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ABSTRACT

The importance of quantifying and accounting for stochastic genotyping errors when analyzing mi-
crosatellite data is increasingly being recognized. This awareness is motivating the development of data
analysis methods that not only take errors into consideration but also recognize the difference between
two distinct classes of error, allelic dropout and false alleles. Currently methods to estimate rates of allelic
dropout and false alleles depend upon the availability of error-free reference genotypes or reliable ped-
igree data, which are often not available. We have developed a maximum-likelihood-based method for
estimating these error rates from a single replication of a sample of genotypes. Simulations show it to be
both accurate and robust to modest violations of its underlying assumptions. We have applied the method
to estimating error rates in two microsatellite data sets. It is implemented in a computer program, Pedant,
which estimates allelic dropout and false allele error rates with 95% confidence regions from micro-
satellite genotype data and performs power analysis. Pedant is freely available at http://www.stats.gla.ac.
uk/�paulj/pedant.html.

THE importance of quantifying and accounting for
stochastic genotyping errors in microsatellite-based

studies is becoming ever more widely recognized. Un-
detected errors can impair inference across a range of
fields, including forensics, genetic epidemiology, kin-
ship analysis, and population genetics (Pompanon et al.
2005). All studies that have looked for genotyping errors
have found them at appreciable levels (0.2–15% per
locus; Pompanon et al. 2005). Even at low error rates,
the frequency of erroneous genotypes increases rapidly
with the number of marker loci assayed: from 1% in
one locus, to 10% in 10 loci, to a potentially destructive
63% in 100 loci. Error-free microsatellite data sets must
therefore be rare and will become rarer as improving
laboratory methods allow increasing numbers of sam-
ples and markers to be assayed. Thus, although errors
are most obviously harmful when genotyping highly
error-prone noninvasive samples (Gagneux et al. 1997),
they can frustrate analysis of the cleanest data, for ex-
ample, in mapping genes that contribute to complex
disease (Feakes et al. 1999; Walters 2005). The con-
sequences of undetected genotyping errors can be
particularly adverse for parentage analysis, especially
when using exclusion, where incompatibilities between
candidate parents and offspring are used to exclude all

but the true parent (Gagneux et al. 1997; Jones and
Ardren 2003). Even an error rate as low as 2% in a nine-
locus data set can result in false exclusion of .20% of
fathers (Hoffman and Amos 2005).

Given that genotyping errors cannot be eliminated
with certainty, a more pragmatic approach is to mini-
mize (Piggott et al. 2004), quantify (Bonin et al. 2004;
Broquet and Petit 2004; Hoffman and Amos 2005),
and integrate them in statistical analysis (Marshall

et al. 1998; Sobel et al. 2002; Wang 2004). Most studies
quantify error rate as a single quantity, such as error rate
per allele or per single-locus genotype. However, sto-
chastic errors (as opposed to systematic errors, for ex-
ample, null alleles) can be divided into two distinct
classes: allelic dropout, where one allele of a heterozygote
randomly fails to PCR amplify, and false alleles, where the
true allele is misgenotyped because of factors such as
PCR or electrophoresis artifacts or human errors in
reading and recording data (Broquet and Petit 2004).
These two classes of error can bias analyses in funda-
mentally different ways. For example, a high level of
undetected allelic dropout could be misinterpreted as
evidence for inbreeding, while false alleles can lead to
substantial overestimation of census size (Waits and
Leberg 2000; Creel et al. 2003).

The essential difference between the effects of the
two classes of error, as far as kinship inference is
concerned, is that both homozygotes and heterozygotes
potentially contain false alleles, but only homozygotes
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can be suspected of allelic dropout. Consider a data set
with a low false allele rate but a high allelic dropout rate,
a common scenario for genotypes from noninvasive
samples such as feces or hair (Broquet and Petit

2004). A candidate father with genotype AA could not
be excluded with high confidence from paternity of an
offspring with genotype CC because of the high prob-
ability of allelic dropout, but if the observed genotypes
were AB and CD, respectively, the candidate father
could be excluded with greater certainty. Thus, knowl-
edge of both error rates allows the likelihood of pa-
ternity to be assessed more accurately than is possible
when using a single composite error rate. By the same
logic, any microsatellite analysis that incorporates er-
ror probability would benefit from differentiating be-
tween allelic dropout and false alleles.

This approach is being increasingly applied to anal-
ysis methods such as sibship reconstruction (Sieberts

et al. 2002; Wang 2004), parentage assignment (Hadfield

et al. 2006), and establishment of genotypic identity
between two DNA samples (Kalinowski et al. 2006). By
analyzing simulated data from 100 individuals at eight
microsatellite loci, Wang (2004, Figure 2 therein) showed
that sibships can be reconstructed accurately when the
probabilities of allelic dropout and false alleles are as
high as 20% each per single-locus genotype and only 3%
of multilocus genotypes are expected to be error free.

The utility of such methods depends on the ability to
quantify the separate error rates. Errors can be quanti-
fied separately either through Mendelian inconsisten-
cies between parent–offspring pairs or by comparing
error-prone genotypes with reference genotypes, which
are assumed to be error free. Reference genotypes can
be obtained either from high-quality template DNA
(but see Jeffery et al. 2001) or by repeated PCRs (Ewen

et al. 2000; Broquet and Petit 2004; Pompanon et al.
2005). However, in many studies neither pedigree data
nor reference samples will be available, and the pro-
duction of reference data by multiple genotyping can
be time consuming and expensive (Navidi et al. 1992;
Taberlet et al. 1996; Smith et al. 2000; Miller et al.
2002). There is therefore a need to develop a method
for estimating allelic dropout and false allele error rates
that does not depend on pedigree data, high-quality
reference samples, or multiple genotyping.

We describe a method for estimating maximum-
likelihood rates of allelic dropout and false allele error
from microsatellite genotype data. The method com-
pares duplicate genotypes and estimates error rates on
the basis of the frequency and nature of mismatches.
It is already considered good practice to duplicate 5–10%
of genotypes to monitor overall genotyping error (Bonin

et al. 2004; Hoffman and Amos 2005; Pompanon et al.
2005), but it has not been possible to use these data to
assess both allelic dropout and false alleles separately.
The method presented here therefore extracts valuable
information from data that researchers will often have

already obtained. Both duplicate genotypes are assumed
to be error prone, so reference data are not required.
We demonstrate the effectiveness of the method using
simulated and real data.

METHODS

Notation and terminology: Genotyping error rates
are conventionally expressed per genotype rather than
per allele, reflecting the fact that they are usually
calculated in terms of the observed number of errone-
ous genotypes ( judged against reference genotypes)
divided by the number of genotypes in which an error
could have been observed (Broquet and Petit 2004).
The per-genotype allelic dropout rate (p) is calculated as
a proportion of observed heterozygotes (because allelic
dropout can be observed only in heterozygotes) whereas
the false allele rate ( f ) is calculated as a proportion of all
genotypes. Per-genotype error rates are convenient to
use and simple to calculate when reference genotypes
are available but in the method presented here, which
involves modeling the processes through which errors
affect individual alleles, per-allele rates are more useful.
In practice, conversion between per-allele and per-
genotype rates is straightforward (see appendix).

Using Wang’s (2004) notation for per-allele error
rates, e1 is the population allelic dropout rate and e2 is
the population false allele rate (defined below). Addi-
tionally, we define the sample error rates, �e1 and �e2,
which are the error rates in a single sample of replicate
genotypes. For example, a sample of 200 duplicate
genotypes contains 800 scored alleles. If 4 of these have
dropped out then �e1 ¼ 0.005, regardless of whether the
dropouts occurred visibly in heterozygotes or invisi-
bly in homozygotes. Finally, the error rate estimates are
ê1 and ê2.

