞ2Þ�1 ¼ k � 1Þ
regardless of the exact values of N, m, or s (k ¼ 100 in
Figure 1b).

Figure 1.—Impact of demographic and mutation models.
(a) Evolution of ne of a rare (s ¼ 0:99) and a common disease
(s ¼ 0:01) under instant, linear, and exponential population-
growth models. N0 ¼ 104, N1 ¼ 107, m ¼ 10�5. The two solid
curves are theoretical estimates under the infinite-allele model
and instant growth. (b) Change of ne with number of allelic
states 100, 500, 1000, 2000, using an instant population-growth
model. N0 ¼ 104, N1 ¼ 107, m ¼ 10�5, s ¼ 0.1. The solid curve
is the theoretical estimate under the infinite-allele model.

Simulations Support CDCV Hypothesis 767



Although equilibrium ne with a small maximum num-
ber of allele states is smaller than that of the infinite-
allele model, at the beginning the former increases
faster than the latter. This takes place because mN, the
mutation rate from susceptibility to normal alleles, is no
longer negligible and accelerates the dissolution of the
dominant disease allele when k is small.

Impact of subpopulation structure and migration: The
human population went through complex migration
patterns that might affect the allelic spectra of human
diseases. We start from the simplest cases when no
migration is allowed among subpopulations.

Suppose that the population after instant expan-
sion is split into m equally sized subpopulations,
which then evolve independently without migration
afterward. In each subpopulation, the equilibrium ef-
fective number of alleles is ne ¼ 1 1 4ðN =mÞmð1� f0Þ
(Equation 4 with population size replaced by N =m),
where f0 is assumed to be the same in all subpopulations
because it is determined by the nature of disease. The
allelic spectrum of the whole population is the compo-
sition of these subpopulation spectra. The equilibrium
ne in the whole population is located between
nl ¼ 1 1 4ðN =mÞmð1� f0Þ � ne=m (when the allelic
spectra are identical in all subpopulations) and

nh ¼
Xm

i¼1

X
j

fij=m

f0i

� �2
 !�1

� m�2
Xm

i¼1

X
j

fij
f0

� �2
 !�1

¼ m2
Xm

i¼1

n�1
ei

 !�1

ð6Þ

� mnl � m 1 4N mð1� f0Þ � m 1 ne ð7Þ

(when disease alleles are totally different among sub-
populations. Here fij and fi0 are the frequency of allele j
and all disease alleles in subpopulation i, respectively,
and we assume that nei ¼ ð

P
jðfij=fi0Þ2Þ�1 ¼ nl, i ¼ 1,. . .,

m are identical in all subpopulations.) Assuming a split-
and-grow demographic model, allelic spectra in sub-
populations are similar at the beginning and become
increasingly distinct over time. Therefore, ne will ap-
proach nh in the long run when the differences between
allelic spectra in subpopulations increase with time. The
difference between nh and ne in a single population is
determined by the number of subpopulations m. For
example, in the case of a rare disease in many small
tribes, each tribe may be dominated by one or a few
tribe-specific mutants. The overall ne will be close to the
number of tribes, larger than the small ne in individual
tribes. However, numeric experiments show that varia-
tions of fi0 will significantly reduce nh and make it
difficult to reach m 1 ne.

To confirm these analyses, we evolve a rare (s ¼ 0:99)
and a common (s ¼ 0:01) disease, using a demography
where a founder population is instantly expanded from
N0 ¼ 104 to N1 ¼ 0.5 3 107 and at the same time splits

into m (m¼ 10 or 100) subpopulations. The equilibrium
effective number of alleles of the whole population is
�200 for both diseases if we ignore population struc-
ture. Figure 2a plots the case when m ¼ 10. We see that
ne in each subpopulation evolves roughly as expected,
and the overall ne is very close to the theoretical value
estimated from a single uniform population. The im-
pact of subpopulation structure becomes obvious when
m¼ 100 (Figure 2b). While ne in subpopulations evolves
as expected, the overall ne, as the result of composition
of allelic spectra in 100 subpopulations, increases faster
and arrives at a larger equilibrium ne than that expected
theoretically using a single population.

Although ne in a structured population tends to be
larger than that in a single population, ne in each sub-
population evolves as expected, unless new mutants are
introduced by migration. From a single subpopulation
point of view, migration is a way to introduce new
mutants, usually at a higher intensity than mutation.
Consequently, in a subpopulation with migration, ne is
larger than that in an isolated subpopulation. On the
other hand, while the homogenizing effect of migration
is not obvious soon after the population split, when
allelic spectra in subpopulations are similar to each
other, it mixes alleles from subpopulations and keeps ne

of a structured population away from nh. In an extreme
scenario when migration is so strong that all subpopu-
lations have the same allelic spectra, ne of the whole
population is the same as that of a single subpopulation.