Where ambiguity between true and error-prone geno-
types is possible, we refer to the recorded error-prone
genotype as the ‘‘observed genotype’’ and the unknown
true genotype (which would be observed in the absence
of errors) as the ‘‘underlying genotype.’’ An underlying
genotype that has been ascertained by a process that is
assumed to be error free is referred to as a ‘‘reference
genotype.’’ In reality even reference genotypes can con-
tain errors. Finally, unless stated otherwise, the term
‘‘genotype’’ refers to a single-locus genotype.

General approach: When reference genotypes are
available, quantifying allelic dropout and false alleles is a
simple matter of comparing the reference and observed
genotypes and counting frequencies of the two error
classes. For example, a mismatch between a reference
genotype AB and an observed genotype AA indicates an
allelic dropout, whereas a mismatch between a reference
genotype AA and an observed genotype AB indicates
the appearance of a false allele (B) in the observed ge-
notype (hereafter all replicate genotypes are shown in
the form AA.AB).
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Although errors can also be counted from a single set
of duplicate genotypes in the absence of reference data,
classifying them is more problematic because both rep-
licate genotypes are error prone and allelic dropout
and false alleles can produce equivalent mismatches
(e.g., the mismatch AA.AB could have been produced
by allelic dropout in AB or the occurrence of a false
allele in AA). However, information about the magni-
tudes of e1 and e2 can be derived from the frequencies
of different categories of mismatch. When e1 is high,
AA.AB mismatches will be common, while a high fre-
quency of AB.AC mismatches indicates high e2.

A simple way to circumvent the ambiguity of AA.AB
mismatches is to estimate e2 and e1 consecutively. AB.AC
mismatches are unambiguously attributable to false
allele errors in heterozygotes and can be used to esti-
mate e2 across the entire sample. This estimate of e2

can in turn be used to estimate the proportion of AA.AB
observations expected to result from a false allele in a
homozygote. The remainder of AA.AB duplicates can
then be attributed to allelic dropout and used to esti-
mate e1. However, because both replicate genotypes are
error prone, the probability of both replicates incurring
errors (a double error) is not negligible. If the total
probability of an error of either class occurring in a sin-
gle genotype (p 1 f ) is a realistically high 0.2 (Broquet

and Petit 2004), then 5.2% of replicates will be hit by at
least two errors, and these will account for 27% of errors.
Ignoring these classes will result in substantial under-
estimates of high error rates (we verified this result us-
ing simulations—data not shown), and including them
in the simple sequential approach described above be-
comes impossible because of ambiguity in the origins of
some categories of replicate genotype. For example, if
double errors are considered, the apparently error-free
AA.AA category could arise from an underlying geno-
type of AB by two dropouts, and AA.BB could originate
either from AB by two dropouts or from AA by acquisi-
tion of a false allele (B) followed by a dropout. Given
these complications, rather than calculating e2 and e1

sequentially, it is preferable to estimate them simulta-
neously from all the available data using maximum
likelihood (ML). This method has the added advantage
of allowing simple calculation of confidence limits.

There are seven possible categories of duplicate
genotype: (1) AA.AA, (2) AB.AB, (3) AA.AB, (4) AA.BB,
(5) AB.AC, (6) AB.CC, and (7) AB.CD. Categories that
include two allelic dropouts in a single genotype are
not counted because double dropouts are indistinguish-
able from other causes of PCR failure and are there-
fore unreliable indicators of e1.

Like the simple sequential method described above
for estimating e1 and e2 without reference data, the basis
of the ML method is the sensitivity of categories 1–7 to e1

and e2. Assuming that the underlying proportion of
heterozygotes is known, the expected frequencies of all
categories and the likelihood of the observed frequen-

cies can be calculated for any e1 and e2, allowing the
ML estimates, ê1 and ê2, to be obtained.

Assumptions and model: We base our assumptions
and error model on those proposed by Wang (2004),
with minor modifications. We make the following
assumptions:

1. The genotypes are diploid and codominant.
2. The sampled population is in Hardy–Weinberg equilibrium.

This assumption is usually desirable because it allows
expected heterozygosity (He ¼ 1�

Pn
i¼1 x2

i , where xi

is the frequency of the ith of n alleles) to be used to
gauge the probability that an underlying genotype is
heterozygous. In an error-free data set this probabil-
ity is the observed heterozygosity (Ho), but direct
estimates of Ho will be biased downward by allelic
dropout and upward by false alleles. Neither dropout
nor false alleles should significantly bias estimation
of He, assuming that all alleles are equally likely to
drop out and that false alleles generally do not cre-
ate new allelic states. A known degree of nonrandom
mating can be accounted for by estimating Ho from
He and FIS, the inbreeding coefficient, where Ho ¼
He(1 � FIS). In practice, unbiased FIS estimates are
unlikely to be available when errors are frequent, but
in cases where the sample contains more than one
population, heterozygote deficiency due to spatial
genetic structure could be quantified and corrected
for by replacing FIS with FST, which is relatively in-
sensitive to genotyping error (Taberlet et al. 1999).
We investigate the effect of undetected deviation
from random mating on error rate estimation using
simulations.

3. Each sample is equally likely to incur an error. In reality
errors will preferentially affect low-quality samples
(Pompanon et al. 2005). The effect of nonindepen-
dence among errors on both simulated and real data
is explored and discussed below. Moreover, false al-
leles might not affect homozygotes and heterozygotes
with equal probability. For example, allele-calling
errors are probably more likely in heterozygotes,
whereas PCR artifacts are more likely to be recorded
in homozygous genotypes. The confounding effect
of such opposing biases could be overcome by model-
ing false alleles as a product of two or more processes.
However, to do so would require the introduction of
at least one additional parameter at the cost of re-
duced statistical power, increased mathematical com-
plexity, and longer computing time.

4. Both alleles of a heterozygote are equally likely to drop out. In
many instances of allelic dropout, short alleles are
preferentially amplified over long alleles (short allele
dominance; see Wattier et al. 1998; Ewen et al. 2000;
Jeffery et al. 2001). High rates of short allele dom-
inance will cause underestimation of allelic dropout
rates by any method dependent on replication of
error-prone genotypes.
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5. A false allele always takes an allelic state not already present
in the duplicate genotype. For example, an underlying
genotype AB can be duplicate genotyped as AB.CC
only by the occurrence in the second genotype of a
false allele (C ) in one allele followed by a dropout of
the other allele, not by the occurrence of two
identical false alleles. Likewise, AB.AB can arise only
by an error-free read of an underlying AB, not by the
same false allele (B) occurring in both genotypes
from an underlying AA. In real data, most false al-
leles are recorded as existing true alleles (P. C. D.
Johnson, personal observation), so that in practice
two identical false alleles could occur in a duplicate
genotype in either the AB.CC or the AB.AB case. This
could lead to underestimation of high e2 at loci with
few alleles. However, given the high number of alleles
present at most microsatellite loci and the relative
rarity of double occurrences of false alleles, this rule
is unlikely to lead to significant underestimation of
e2. A consequence of this assumption is that we do
not include the number of alleles in a data set as a
parameter in our model, which greatly simplifies
the calculation of the expected duplicate genotype
frequencies.

Following Wang’s (2004) error model, we define two
classes of error. Class 1 consists of allelic dropouts only:
each allele drops out with probability e1. Class 2 includes
all stochastic errors that lead to a false allele being
recorded, such as those caused by PCR and electropho-
resis artifacts, allele miscalling either by software or by
human error, and data entry. This class comprises all
stochastic errors outside class 1. A false allele is recorded
with probability e2. Systematic errors, which might be
caused by null alleles, contaminant DNA, or systematic
miscalling of an allele, are excluded from both classes.
Thus in the production of a single diploid genotype, the
probabilities of an error of class i occurring in neither
allele, one allele, and both alleles are (1� ei)2, 2ei(1� ei),
and ei

2, respectively.
Our error model differs from Wang’s (2004) with

respect to his assumption that dropouts always precede
false allele errors when they occur together in a single
allele, resulting in a heterozygous observed genotype
(e.g., AB drops out to AA, which acquires a false allele to
become AC ). We reverse the order, so that dropouts
overrule false alleles, leading to a homozygous observed
genotype. For example, a dropout and a false allele
would coincide in the second allele of an underlying
AA as follows: first AA acquires a false allele to be re-
corded as AB and then the false allele drops out to give
AA. Neither model perfectly fits reality: Wang’s order
correctly models PCR artifacts that are mistaken for
alleles, whereas ours fits any false allele that is able to
drop out (e.g., miscalling or data entry errors). We chose
to make dropouts dominant, first, because miscalling
and data entry errors appear to be more common than

PCR artifacts, at least in high-quality data (Paetkau

2003; Bonin et al. 2004; Hoffman and Amos 2005;
Pompanon et al. 2005), and, second, because it sim-
plifies the calculation of the expected frequencies of the
seven categories. In practice, this difference between
the two models is slight, as the probability of both er-
rors coinciding in at least one allele in a duplicate ge-
notype is small even at very high error rates (0.05 when
e1 ¼ 0.17 and e2 ¼ 0.08).

We make a further simplifying assumption that at all
realistic values of e2 the frequency of replicate geno-
types affected by three or four false allele errors is neg-
ligible. This frequency is 0.2% when the false allele
error rate is as high as 0.16 per single-locus genotype
(equivalent to e2 ¼ 0.083), the highest recorded in a
literature review by Broquet and Petit (2004), so this
assumption seems justified.

Under the assumptions above, the expected fre-
quency of each of the seven replicate genotype catego-
ries is a function of three parameters: the error rates
to be estimated, e1 and e2, and the known expected het-
erozygosity, He. The likelihood of any combination of e1

and e2 can then be calculated, given He and the counts
of the seven categories (see appendix for derivation of
equations). Calculating log likelihood across a suffi-
ciently large number of error rate combinations allows
a log-likelihood surface to be constructed and the ML
estimates ê1 and ê2 to be located (Figure 1).

A computer program, Pedant, that implements the
above method was written in the programming lan-
guage Delphi version 7.0 (Borland Software). Pedant
automates the categorization of the replicate genotypes
and finds the ML error rates using a simulated anneal-
ing algorithm (see appendix for details). The advantage
of simulated annealing is that it reduces the danger of
the search getting stuck on a local maximum when
searching likelihood space with multiple maxima. In
practice, most, if not all, real data sets will produce
unimodal surfaces resembling Figure 1. However, it is
possible to create artificial data sets that produce two
peaks, so it seems prudent to allow for this possibility
in the search algorithm, particularly considering that
the cost in computation time is small (typically ,1
sec/locus using 20,000 search iterations on a 3-GHz
Celeron PC).

Simulations: We tested the method by estimating
errors from data with known error rates simulated
under the assumptions of the error model. We then
repeated the simulation analysis using data that violated
the stronger assumptions of the error model. For each
data set we generated n underlying genotypes, which
were heterozygous with probability He, and then simu-
lated two observed genotypes each with error probabil-
ities e1 and e2. Error rates were estimated from data
simulated with low (e1 ¼ 0.01, e2 ¼ 0.0015), intermedi-
ate (e1¼ 0.09, e2¼ 0.04), and high (e1¼ 0.17, e2¼ 0.08)
error rates in all nine possible combinations. These
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values of e1 and e2 were chosen to reflect a realistic
range of genotyping error rates, from levels typical of
high-quality samples (Ewen et al. 2000) to rates rep-
resenting data from low-quality noninvasive samples
(Broquet and Petit 2004). Other parameters tested
were low (He¼ 0.5) and high (He¼ 0.85) expected het-
erozygosities and small (n¼ 50), intermediate (n¼ 100),
and large (n ¼ 200) sample sizes. Sampling error in
He was simulated as a function of He and n, assuming
a broken-stick distribution of allele frequencies (see
appendix). All 54 possible combinations of e1, e2, He,
and n were simulated. Because generally only a frac-
tion (e.g., 10%) of genotypes are replicated to calculate
error rates, sampling error in He was calculated for 10n
samples.

The performance of the method in estimating the
population error rates was assessed by analyzing error
rate estimates from 5000 simulated data sets. Perfor-
mance was gauged by the mean square error (MSE)
between the estimated (ê1 or ê2) and the population
error rate (e1 or e2). The MSE can be split into two
components, bias and standard error (SE), where MSE ¼
bias2 1 SE2. We calculated bias, relative bias, and
standard error for each ê1 and ê2. Bias was calculated
as the mean estimated error rate minus the population
error rate, and relative bias as bias divided by population
error rate.

MSE depends not only on sampling error in �e1 and �e2,
but also on the number of hidden and ambiguous errors
in the sample. The sample will have incurred on average
4ne1 dropouts and 4ne2 false alleles, so for any e1 and
e2, how well the sample represents the population is
therefore a function of n and not useful in assessing
the performance of the method. Of greater interest is
how well the method recovers the sample error rates in
spite of the hidden and ambiguous errors, that is, what
proportion of the error in the ML estimates is intrinsic
to the method (intrinsic error) and not due to sampling
error. Intrinsic error was calculated as (mean square
error between the estimate and the sample error rate)
divided by MSE. The closer that bias, MSE and intrinsic
error were to zero, the better the method was judged to
be performing.

The robustness of the method was tested by rerun-
ning the performance analysis on simulated data sets
that deviated from some assumptions of the error
model in the following ways.

Deviation from Hardy–Weinberg equilibrium: The effect
of undetected nonrandom mating within the sampled
population was tested by simulating data at two levels of
heterozygote deficiency, defined by FIS-values of 0.0625
and 0.125. These FIS-values equate to inbreeding among
first cousins and half-siblings, respectively, and were
chosen to represent moderate and high levels of in-
breeding within wild vertebrate populations (Slate

et al. 2004). Heterozygote deficiency might also result
from cryptic genetic structure. We concentrated on in-
vestigating heterozygote deficiency (FIS . 0), first, be-
cause extreme heterozygote excess (FIS , �0.125) is
likely to be rare in nature (Figure 2 of Chesser 1991)
and, second, because preliminary simulation analysis
suggested that the most severe biases are typically about
three times smaller when FIS is negative than when it
is positive.

Increased sampling error in He: The method does not
take into account sampling error in He. The effect of
increasing sampling error in He to its maximum (when
no additional samples are available for estimating He)
was tested by decreasing the number of samples from
which He was estimated from 10n to n.

Sample quality variation: We investigated the validity
of the assumption that each sample is equally likely to
incur an error. This assumption is unlikely to hold true
for most data sets: when sample quality varies, errors
preferentially occur in low-quality samples (Gagneux

et al. 1997; Wandeler et al. 2003; Bonin et al. 2004;
Pompanon et al. 2005). To test the effect of variable
sample quality on error estimates, we simulated data
using a nonuniform distribution of error rates across
samples (see appendix).

Dominance of dropouts over false alleles: The effect of the
assumption that dropouts always hide false alleles was
assessed by reducing the probability of a dropout hiding
a false allele from 1 to 0.5 in the simulated data.