Migration does not have the same impact on common
and rare diseases. When a disease is common, a signifi-
cant proportion of migrants are affected. The impact of
migration on the allelic spectrum is strong compared to
weak mutation and selection. When a disease is rare,
there are few affected migrants, so disease alleles tend to
remain private in their own subpopulation. Since se-
lection is strong in this case, migration is no longer a
dominating force.

These analyses are confirmed by Figures 2c and 2d,
which are similar to Figures 2a and 2b, except that mi-
gration is allowed between subpopulations. In these
simulations, 0.1% of individuals in a subpopulation
migrate to the adjacent subpopulations at each gener-
ation. When a disease is common, migration is strong
enough to make allelic spectra more similar in all sub-
populations. The allelic spectrum of the whole popula-
tion is therefore closer to those of the subpopulations
(compare common diseases in Figure 2b and 2d). The
impact is, as expected, most evident in common diseases
in a population with 10 subpopulations (Figure 2c), fol-
lowed by common diseases in a population with 100
subpopulations (Figure 2d) and rare diseases (Figure 2,
c and d).

In conclusion, the allelic structure is more diverse in a
subpopulation with new mutants introduced as a result
of migration than that in an isolated subpopulation.
However, from the whole-population point of view, the
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homogenizing effect of migration decreases ne, which
otherwise is greater than ne in a single population. The
impact depends on the number of subpopulations, the
level of migration, and the commonness of the disease.

Impact of effective population size: Reich and Lander

(2001) use current census population size N1 ¼ 6 3 109

as the effective population size of the current human
population. This is apparently inappropriate since the
human population has a complex population structure
and is far from random mating. However, none of the
popular definitions (inbreeding, variance, and eigen-
value) of effective population size can be used. They are
all at a magnitude of 104 and would lead to small
estimates of ne, which is incompatible with empirical
data (ne # 5 when N ¼ 104 and m # 10�4 and even
smaller when m # 10�5). The best definition in this
context may be the size of an ideal population in which a

disease allele has the same probability to be fixed/
extinct as in real human population. However, we are
not aware of such a definition being used.

Fortunately, an accurate estimate of effective popula-
tion size is not essential in the study of the allelic
spectrum of the current human population. Since the
human population expanded not long ago (�3000–
10,000 generations), ne’s of most diseases are still small
(Reich and Lander 2001; see Table 1 or Figure 2 for ne

estimates of real diseases). The effective population size,
though determining the future equilibrium ne, has far
less impact on ne of the current human population than
that of mutation rate.

This can be confirmed by empirical data. Figure 3 of
Reich and Lander (2001) gives an almost perfect
match to empirical data using N1 ¼ 6 3 109 and m ¼
3.2 3 10�6. However, this result is insensitive to the value

Figure 2.—Impact of population structure and migration: evolution of ne of a rare (s¼ 0.99, solid lines) and a common disease
(s ¼ 0.01, dotted lines) after instant population expansion from N0 ¼ 104 to N1 ¼ 0.5 3 107 with m ¼ 10�5. The population is split
into 10 (a and c) or 100 (b and d) subpopulations after expansion. Migration rate is 0 for a and b and 0.1% for c and d. Thick lines
are total ne, and thin lines are average ne of all the subpopulations. The top dashed lines correspond to nh ¼ m 1 ne � 300. Note
that the y-axes are in log scale.
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of N1. From a pure regression point of view, any N1 . 1 3

106 would fit reasonably well and the best fit of the data is
obtained using N1¼ 4.85 3 106. The population size we
used (106 or 107) should serve our simulations well.

Multilocus model: Here we study the allelic spectra of
DSL responsible for polygenic diseases, relating these
predictions to model P. The main questions we want to
answer are how well our simulations mimic model P,
how DSL interact with each other, especially between
DSL with different mutation rates or selection coeffi-
cients, and whether or not we can treat the multilocus
model as a set of independent single-locus models.

Verification of the basic model: We assume that (1) the
disease has L DSL located on different chromosomes,
(2) all DSL of a polygenic disease contribute equally to
the disease, (3) the fitness value at each DSL fits an
additive model with selection coefficient s, (4) the
overall fitness fits a multiplicative or additive multilocus
model, (5) the effective population size N is constant at
104 or 105, and (6) the mutation rate (m ¼ 10�5) is the
same at all DSL following a k-allele mutation model with
k¼ 200. We run the simulation for extended number of
generations to let the population reach mutation,
selection, and drift equilibrium. Since hypotheses 4
and 5 are different from model P (as in Pritchard

2001), we are interested in how well our simulations
mimic model P.

Simple formulas (e.g., f0 ¼
ffiffiffiffiffiffiffiffi
m=s

p
for recessive dis-

eases or f0 ¼ m=s for additive diseases) can be used to
estimate the equilibrium total disease allele frequencies
of DSL when s?m but not for the cases of common
diseases with s � m. Assuming forward and reverse
mutation rates mS and mN and selection coefficient s, the
distribution of equilibrium overall frequency f0 of
susceptibility alleles in the population is given by
Wright’s formula

f ðf0Þ ¼ cf
ðbs�1Þ

0 ð1� f0ÞðbN�1Þesð1�f0Þ; ð8Þ

where bS ¼ 4NmS, bN ¼ 4NmN, and s ¼ 2Ns (s in this
article is twice that of Pritchard 2001) are scaled
parameters. The normalization constant c can be
obtained by numerical integration. This formula works
best in the cases of weak selection (e:g :; s # 10�3). For
larger s (e:g :; s ¼ 0:2;N ¼ 104;s ¼ 4000), the expo-
nential term will dominate f ðf0Þ and make it essentially
a d-function at 0. We simulate populations with N¼ 105,
in addition to N ¼ 104 used in Pritchard (2001),
because larger N leads to cases with bS . 1 that have
significantly different distributions of f0 from the cases
with bS , 1, due to the f ðbS�1Þ

0 term of Equation 8.
Figure 3, a (N ¼ 104) and b (N ¼ 105), plots the

relationship between f0 and ne for all DSL of some of the
simulations, along with densities of f0 estimated from
Equation 8 and estimated effective number of alleles.
Example 1 in the supplemental material at http://
www.genetics.org/supplemental/ plots two similar sim-

ulations with additive and multiplicative multilocus
selection models, along with 50 single-locus models
mimicking the independent selection model of model
P. Despite the fact that mS and mN can vary from locus to
locus due to the variation of f0 (Equations 1 and 2), we
use mN and mS estimated from the mean of f0 at the last
generation for theoretical estimates. These simulations
show that additive and multiplicative multilocus selec-
tion models mimic the independent selection model in
model P quite well (further discussed below), with ne

close to theoretical estimates. The distributions of f0
follow Equation 8 in the cases with relative large s, but
not so when s is close to 0. In the cases when s ¼ 0,
Equation 8 predicts high density around zero (with
estimated 54 or 15% DSL having ,0.1 total disease

Figure 3.—Distribution of total disease allele frequency: ne

and f0 at each DSL of polygenic diseases. N ¼ 104 (a) or 105

(b); m ¼ 10�5; k ¼ 200; and s ¼ 0, 0.5 3 10�4, 10�4, 0.5 3 10�3

(from top to bottom). Solid curves are densities given by
Equation 8. Dashed lines are estimated effective number of
alleles. The mean f0 of all DSL at the last generation is used
to estimate mS and mN.
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allele frequency, for cases with N ¼ 104 or N ¼ 105,
respectively). This is not confirmed by our simulations.

At DSL with no or very weak selection, the total
disease allele frequencies approach 1 in our simula-
tions. This seems understandable: At such DSL, muta-
tion generates new variants at random. Since there is no
selection against any particular allele, the allelic spectra
eventually are flat. The total disease allele frequencies at
these DSL therefore equal ðk � 1Þ=k for a k-allele
mutation model and 1 for the infinite-allele model,
provided that the population is large enough to hold all
alleles. We do not know what caused Equation 8 to fail,
but this discrepancy might challenge some of the con-
clusions drawn from it in Pritchard (2001, p. 129),
such as ‘‘in the absence of selection, a DSL is much more
likely to be near fixation,’’ which considers both ex-
tinction and fixation.

We also consider the effective number of alleles at
each DSL (Figure 3). They are generally scattered
around theoretical estimates given by Equation 4. Since
ne , 1 1 4Nm is small (ne , 5 when N ¼ 104 and m ,

10�4), the allelic structure is simple for both rare and
common diseases if these parameters are appropriate.
Either larger effective population size or higher muta-
tion rate is needed to explain high allelic diversity of
some real human diseases under this model. For
example, mutants causing the rare disease (prevalence
rate at birth is 2.4 3 10�4) Duchenne muscular dys-
trophy have a highly diverse spectrum. With an esti-
mated mutation rate 7.9 3 10�5, it requires a population
with effective population size 3 3 105 to accommodate
these mutants with ne . 100 (van Essen et al. 1992;
Reich and Lander 2001).