Figure 1.—Maximum-likelihood (ML) estimates (1) and
confidence regions for the population allelic dropout and
false allele rates, e1 and e2 ()). ML error rates were estimated
from 100 simulated duplicate genotypes where He ¼ 0.85, e1

¼ 0.05, and e2 ¼ 0.01. The seven duplicate genotype category
counts were (10, 67, 17, 2, 2, 0, 0) with two double dropouts
uncounted. The sample error rates, �e1 and �e2, are also shown
(h). Confidence regions were calculated by descending
x2
ð2;aÞ=2 log-likelihood units from the ML estimate, where

a ¼ 1 � confidence (Wilks interval).
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Reference data (e.g., consensus genotypes or pedigree
data) are generally required to estimate allelic dropout
and false allele error rates. Therefore, we tested the ML
method against a reference data-dependent method.
We compared the ML estimates with estimates that
could have been obtained conventionally had one of
the two duplicate genotypes been a reference genotype
rather than an error-prone genotype. Thus the refer-
ence data method has the advantage that visible errors
are unambiguous, but the disadvantage of increased
sampling error. The MSEs of the ML and reference data
(RD) methods (MSEML and MSERD) were compared for
both error rates. To allow this comparison the ML es-
timates were converted from per-allele to per-genotype
rates (see appendix).

Application to real microsatellite data: The method
was tested on microsatellite genotypes from two error-
prone sources of DNA: red fox teeth that had been
autoclaved to denature rabies virus and fecal samples
from Ethiopian wolves. Individual and consensus geno-
types were kindly provided by P. Wandeler (foxes) and
D. A. Randall (wolves).

For the fox samples, 149–182 consensus genotypes
were established from up to nine repeated PCRs at
16 loci: V142, V374, V402, V468, V502, V602, V622
(Wandeler and Funk 2006), AHT-130 (Holmes et al.
1995), CXX-156, CXX-250, CXX-279 (Ostrander

et al. 1993), CXX-434, CXX-466, CXX-606, CXX-608
(Ostrander et al. 1995), and c2088 (Holmes et al. 1995;
Wandeler 2004). Prior information from genetic data
regarding the validity of assuming Hardy–Weinberg equi-
librium in fox populations was not available, although
using these data Wandeler (2004) found modest het-
erozygote deficits within populations (FIS ¼ 0.01–0.02)
as well as low levels of interpopulation structure (FST ¼
0.035). The assumption of Hardy–Weinberg equilib-
rium was therefore unjustified in this data set. We did
not correct for either source of heterozygote deficit
because FIS would not normally be accurately quantifi-
able prior to error estimation, and the same may apply
to low levels of FST (Bonin et al. 2004). Simulation of
error estimation under this total level of heterozygote
deficit (FIT ¼ 0.05) predicted small biases of 3% in
ê1 and �8% in ê2.

For the wolf data set, 72–121 consensus genotypes
were based on up to 19 repeated genotypes from 17 loci:
c377 (Ostrander et al. 1993), FH2001, FH2054,
FH2119, FH2137, FH2138, FH2140, FH2159, FH2174,
FH2226, FH2293, FH2320, FH2422, FH2472, FH2537
(Breen et al. 2001), Pez17, and Pez19 (Neff et al. 1999).
Ethiopian wolf microsatellites would not be expected to
show significant deviation from Hardy–Weinberg equi-
librium on the basis of prior information from other
markers (Gottelli et al. 1994), and this has been
confirmed using the present data (Randall 2006).

The first two sets of repeat genotypes were analyzed
using the ML method to give ê1 and ê2 with their 95%

confidence limits, the first set of genotypes providing
the estimate of He. Error rate estimates and confidence
limits were converted to per-genotype error rates for
comparison with the sample error rates. The ML
estimates were judged by their proximity to the true
error rates in the sample, which were counted with
reference to the consensus genotypes (with the excep-
tion of dropouts in homozygotes, which are invisible
even when reference data are available). Because pop-
ulation error rates were not known, relative bias was
calculated as (ML estimate)/(sample error rate when
greater than zero). These data sets provide a thorough
challenge for the ML method because, in addition to
covering a wide range of He-values from 0.30 to 0.90
(mean He-values: 0.79 in the foxes, 0.63 in the wolves),
they also violate one of the stronger assumptions of the
method in having a nonuniform distribution of error
rates among samples.

RESULTS

Simulations: The ML method performed well across
the full range of error rates, with rare exceptions,
which are detailed below (Table 1). It performed best
when He and n were high and error rates were inter-
mediate or high, that is, when the number of errors and
the proportion of informative genotypes were high.

Bias: When He ¼ 0.85 and n ¼ 200, relative bias was
insignificant for both ê1 and ê2 across all error rate
combinations (range �1.8–0.8%). However, relative
bias increased with decreasing He and n (Figure 2)
and was generally greater in ê1 than in ê2. Although the
magnitude of bias in ê1 was always low (range 0.0001–
0.0062), relative bias in ê1 became high when He, n, and
e1 were low (i.e., when the number of visible dropouts
was low) and e2 was high, reaching a maximum of 62%
at e1 ¼ 0.01, e2 ¼ 0.04, He ¼ 0.5, and n ¼ 50 (Figure 2).
It appears that when the number of visible dropouts
is low and the numbers of false alleles are high, some
false alleles in AA.AB-type mismatches are ‘‘mistaken’’
for allelic dropouts. Although a bias of 62% in estimat-
ing e1 of 0.01 may seem severe, high bias occurred only
in circumstances where the data contained very few
visible dropouts (e1 ¼ 0.01, He ¼ 0.5, n ¼ 50) and con-
sequently was characterized by high sampling error,
so that even the highest biases were overwhelmed by
estimation error. The highest contribution of bias to
MSE in ê1 (bias2/MSE) was 9.1%, which occurred when
bias was 62%. Bias in ê2 was always low, ranging from
�15 to 2.6%. The largest bias, of �15%, was in es-
timating e2 of 0.0015 at He ¼ 0.5 and n ¼ 50 and was
responsible for only 0.4% of MSE.

Variance: Like bias, the variance in the error rate
estimates was lowest, relative to the population error
rates, when the amount of information in the data was
highest, that is, when error rates, He, and n were all
high (see standard errors in Table 1).

832 P. C. D. Johnson and D. T. Haydon



T
A

B
L

E
1

A
n

al
ys

is
o

f
th

e
p

er
fo

rm
an

ce
o

f
th

e
M

L
m

et
h

o
d

in
es

ti
m

at
in

g
al

le
li

c
d

ro
p

o
u

t
an

d
fa

ls
e

al
le

le
er

ro
r

ra
te

s
fr

o
m

si
m

u
la

te
d

d
at

a

n
¼

50
n
¼

10
0

n
¼

20
0

e 1
,
e 2

H
e

M
ea

n
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ê 1
,
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Intrinsic error: Unsurprisingly, the standard error of
the estimates was smallest at high n. More significantly,
intrinsic error did not vary with n, but rather was
sensitive to the two error rates and He (Table 1, Figure
3). Like bias, intrinsic error was higher in ê1 (21–94%)
than in ê2 (14–69%) and highest when estimating low
e1 at low He and high e2. At He ¼ 0.85 intrinsic error in
ê1 and ê2 averaged 46 and 29%, respectively, across the
range of simulated error rates and sample sizes, com-
pared with 77 and 47% at He ¼ 0.5.

The simulation analysis above was carried out using
data simulated under the assumptions of the error

model. We now show the effect of deviation from some
of these assumptions.