Varying selection and mutation coefficient: DSL of poly-
genic diseases usually do not contribute equally to the
diseases. There might be some DSL that are under
strong selection and many other DSL that are only
slightly deleterious. The same holds for mutation rates.
These locus-by-locus differences may cause interactions
among DSL and disallow the dissection of the multi-
locus model into several single-locus models.

Figure 4 shows the results of two simulations with
varying selection coefficients (Figure 4a) or varying
mutation rates (Figure 4b). The diseases are recessive at
each DSL and the overall fitness is modeled by a
multiplicative model. The population size and mutation
rate are N ¼ 105 and m ¼ 10�5, respectively. Simple
estimates of f0 and ne assuming a single-locus model are
given by the solid lines, which match f0 and ne at each
DSL of the multilocus model almost perfectly. This is
true for other simulations we have run using additive
single- and multilocus models (results not shown). It is
therefore safe to treat this multilocus model as a set of
independent single-locus models.

The CDCV hypothesis is not supported on the basis of
Figure 4. The allelic structures of more common DSL
(caused by less selection or higher mutation) are either

the same (Figure 4a) or more diverse (Figure 4b) than
that of a rarer DSL.

Evolution of DSL: Although model P deals only with
the equilibrium state of DSL, we are interested to see
how the equilibrium state is attained. An evolutionary
model is needed, so we borrow model RL with the
instant population-growth model here.

Evolution of the allelic spectrum of a DSL is de-
termined by population size, mutation rate, and most
importantly by the total disease allele frequency of the

Figure 4.—Varying selection coefficient and mutation rate:
total disease allele frequency (f0) and effective number of al-
leles (ne) of a common disease caused by 50 loci with varying
selection coefficient (a) or mutation rate (b), in a population
of constant size 105. (a) Disease with varying selection coeffi-
cient at each DSL. DSL are equally spaced in the interval
(ln 0:0001; ln 0:05) with m¼ 10�5. (b) Disease with varying mu-
tation rate at each DSL that is equally spaced in the interval
(ln 6.5 3 10�6, ln 1.2 3 10�4) with m ¼ 0.01. Diseases are re-
cessive at each DSL. Solid lines are theoretical estimates given
by f0 ¼

ffiffiffiffiffiffiffiffi
m=s

p
and Equation 4.
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DSL. In the context of a common disease, the distribu-
tion of f0 is quite dispersed, especially when N is small
(see Figure 3). Consequently, we would expect highly
dispersed fexp at the beginning of population expan-
sion. This results in different evolutionary patterns
between DSL with identical parameter settings. An
example in the supplemental material at http://www.
genetics.org/supplemental/ confirms this. In this ex-
ample, four DSL of a polygenic disease evolve under
identical parameter settings. The evolution of ne at
these DSL differs greatly because their fexp deviate from
f0 due to small initial population size and the resulting
dispersed distribution of f0.

Interaction between DSL: Another question that re-
mains is whether or not the DSL in model P interact.
The evolution of a DSL is determined by initial
spectrum, mutation, selection, and the demographic
model. Among these factors, selection is the source of
interaction with other DSL, because the fitness of an
individual is a joint effect of selection at all DSL.

The results we have shown all use additive or mul-
tiplicative multilocus selection models. From the above
results, and the examples in the supplemental ma-
terial at http://www.genetics.org/supplemental/, DSL
in such models seem to evolve independently since the
equilibrium total allele frequency and effective number
of alleles all match those estimated from the single-locus
model RL. This is not surprising since the essence of
these two models is that the overall fitness can be written
as a function of individual fitness values, without an
interaction term. The lack of interaction between DSL
using these two multilocus selection models is proved in
the supplemental material, both mathematically and
through a special set of simulations.

However, in general, disease susceptibility loci can
interact with each other and lead to complex fitness
functions. In these cases, there is no reason to believe
that the multilocus model is a simple composition of
single-locus models.

We demonstrate the interaction between DSL using a
two-locus example. Assumed fitnesses of genotypes are
as listed below:

As we can see from the table, locus B acts as a modifier
to locus A. It does not cause the disease by itself, but
decreases the fitness of individuals with allele a, from
slightly (Aa or aa with heterozygote Bb) to highly
deleterious (with homozygote bb). Therefore, the total
disease allele frequency changes with respect to the fre-
quency of allele b, and we may no longer have constant
selection pressure over locus A. The equilibrium allele
frequency is implied by the interaction of both loci.

Figure 5 displays the evolution of loci A and B in three
simulations. In the first case, only wild-type allele B is
presented and allele A evolves independently of locus B
with fexp� f0¼ 0.1. In the next two simulations, allele b is
present and this changes the total disease allele fre-
quency of locus A. When these two loci reach an
equilibrium state before population expansion, the
total disease allele frequencies at both loci stay constant
and the effective number of alleles evolves as expected
with fexp being the result of interaction between the two
loci. When these two loci are not at equilibrium before
population expansion (the last two simulations), their
total disease allele frequency gradually reaches equilib-
rium and results in changing selection pressure on both
loci. As a result, the evolution of the effective number of
alleles deviates from theoretical estimates, which reflect
constant selection pressure. This is caused by interac-
tion or, in this particular example, by modification of
selection at locus A by the state of locus B.

DISCUSSION

We use different approaches to confirm the major
results of model RL (Reich and Lander 2001) and
model P (Pritchard 2001). For model RL, we mostly
use large k to mimic the infinite-allele model and we
simulate relatively rare diseases that have total disease
allele frequency close to equilibrium. Most importantly,
we focus on the evolution of allelic diversity rather than
on the final population. For model P, we use smaller k to
mimic the bidirectional mutation process (S/N and
N /S) and simulate more common diseases that have a
more diverse total disease allele frequency. We also run
the simulations for an extended number of generations
to let the simulations reach equilibrium states. The
results obtained from these two sets of simulations con-
form to their respective theoretical estimates developed
in the original publications, but differ fundamentally
regarding the support for the CDCV hypothesis.

Model RL (Reich and Lander 2001) explains the
high diversity of rare diseases well and gives support for
the CDCV hypothesis. Because the effective numbers of
alleles of common diseases increase slower than rare
diseases after population expansion, common diseases
usually have simpler spectra than rare diseases. Model
RL, however, faces some difficulties in modeling almost
neutral DSL. In this case, the total disease allele fre-
quency of the disease is close to 1 so the 1 � f0 term in
Equation 4 leads to an unrealistically small estimate of
ne. However, in the context of mapping disease suscep-
tibility genes, these DSL are of little interest to us.

Under model P, as can be seen in Figure 4, common
diseases have more diverse spectra. Moreover, due to the
assumption of a constant small population in equilib-
rium, the original version of model P (Pritchard 2001)
fails to explain the high diversity of some Mendelian
diseases. For common diseases, this model leads to the

Fitness BB Bb bb

AA 1 1 1
Aa 0.999 0.99 0.9
aa 0.998 0.98 0.8
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conclusion that the allelic diversity at a DSL is positively
related to the mutation rate but that the selection
pressure at this DSL is almost irrelevant. The results
we obtained from this model are not consistent with the
CDCV hypothesis.

The major difference between models RL and P is
whether or not the current human population is in
mutation, selection, and drift equilibrium. Model RL,
while recognizing that both common and rare diseases
in the current human population would have high
allelic diversity under the equilibrium assumption,
claims that the current human population has ex-
panded from the recent past and has not reached
equilibrium. On the other hand, model P is based on
the equilibrium assumption of the human population.

The evidence for the equilibrium assumption of
model P is, however, lacking both theoretically and
empirically. According to model RL, a typical common
disease would need 1 million years to reach an equilib-
rium state, much longer than the length of modern
human history. Our simulations confirm this estimate.

To obtain the equilibrium ne and f0 for common dis-
eases, we usually need to run our simulations for
.20,000 generations, �400,000 years if we assume 20
years per generation. The DNA level variation of the
human genome is also far away from the equilibrium
state, which, under assumption of neutrality, predicts
equal frequency of nucleotides. The equilibrium as-
sumption cannot be simply replaced or discarded in
model P because this model concerns only the current
human population. If we convert model P to an
evolutionary model by evolving a constant population
for a certain number of generations, the choice of initial
allelic spectra will become a critical problem.