Deviation from Hardy–Weinberg equilibrium: The only
substantial effect of moderate (FIS ¼ 0.0625) and high
(FIS ¼ 0.125) heterozygote deficiency was to bias ê1

and ê2. The relationship between FIS and relative bias
was consistently linear across the range of parameter
values tested. Relative bias in ê2 was generally low, being
� �FIS. The effect of FIS on relative bias in ê1 was also
generally tolerable (5–25%) but became severe when
allelic dropouts were very infrequent relative to false

Figure 3.—The degree of error in ML estimating the allelic
dropout rate (e1) that is due to uncertainty inherent in the
method (intrinsic error) rather than sampling error in the
production of genotyping errors. The two plots summarize
the analysis of 5000 data sets of intermediate sample size
(n ¼ 100) simulated for each of nine error coordinates at
low (A: He ¼ 0.5) and high heterozygosity (B: He ¼ 0.85).

Figure 2.—The effect of sample size (n), false allele error
rate (e2), and expected heterozygosity (He) on relative bias in
estimating an allelic dropout rate (e1) of 0.01. We analyzed
5000 simulated data sets for each parameter combination.
(A) He ¼ 0.5; (B) He ¼ 0.85.
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alleles (Figure 4). The most extreme bias occurred
when e1 was estimated as 0.028 at e1 ¼ 0.01, e2 ¼ 0.08,
He ¼ 0.5, FIS ¼ 0.125, and n ¼ 50 (bias 176%).
However, even this considerable bias contributed only
29% to MSE. Moreover, it is very rare for false alleles to
outnumber allelic dropouts to such an extent (Ewen

et al. 2000; Broquet and Petit 2004; see also Table 2).
In summary, we suggest that levels of bias caused by
moderate deviation from Hardy–Weinberg equilibrium
will generally be acceptable. Specific judgments will
depend on specific parameter values, as is clear from
Figure 4, as well as the degree of precision demanded
by the downstream analysis.

Increased sampling error in He: The effect on ê1 and ê2

of increasing sampling error in He to its maximum
possible level was slight. Bias was unaffected, but overall
estimation error (MSE) rose at low He and n. The
greatest increase in MSE was 17%, when estimating
e2 at He ¼ 0.5, n ¼ 50, e1 ¼ 0.17, and e2 ¼ 0.0015. All
other increases in MSE in ê1 and ê2 were ,10%.

Sample quality variation: Skewing the distribution of
errors across samples had no effect on the variance of
the error estimates but did cause considerable under-
estimation of both error rates at intermediate and high
e1. When e1¼ 0.17, bias ranged from�13 to�29% in ê1

and from �35 to �43% in ê2 across the 54 simulated
parameter sets. Bias in ê2 was also substantial at in-
termediate e1 (range �17 to �28%).

Dominance of dropouts over false alleles: As might be
expected, reducing the proportion of false alleles that
are hidden by dropouts from 1 to 0.5 caused underes-
timation of e1 and overestimation of e2. Bias was greatest
when there was the highest probability of both types of
error striking the same allele, that is, when both e1 and

e2 were high. The degree of bias was small, even at high
error rates. When e1 ¼ 0.17 and e2 ¼ 0.08, relative bias
was�7 to�8% in ê1 (previous range 0.0–0.1%) and 21%
in ê2 (previous range 0.0–1.8%) across all He and n.
Across all other parameter combinations the maximum
biases were �4% in ê1 and 11% in ê2.

Performance against reference data method: For a large
majority of parameter combinations, the ML method
outperformed the reference data method in estimating
e1 and e2. Averaged across 108 comparisons (two esti-
mated error rates 3 54 parameter combinations), MSEML

was 20% lower than MSERD. MSEML was significantly
smaller than MSERD in 90 comparisons, while MSERD

was significantly smaller than MSEML in 11 compari-
sons. In the remaining 7 comparisons there was no
significant difference [two-tailed F-test for equality of
variances, F(0.025, 4999, 4999) ¼ 1.057]. The 11 compet-
itions in which the reference data method was superior
(MSEML/MSERD range 1.13–2.15) shared two common
features: low heterozygosity (He ¼ 0.5) and wide dis-
parity between e1 and e2, suggesting that a high rate of
one error can interfere with estimating a much lower
rate of the other when the data are relatively unin-
formative. At high heterozygosity (He ¼ 0.85) the RD
method was never superior, with MSEML/MSERD rang-
ing from 0.51 to 0.99.

Application to real microsatellite data: The mean
sample error rates across the 16 red fox microsatellite
loci were, respectively, 0.17 allelic dropouts per hetero-
zygote per locus (p) and 0.035 false alleles per genotype
per locus ( f ). The mean ML estimates were 0.16 and
0.018, respectively. For the 17 Ethiopian wolf micro-
satellites, the mean sample error rates were p¼ 0.16 and
f ¼ 0.049, while the mean ML estimates were 0.14 and
0.040, respectively. Thus, with the exception of under-
estimating f in the fox genotypes, the ML method
performed well in estimating the mean cross-locus
error rates.

For individual loci, ML estimates of p were generally
close to the sample error rates, although they tended to
be slightly underestimated in both the fox (mean bias
�12%) and wolf data sets (mean bias �13%; Table 2,
Figure 5). The bias in the fox data was of opposite sign to
the value predicted by the heterozygote deficit (3%),
suggesting that other factors have greater influence on
bias in real data. Almost half of the bias in analyzing the
wolf data set was due to two loci, Pez19 and FH2137.
Underestimation of p in FH2137 was explained by a lack
of information in the data due to a low He of 0.30
(sample p ¼ 0.087, ML p ¼ 0.048), while short allele
dominance severely affected locus Pez19 (sample p ¼
0.17, ML p ¼ 0.076), although it was not a significant
factor in any other locus. The linear relationship
between sample and ML p was tight ([ML p] ¼ 0.97 3

[sample p] � 0.0097, R 2 ¼ 0.94), and the slope of the
line was not significantly different from 1 (t31 ¼ 0.69,
P ¼ 0.50).

Figure 4.—The effect of heterozygote deficiency, gauged
by the inbreeding coefficient FIS, on relative bias in estimating
allelic dropout rate (e1) averaged over 5000 simulated data
sets. Low (e1 ¼ 0.01, solid line) and intermediate (e1 ¼
0.09, dashed line) allelic dropout rates were estimated at
three false allele error rates (d, e2 ¼ 0.0015; s, e2 ¼ 0.04;
;, e2 ¼ 0.08). Other parameter values were He ¼ 0.85 and
n ¼ 100.
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Bias in the locus-specific estimates of f of �34% was
considerably greater than in the estimates of p, most
notably in the fox duplicate genotypes where bias was
�55%, much greater than the �8% bias predicted due
to heterozygote deficiency. Mean bias in the wolf data
set was comparatively low at �17%. There were two
principal reasons for underestimation of f in the fox
data. First, the accumulation of errors in the most error-
prone samples, combined with a tendency for the same
rare false allele to recur across repeat genotypes, caused
some errors to be hidden. For example, in locus V142
a 142/146 genotype was scored as 142/148.142/148
and a 133/140 genotype as 142/142.142/142. In these
two duplicate genotypes, four of the nine false alleles
in the V142 genotypes went undetected. However, the

greatest cause of underestimation in the fox data, and
to a lesser extent also in the wolf data, was the tendency
of false alleles to occur preferentially in homozygotes,
contrary to the third error model assumption. An excess
of false alleles in homozygotes leading to extra ambig-
uous duplicate genotypes (e.g., AA read as AA.AB) will
inflate p at the expense of f.

Taking both data sets together, the scatter of the f
estimates was wider than that of the p estimates (Figure
5), possibly as a result of the comparatively small num-
bers of false alleles in the duplicate genotypes (mean
10.8) compared with the number of allelic dropouts
(mean 31.3). Nevertheless, the relationship between
sample and ML f estimates was close ([ML p] ¼ 0.76 3

[sample p] � 0.0028, R2 ¼ 0.76). The slope of the

TABLE 2

Analysis of the performance of the ML method in estimating allelic dropout and false allele
error rates from real data

Locus Sample p ML p (95% C.I.) Sample f ML f (95% C.I.)