In conclusion, it seems that a better model for the
evolution of allelic spectra of DSL responsible for a
polygenic disease would be a multilocus model based on
model RL, with more realistic demographies. As we have
discussed in the previous section, if multiplicative or
additive multilocus selection is assumed, this model can
be studied locus by locus as a set of independent single-
locus models. All results obtained in Single-locus model

Figure 5.—An example of in-
teraction between DSL: evolution
of the total diseaseallele frequency
(left) and effective number of al-
leles (right) in a two-locus model
using an instant population-
growth model, with N0 ¼ 5000,
N1 ¼ 106, G0 ¼ 2000 (burn-in),
G1 ¼ 4000, m ¼ 10�4. Dashed hori-
zontal lines on the left side are
estimated equilibrium total
disease-allele frequencies. Solid
curves on the right side are theo-
retical estimates of effective num-
ber of alleles, using the total
allele frequency before expansion
( fexp). Row 1, evolution of locus A,
with only wild-type allele B. Rows 2
and 3, evolution of loci A and B
when both loci reach equilibrium
state before population expan-
sion. Rows 4 and 5, evolution of
loci A and B when they are not
at equilibrium at population
expansion.
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can be applied to this model. In the supplemental
material at http://www.genetics.org/supplemental/, we
demonstrate (example 3) how to use what we learned
from model RL to predict the evolution of the DSL of a
polygenic disease, under an exponential population-
growth model, with varying mutation rate and single-
locus selection pressure, and a multiplicative multilocus
selection model.

Summarizing our simulations, we expect increased
allelic diversity with:

1. Larger population size (or larger recent population
size for varying demographic model).

2. Higher mutation rate and more allelic states (which
may be the result of a longer gene).

3. Smaller total disease allele frequency at the begin-
ning of population expansion. This may be the result
of higher selection pressure, shorter evolution time
before expansion, or chance (genetic drift).

4. Longer evolutionary history (older mutants), which
provides a locus with more time to gain diversity.

5. More subpopulations and/or lower migration among
subpopulations.

Conclusions 1–3 are qualitatively consistent with
theoretical expression (4).

We have run many simulations to study the impact of
each genetic feature on the allelic diversity. For exam-
ple, we used k¼ 200, 500, 1000, 2000 to see the impact of
the possible number of allelic states on the effective
number of alleles. We also varied selection rate ðs 2
½0:0001; 0:99�Þ and mutation rate (m 2 ½6:5 3 10�6;
1:2 3 10�4�) over a wide range of possible values. Al-
though direct comparison is not possible since these
simulations use a different population size, length of
evolution, and so forth, we can conclude from all
simulations that the allelic spectrum is most sensitive
to the total disease allele frequency at the beginning of
population expansion ( fexp). For other genetic features,
it is difficult to rank their relative importance. If two
conflicting forces (such as higher mutation rate but
faster population expansion) are involved, it seems
necessary to resort to a simulation program.

The total disease allele frequency at the disease locus
(or loci in a polygenic disease setting) at the beginning
of population expansion has a great impact on the
evolution of allelic diversity. To minimize the impact of
initialization of total disease allele frequency, we use a
burn-in period to let the population reach mutation,
selection, and drift equilibrium before population
expansion. This method works well in most cases but
may fail when the disease is very rare so we may end up
with no disease allele before population expansion. The
variability of fexp may also cause problems. This is likely
to happen when the disease is common or when the
population size is small. In these cases, the distribution
of fexp is dispersed so fexp may be far away from the
equilibrium value f0. The value of fexp, instead of the

equilibrium value f0, determines the evolution of
the allelic spectrum at this DSL.

It is often questionable if we should use equilibrium
f0 before population expansion, especially for DSL with
almost neutral disease-susceptibility alleles, which have
a high expected equilibrium f0 (f0 . 50%). The reason
is that we rarely see this high level of disease-allele
frequency in reality. A likely solution to this problem is
using a short burn-in period with a well-chosen initial
allelic spectrum to keep f0 small during evolution.

Evolution of real human diseases is likely to be more
complex than models we use. For example, disease mu-
tants are unlikely to be selectively equivalent and the
fitness of an individual allele should affect its relative
frequency with respect to other disease alleles. Also, we
use a multiplicative or additive multilocus fitness model,
which allows us to study the allelic spectrum locus by
locus. However, disease loci may interact with each other
in many ways. Interaction between DSL on the same
chromosome should also be considered. This tends to
be a complicated issue since recombination will then
play a role in the model.

For the single-locus fitness model, we discussed only
the strictly additive cases. Recessive, dominant, or co-
dominant models should be explored, as well as the
balancing selection and antagonistic pleiotropy models.
Among these fitness models, balancing selection has
been known to maintain stable frequencies of two or
more phenotypic forms. Although our program can
simulate these cases, the discussion of these factors is
beyond the scope of this article.

We do not explicitly simulate the impact of a bottle-
neck effect on the allelic diversity of human diseases.
However, a burn-in process with small population size
followed by rapid population expansion approxi-
mates the evolution following a long-neck bottleneck
(Harpending et al. 1998). Therefore, we can conclude
that a severe bottleneck would remove most alleles of
both rare and common diseases and result in simple
spectra. If a bottleneck is recent, both rare and common
diseases will have simple spectra while rare diseases will
recover their diversity faster than common ones.

Our evolutionary model assumes constant mutation
and selection pressure. Total disease-allele frequency
will oscillate around equilibrium frequency (with a dis-
tribution following Equation 8) and the population
will eventually reach mutation, selection, and drift
equilibrium. Recently, Di Rienzo and Hudson (2005)
proposed another evolutionary model that may also
explain the CDCV hypothesis. In this model, an allele
might have been initially deleterious, but has become
advantageous because of the change of environment.
This model is supported by some empirical evidence
and can complement our model in explaining allelic
diversity of common human diseases.

Our model is consistent with the CDCV hypothesis.
In addition, on the basis of this model, under the
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assumption of multiplicative or additive multilocus
selection models, the DSL responsible for a common
polygenic disease can be studied as if they were DSL of
independent single-locus diseases. The common disease–
common variant hypothesis, confirmed by our analy-
ses on the single-locus model, is therefore consistent
with polygenic common diseases. If more complex
multilocus selection schemes are assumed, the interac-
tion effects will appear, as demonstrated by the example
in Figure 5.

The above independence-based argument, however,
is potentially incomplete, because the relationship be-
tween commonness and weak selection for a polygenic
disease does not have to hold as in the case of mono-
genic diseases. If a common disease is caused by several
loci under weak selection, then according to our model
these DSL will be common and will have simple allelic
spectra. This is the CDCV hypothesis in the cases of
polygenic diseases (Smith and Lusis 2002). However, a
common disease may well be caused by rare alleles at
numerous DSL, if each one can single-handedly cause
the disease. This is referred to as the genetic heteroge-
neity model. Our model suggests that these DSL will be
rare and have highly diverse allelic spectra. Although
theoretical studies and empirical data suggest that DSL
for a complex disease are usually under weak selection,
we cannot rule out the possibility of the heterogeneity
model (Yang et al. 2005). As a matter of fact, a common
disease may be caused by a few loci with common alleles
and many more with rare alleles. These loci with com-
mon alleles are the ones most ready to be mapped.
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APPENDIX

Verification of theoretical estimates of model RL: To
verify the estimate of the equilibrium effective number
of alleles, we use different combinations of N, ms, and s
and evolve a constant-size population for a long period
of time until it reaches mutation, selection, and drift
equilibrium. f0 and ne are observed and plotted in sup-
plemental Figure 1, a and b, along with their theoretical
expectations at http://www.genetics.org/supplemental/.
Note that curves in supplemental Figure 1b are almost
horizontal, indicating that the effective numbers of
alleles for rare and common diseases are similar in
equilibrium states.

We then run simulations using a demographic scenario
in which the founder population grows instantly from
N0¼ 104 to N1¼ 107. The dynamics of the percentage of
ancestral alleles derived from before expansion and the
effective number of disease alleles of three diseases are
plotted in supplemental Figure 1, c and d, at http://
www.genetics.org/supplemental/. The simulations and
theoretical expectations agree reasonably well.

Lack of interaction caused by additive and multipli-
cative multilocus selection models: Given fitness values
gi at each DSL i, the overall fitness of an individual with
L DSL is

QL
i¼1 gi for a multiplicative and maxð0; 1�PL

i¼1ð1� giÞÞ for an additive multilocus selection
model. Using these models, we obtain that the evolution
of a DSL does not depend on interaction with other loci,
as we have shown in this article and in all the examples
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in the supplemental material at http://www.genetics.
org/supplemental/.

This can be proven rigorously. Assume that the mar-
ginal fitness values in a DSL are gNN, gNS, gSS for geno-
types NN, NS, and SS, respectively [e.g., (1; 1� s=2; 1� s)
for an additive DSL with selection coefficient s], and the
frequencies and fitnesses of genotypes at another DSL
are pi and gi, respectively, where i is the index of possible
genotypes. For an individual having genotype XY at
locus A (XY can be NN, NS, or SS), the expected
(average) overall fitness value is

g 9XY ¼
X

i

pigigXY ¼ gXY

X
i

pigi ðA1Þ

under the multiplicative multilocus fitness model and

g 9XY ¼
X

i

pið1�ð1�giÞ�ð1�gXY ÞÞ ¼ gXY �11
X

i

pigi

ðA2Þ
under the additive model. From the viewpoint of locus
A, since XY can be any genotype at this locus, Equations
A1 and A2 imply a systematic decrease (