V142 0.138 0.116 (0.070, 0.176) 0.028 0.011 (0.002, 0.033)
V374 0.464 0.429 (0.341, 0.517) 0.042 0.013 (0.002, 0.035)
V402 0.000 0.000 (0.000, 0.011) 0.000 0.000 (0.000, 0.009)
V468 0.027 0.019 (0.005, 0.049) 0.003 0.000 (0.000, 0.010)
V502 0.016 0.005 (0.000, 0.031) 0.000 0.000 (0.000, 0.011)
V602 0.084 0.069 (0.037, 0.114) 0.024 0.000 (0.000, 0.010)
V622 0.132 0.126 (0.078, 0.196) 0.036 0.008 (0.002, 0.036)
AHT-130 0.169 0.138 (0.090, 0.204) 0.041 0.027 (0.011, 0.059)
CXX-156 0.175 0.161 (0.105, 0.231) 0.076 0.044 (0.018, 0.075)
CXX-250 0.160 0.163 (0.107, 0.230) 0.049 0.045 (0.018, 0.078)
CXX-279 0.120 0.089 (0.050, 0.141) 0.031 0.012 (0.002, 0.036)
CXX-434 0.302 0.304 (0.224, 0.390) 0.075 0.040 (0.013, 0.073)
CXX-466 0.277 0.244 (0.175, 0.323) 0.045 0.042 (0.015, 0.073)
CXX-606 0.195 0.190 (0.127, 0.266) 0.019 0.015 (0.002, 0.042)
CXX-608 0.213 0.224 (0.159, 0.302) 0.037 0.009 (0.002, 0.039)
c2088 0.211 0.239 (0.171, 0.317) 0.051 0.019 (0.004, 0.045)

c377 0.086 0.087 (0.031, 0.167) 0.072 0.049 (0.016, 0.095)
FH2001 0.086 0.101 (0.048, 0.180) 0.017 0.000 (0.000, 0.023)
FH2054 0.100 0.094 (0.042, 0.169) 0.061 0.035 (0.009, 0.078)
FH2119 0.167 0.154 (0.071, 0.275) 0.014 0.010 (0.000, 0.051)
FH2137 0.088 0.048 (0.000, 0.163) 0.029 0.038 (0.010, 0.076)
FH2138 0.315 0.294 (0.194, 0.408) 0.080 0.056 (0.015, 0.109)
FH2140 0.086 0.079 (0.031, 0.151) 0.050 0.044 (0.014, 0.088)
FH2159 0.100 0.070 (0.016, 0.159) 0.018 0.027 (0.005, 0.066)
FH2174 0.227 0.213 (0.128, 0.317) 0.019 0.008 (0.000, 0.040)
FH2226 0.097 0.081 (0.028, 0.160) 0.058 0.060 (0.023, 0.107)
FH2293 0.222 0.235 (0.141, 0.346) 0.104 0.070 (0.024, 0.125)
FH2320 0.295 0.247 (0.141, 0.371) 0.093 0.092 (0.033, 0.148)
FH2422 0.140 0.090 (0.041, 0.161) 0.026 0.041 (0.013, 0.079)
FH2472 0.207 0.218 (0.136, 0.317) 0.104 0.087 (0.032, 0.150)
FH2537 0.200 0.202 (0.126, 0.295) 0.024 0.016 (0.001, 0.055)
Pez17 0.143 0.123 (0.049, 0.228) 0.035 0.038 (0.009, 0.079)
Pez19 0.167 0.076 (0.027, 0.154) 0.023 0.009 (0.000, 0.040)

Mean 0.164 0.149 (0.116, 0.183) 0.042 0.029 (0.021, 0.038)

Sample and ML estimates of error rates p (allelic dropouts per heterozygote) and f (false alleles per genotype)
in duplicate genotypes from 16 red fox and 17 Ethiopian wolf microsatellites (top and bottom, respectively).
Confidence limits for p and f estimates (in parentheses) were converted from the horizontal and vertical di-
mensions of the 95% confidence region for e1, e2 (see Figure 1). Confidence limits for the mean are calculated
from the normal distribution.
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regression line differed significantly from 1 (t31 ¼ 3.1,
P ¼ 0.005), reflecting the greater bias in the f esti-
mates compared with the p estimates.

DISCUSSION

The consequences of undetected microsatellite geno-
typing errors can range from insignificant biases to out-
right false conclusions (Gagneux et al. 1997; Abecasis

et al. 2001; Hoffman and Amos 2005; Pompanon et al.
2005). Errors have become easier to correct or account
for due to a combination of greater caution among re-
searchers and the development of data analysis meth-
ods that incorporate a single genotyping error rate.
Error-tolerant microsatellite data analysis is more ac-
curate when allelic dropout and false allele proba-
bilities are estimated as separate parameters (Wang

2004; Hadfield et al. 2006; Kalinowski et al. 2006). The
method described here estimates allelic dropout and
false allele error rates without the limiting require-
ment for reference data.

The results of the simulation analysis indicate that,
even when reference samples are available, the ML
method will generally estimate error rates more accu-
rately than possible from an equivalent number of
PCRs, provided that the data fit the assumptions of the
error model reasonably closely. This counterintuitive
result is explained by the fact that the cost in added
uncertainty due to both duplicates being error prone is
outweighed by the reduction in sampling error caused
by doubling the sample size of error-prone genotypes.
The simulation analysis also suggested that the ML
method is generally robust to modest violations of the
assumptions of the underlying error model, although

varying sample quality does lead to underestimation
of e1 and e2 at high e1. This bias occurs because co-
incidence of dropouts and false alleles leads to under-
counting of errors in the most error-prone simulated
duplicate genotypes: the number of uncounted double
dropouts will be higher than expected, as will the number
of false alleles that are hidden by dropouts. Error esti-
mates should therefore be used with caution when both
high dropout levels and highly skewed sample quality
are suspected. One way of mitigating this problem
would be to identify and eliminate the most error-prone
samples by comparing data quality across loci.

To what extent does the assumption of Hardy–
Weinberg equilibrium (HWE) limit the use of our
method? The standard error of the mean error rates es-
timated from simulated data was unaffected by high FIS.
Bias was also tolerably low except in rare cases where e1

is very low relative to e2. Chesser (1991, Figure 2 therein)
has shown theoretically that under most realistic circum-
stances FIS should not be .0.1, although no cross-taxon
survey of FIS-values exists to test this prediction. How-
ever, empirical estimates show that HWE is a reasonable
assumption within populations of humans (Altshuler

et al. 2005), which form the basis of most studies that
consider genotyping error (Pompanon et al. 2005). The
12 pedigree studies of bird and mammal populations
reviewed by Slate et al. (2004) revealed predominantly
low levels of FIT (quoted as f ; mean 0.042, range 0.002–
0.103), and even these low values probably represent
publication bias in favor of high FIT. Assuming that FST

is zero or positive, FIT will set an upper bound on FIS

because 1� FIT¼ (1� FIS)(1� FST) (Wright 1951), in-
dicating that in many if not most vertebrate popula-
tions HWE will not be an unduly restrictive assumption,

Figure 5.—Performance of the
ML method in estimating allelic
dropout rate per heterozygote
(A) and false allele rate per geno-
type (B) from real data. Two du-
plicated microsatellite data sets
were analyzed: 149–182 red fox
teeth genotyped at 16 loci (:)
and 72–121 Ethiopian wolf fecal
samples genotyped at 17 loci (s).
The dotted line shows equality
between ML and sample error
rates. The sample error rates in
the duplicate genotypes were
counted by referring to the con-
sensus genotypes. Error bars show
95% confidence intervals for the
ML estimates, calculated as de-
scribed in Table 2.
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provided that the populations are correctly defined
and no Wahlund effect is present. It is important to note
that a high pedigree inbreeding coefficient (equivalent
to Wright’s FIT), which indicates shared coancestry
within a population (Keller and Waller 2002), does
not necessarily imply heterozygote deficiency and there-
fore would not in itself affect our method. Very large
heterozygote deficits that would invalidate our method
are likely to be more common in nonvertebrate taxa
as a result of greater mating system diversity (e.g., self-
fertility in plants and molluscs). However, provided
that prior information on mating system and genetic
structure is used judiciously, our method should be
applicable to a large majority of microsatellite geno-
typing studies, particularly considering the large bias
toward humans and wild vertebrates in microsatellite
studies.