P
i pigi #P

i pi ¼ 1; 1�
P

i pigi $ 0) of fitness of every individual
compared to a selection model with A as the only locus.
Because gXY are relative fitness values, such changes of
fitness will have very little, if any, impact on the selection
process. For example, during random mating, simuPOP
(Peng and Kimmel 2005) selects an individual with a
probability that is proportional to his/her fitness value.
The probability of being selected is the same for a sys-
tematic multiplicative change of fitness values (cgXY =P

k cgXkYk
¼ gXY =

P
k gXkYk

, where c is the multiplicative
factor, and k iterates over the individuals in the pop-
ulation considered) and is only slightly different for an
additive change when c ¼ 1�

P
i pigi>gXY (usually the

case for common diseases, proof not shown). This result
can be easily extended to cases with more than two DSL.

These analyses are confirmed by a special set of
simulations, where the population is initialized with
equilibrium f0 and ne for all DSL and starts evolving
without a burn-in stage. We compare the evolution of
these DSL with theoretical expectations and with
simulations using the corresponding single-locus mod-
els and do not note a systematic difference. Two sample
t-tests are used at each generation, and none of the
P-values are ,0.05.

FURTHER EXAMPLES:

Example 1: comparison between single and two multilocus
selection models: We simulate the evolution of polygenic
diseases (L ¼ 50) in a constant population of size N ¼
104 or 105, with m ¼ 10�5 and s ¼ 0.5 3 10�3. To mimic
independent selection pressure, we also run 50 single-
locus simulations corresponding to some of the multi-
locus simulations. Supplemental Figure 2 at http://
www.genetics.org/supplemental/ displays the total dis-

ease allele frequency and effective number of alleles at
each DSL for some of these simulations.

Three simulations using different multilocus models
[first three cases in supplemental Figure 2 (http://
www.genetics.org/supplemental/), multiplicative mul-
tilocus model, additive multilocus model, and 50 single-
locus models] yield indistinguishable results. This
indicates that both additive and multiplicative models
mimic independent selection originally assumed in
model P well, at least in the simulated parameter range.
The last case of supplemental Figure 2 is similar to case 1
but uses a smaller population size (N ¼ 104). Genetic
drift is stronger in this population than in other cases
and results in a more dispersed distribution of f0.

Example 2: diversity and importance of fexp: Supplemen-
tal Figure 3 at http://www.genetics.org/supplemental/
plots the dynamics of the total disease allele frequency
( f ) and the effective number of alleles (ne) of four DSL
of a polygenic disease (L ¼ 10), under an instant
population-growth model with N0 ¼ 104, N1 ¼ 106, and
G0 ¼ 5000, with m ¼ 10�5 and s ¼ 0.001 identical at all
DSL. A multiplicative multilocus selection model is
used. Although the equilibrium f0 of all DSL is 0.1, the
distribution of f0 at generation 5000 is quite dispersed
because of the small population size during the burn-in
period. After population expansion, f0 of all DSL
approaches 0.1 slowly, but the evolution of ne at each
DSL is roughly determined by the total disease allele
frequency of DSL at the beginning of the population
expansion (see the theoretical curves in the right plots).
Consequently, ne’s of the DSL of a common disease may
approach their equilibrium states at vastly different rates.

Example 3: multilocus example using an exponential
population-growth model: Supplemental Figure 4 at http://
www.genetics.org/supplemental/ plots the evolution of
the four DSL of a polygenic disease, using an exponential
population-growth model with N0 ¼ 104, N1 ¼ 106, and
G0¼G1¼ 5000. The mutation and selection rates at these
four DSL are s ¼ 10�3, m ¼ 10�4; s ¼ 10�3, m ¼ 10�5; s ¼
10�5, m¼ 10�4; and s¼ 10�5, m¼ 10�5, respectively. Using
what we have learned from model RL, we can conclude
that equilibrium ne is�400 for cases 1 and 3 and�40 for
cases 2 and 4 (depending on the values of N and m).
The rate at which ne approaches its equilibrium state is
fastest for case 2, followed by cases 1, 4, and 3 (see the
values of m/s). Because of the exponential growth model
and the commonness of these DSL ( f0 . 0:1), none of
the DSL should have reached the equilibrium state. The
allelic diversity at generations 10,000 should be highest
for case 2 (relatively rarer disease) or case 1 (higher
equilibrium ne).

Web resources: All simulations are performed us-
ing a simuPOP (Peng and Kimmel 2005) script
simuCDCV.py, which is distributed as part of simuPOP
at http://simupop.sourceforge.net. It can be run using
the provided graphical user interface or as a batch
command, with or without R-assisted visualization.
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