When presented with real data, the ML method per-
formed well in approximating the sample error rates
of both allelic dropout and false alleles, with the excep-
tion that it systematically underestimated the false allele
rate in the fox data set. This result suggests that in some
data sets at least there will be significant deviation from
the assumptions of the error model. The major cause of
underestimation, the tendency of false alleles to prefer-
entially affect homozygotes, is probably a consequence
of the fact that artifactual alleles, as opposed to scoring
and data entry errors, form a much higher proportion
of false alleles in data derived from low-quality DNA,
such as the genotypes from autoclaved fox teeth and
wolf feces analyzed here (Bradley and Vigilant 2002;
Pompanon et al. 2005). Whereas a scoring or data entry
error in a heterozygote will cause an existing allele to be
miscalled, an artifactual allele will create a third allele,
with two possible consequences: the genotype will be
deleted (i.e., recorded as missing data), or two of the
three alleles will be recorded as the genotype, which will
include the artifactual allele with at most two-thirds
probability. Either result will bias false alleles toward
homozygotes when artifactual alleles are frequent,
raising the possibility that there are two false allele error
rates in error-rich data, one specific to homozygotes and
the other to heterozygotes. However, in more typical
studies when high-quality DNA is available, this bias
should be greatly reduced if not absent. Hoffman and
Amos (2005) found that in low-error data (0.0038 errors
per single-locus genotype), only 7% of errors that our
model would class as false alleles were due to artifacts,
the remainder being either due to scoring or data input
errors (89%) or of unknown origin (4%). Scoring and
data input errors should not affect homozygotes pref-
erentially and may even show a bias toward heterozy-
gotes, which present double the opportunities for error.
The other significant source of underestimation of both
error rates in the simulated and real data, clustering of
errors in low-quality samples, should also be much less
prevalent when template DNA is of high quality, prin-

cipally because the probability of duplicates hit by two
errors is the square of the per-genotype error rate.

It remains to be seen how well our error model will fit
a wider range of microsatellite data sets with differing
frequencies and patterns of errors. The error model
could easily be adapted to specific circumstances by
adjusting the expected frequencies of the seven dupli-
cate genotype categories. Our intention here was to
provide a general model that enables parameters to be
estimated for use in analyses that incorporate similar
error models (e.g., Wang 2004; Hadfield et al. 2006).

Where such error-tolerant analyses are unavailable,
error rate estimates are nevertheless helpful in eval-
uating the robustness of analyses to genotyping error.
In the event that an analysis method is judged unac-
ceptably error sensitive, error rates can be reduced by
multiple genotyping. A simulation-based method is
available to monitor the error sensitivity of a number
of population parameter estimates (allele frequencies,
He, Ho, probability of identity, and census size) and to
select the minimum number of repeat genotypes re-
quired to reduce the impact of errors to acceptable
levels (Valière et al. 2002).

What are the consequences of under- or overestimat-
ing allelic dropout and false allele error rates? Provided
there is sufficient information in the data, highly in-
accurate estimates can still allow accurate inference
of family relationships (SanCristobal and Chevalet

1997; Sieberts et al. 2002; Wang 2004). Using simulated
data where e1 ¼ e2 ¼ 0.05, Wang (2004) showed that at
least 90% of full-sib families can be fully reconstructed
assuming error rates across the range 0.008–0.36 (range
estimated from Wang’s Figure 4). It does not follow
from this result that there would never be a significant
benefit in estimating error rates accurately, particularly
when error rates are high and the amount of informa-
tion in the data is low (in which case a reference data-
based method might be preferred), or when solving
difficult problems such as assigning paternity among
candidate fathers that are numerous or closely related.
However, it does imply that occasional egregious esti-
mates (e.g., locus Pez19, Table 2) should not significantly
disrupt inference in most analyses, so that resources
could be better applied to assaying additional individ-
uals or loci than to refining error estimates by creating
consensus genotypes from multiple rounds of genotyping.

An exception to the optimistic conclusion that ap-
proximate estimates are adequate occurs when the
estimate is zero and the true error rate is greater than
zero. For example, our method estimated a false allele
rate of zero in loci V468, V602, and FH2001 (Table 2)
when the sample (and hence population) rate was
nonzero. Using these estimates in relationship infer-
ence would lead to problems similar to those encoun-
tered when using strict exclusion in parentage analysis
(Gagneux et al. 1997). However, the probability of error
is greater than zero even in the cleanest data set, so
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assuming zero error estimates is never advisable. An
alternative if somewhat arbitrary approach is to use upper
confidence limits rather than ML estimates. Although
these values will generally be overestimates, particularly
when sample size is small, it may often be safer to over-
estimate than to underestimate error rates whether error
rate estimates are greater than zero or not. Indeed, when
there is ample information in the data, gross overesti-
mates can allow greater accuracy in reconstruction of
full-sib families than relatively modest underestimates
(Figure 4 of Wang 2004). Morrissey and Wilson

(2005) reached the opposite conclusion on the basis
of parentage analysis of simulated and real data using
the method of Marshall et al. (1998). Under certain
circumstances (mother unknown, few marker loci, skewed
allele frequencies, and a requirement of 95% confi-
dence in correct assignment) there was a benefit in
underestimating a 1% error rate. Not surprisingly, this
benefit rapidly became a cost with increasing numbers
of loci. In this study genotyping error was modeled as
a single cross-locus quantity, so it is not clear to what
extent, if at all, this result applies to methods that model
allelic dropout and false allele error rates separately.

In practice, the level of imprecision that can be tol-
erated in the error rate estimates could be assessed
during the planning stage of a study by analyzing sim-
ulated data. The robustness of the analysis to inaccu-
racy in the error estimates could also be gauged after
the data have been generated by repeating the analysis
using a range of error estimates based on the confi-
dence regions. Once the desired level of precision in the
error estimates is known, how many duplicate samples
will be needed to achieve it? As we have shown using
simulations, for each locus this number will depend
on the expected heterozygosity, which will usually be
known, and error rates, for which plausible ranges can
usually be predicted. The effect of varying sample size
and error rates on error estimate precision can be ex-
plored using simulations in Pedant.

In conclusion, we have developed a method for es-
timating locus-specific rates, with confidence regions, of
allelic dropout and false allele genotypic error from
duplicate microsatellite genotypes without the require-
ment for reference data. These error estimates can
provide input for microsatellite data analysis methods
that handle allelic dropout and false allele error rates
separately. The method described here is implemented
in a computer program, Pedant, which also uses sim-
ulations to perform power analyses. The source code
and executable are freely available for download from
http://www.stats.gla.ac.uk/�paulj/pedant.html.
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APPENDIX

Likelihood calculation: To simplify the presentation of the equations for the expected category frequencies, we use
per-genotype rather than per-allele error probabilities. For a single genotype at a single locus, we define the probability
of no dropouts as p0¼ (1� e1)2 and the probability of one dropout in a given allele as p1¼ e1(1� e1). Double dropouts
are not counted. Similarly, the per-genotype probabilities for false alleles are f0¼ (1� e2)2, f1¼ e2(1� e2), and f2¼ e 2

2 .
The expected frequency (P1,2,. . .,7) of each repeat genotype category can be expressed by summing the probabilities of
all the ways in which a repeat genotype can contribute to that category. For example, one way for an observed duplicate
genotype to enter category 3 (AA.AB) is via the occurrence in a homozygote of no dropouts and one false allele in any
of the four alleles, with probability (1�He)4p 2

0 f0f1. If all possible states are considered, there are 512 ways of entering
the seven categories or the double-dropout category. This number is reduced to 198 by not counting double dropouts
and ignoring replicates with more than two false allele errors. The expected frequencies of categories 1–7 are

P1 ¼ PðAA:AA jHe; e1; e2Þ
¼ ð1�HeÞðp 2

0 f 2
0 1 4p0p1f 2

0 1 4p0p1f0f1 1 4p 2
1 f 2

0 1 8p 2
1 f0f1 1 4p 2

1 f 2
1 Þ1 Heð2p 2

1 f 2
0 1 4p 2

1 f0f1 1 2p 2
1 f 2

1 Þ
P2 ¼ PðAB:AB jHe; e1; e2Þ ¼ Heðp 2

0 f 2
0 Þ

P3 ¼ PðAA:AB jHe; e1; e2Þ ¼ ð1�HeÞð4p 2
0 f0f1 1 8p0p1f0f1 1 8p0p1f 2

1 Þ1 Heð4p0p1f 2
0 1 8p0p1f0f1 1 4p0p1f 2

1 Þ
P4 ¼ PðAA:BB jHe; e1; e2Þ
¼ ð1�HeÞð4p0p1f0f1 1 4p0p1f0f2 1 8p 2

1 f0f1 1 8p 2
1 f0f2 1 12p 2

1 f 2
1 Þ1 Heð2p 2

1 f 2
0 1 12p 2

1 f0f1 1 14p 2
1 f 2

1 1 12p 2
1 f0f2Þ

P5 ¼ PðAB:AC jHe; e1; e2Þ ¼ ð1�HeÞð4p 2
0 f 2

1 Þ1 Heð4p 2
0 f0f1 1 2p 2

0 f 2
1 Þ

P6 ¼ PðAB:CC jHe; e1; e2Þ ¼ ð1�HeÞð2p 2
0 f0f2 1 8p0p1f 2

1 1 4p0p1f0f2Þ1 Heð8p0p1f0f1 1 12p0p1f 2
1 1 8p0p1f0f2Þ

P7 ¼ PðAB:CD jHe; e1; e2Þ ¼ Heð2p 2
0 f0f2 1 2p 2

0 f 2
1 Þ:
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Because double dropouts are not counted, these probabilities must be normalized to sum to one, giving the expected
frequency of category i,

Fi ¼
PiP7
i¼1 Pi

:

The data consist of the seven observed category counts, X1,. . ., X7, which sum to n, the number of duplicated
genotypes. The likelihood, L, of the data given the expected heterozygosity He and error rates e1 and e2 is

PðX jHe; e1; e2Þ ¼
n!

X1!X2!; . . . X7!
F X1

1 F X2
2 ; . . . F X7

7 :

Maximum-likelihood search algorithm: The maximum-likelihood search begins at a random point on the like-
lihood surface and proceeds by a simulated annealing procedure (Kirkpatrick et al. 1983). New error coordinates are
proposed by randomly adding or subtracting a step of size S to or from each error rate. The likelihood of the new
coordinates (Lnew) is compared with that of the old (Lold). Uphill steps (Lnew . Lold) are always accepted while
downhill steps are accepted with probability (Lnew/Lold)1/T, where T is the annealing temperature, allowing the
search to escape from a local maximum. Downhill steps are more likely to be taken when the proposed drop in
likelihood is modest and T is high. Because T decreases as the search continues, the probability of a downhill step
decreases toward the end of the search. T begins the search at a value of 1000 and decreases multiplicatively every
iteration by a factor of 10�11/i, where i is the number of search iterations, so that T approaches 10�8 toward the end
of the search regardless of i. During the last 10% of the search only uphill steps are permitted. Like T, S
decreases exponentially throughout the search, from a maximum of 0.1 to a minimum of 10�7. The initial and final
values of T and S and the shapes of their declines are independent of i, with the practical result that regardless of
i approximately the first half of the search is spent searching widely across the likelihood surface for a peak to settle
on and the remainder is spent refining the error estimates on that peak. The search jumps to the last 1000 iterations
if the likelihood of accepted steps increases by ,1% for 1000 consecutive iterations.

An additional search procedure further reduces the probability of the search ending on a local maximum. After i
iterations have been completed, the maximum likelihood recorded throughout the search is compared with the final
likelihood. If the former is higher, the final coordinates must represent a local maximum, so the search returns to the
likelier recorded coordinates, which must be located either on a higher local maximum or on the global maximum.
Finally, a further 1000 optimization iterations are completed, again with exponentially decreasing S but with only
uphill steps being allowed.

We tested the search algorithm by analyzing artificial data sets that produce bimodal likelihood surfaces with a
narrow global maximum and a broad (and therefore more easily located) local maximum. The global maximum was
located within 20,000 iterations in 100/100 trials except when the difference in likelihood between the two peaks was
low (likelihood ratio ,2.2). In these cases 500,000 iterations were required to locate the global maximum in 82/100 trials.

Simulation of sampling error in He: The point estimate of He used to calculate the expected frequencies is subject
to sampling error, which was incorporated into the simulated estimate of He used in estimating the error rates.
Estimated He was simulated as a normally distributed random variable with mean He and standard deviation s. Because
s is a function of both allele frequency distribution and the number of genotypes from which He was calculated, nH

(Nei and Roychoudhury 1974), simulation of s was simplified by assuming a single allele-frequency distribution, the
expected frequencies determined from the broken-stick distribution (Legendre and Legendre 1998). Broken-stick
frequencies can be used to provide a simple means of simulating realistic microsatellite allele frequencies
(Kalinowski et al. 2006). Given broken-stick expected frequencies, for any nH both He and s are discrete functions
of the number of alleles. We derived a close approximation of s,

sa ¼
ð1�HeÞð1 1 3HeÞffiffiffiffiffiffiffiffiffiffiffiffi

20nH

p ;

by fitting a curve to discrete values of s across a realistic range of He (0.38–0.95, which corresponds to 2–29 alleles) and
nH (50–20,000). The approximation sa accounts for 98.1% of the variation in s at nH ¼ 50 and .99.5% at nH $ 100.
Although all microsatellite allele-frequency distributions will deviate from broken-stick expected frequencies to some
extent, comparison of s calculated from data with sa simulated at the same He and nH for data from 54 microsatellite
loci (He range, 0.27–0.90; nH range, 172–545) from aphids ( Johnson et al. 2000), nematodes ( Johnson et al. 2006),
red foxes, and Ethiopian wolves (data kindly provided by P. Wandeler and D. A. Randall) suggests that the broken-stick
model fits well to reality. The means of the simulated and real standard deviations were not significantly different
(mean sa¼ 0.0124, mean data s¼ 0.0130, P¼ 0.24, paired t-test), and the slope of the linear regression line (s¼ 1.10sa

� 0.0007, R 2¼ 0.62) did not differ significantly from 1 (t52¼ 0.87, P¼ 0.39). Thus a plausible standard deviation of He

can be simulated for any combination of He and nH within the limits stated above.
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Simulation of nonindependence of error rates among samples: We simulated the effect of variable sample quality
by changing the probability distribution of ranked errors in the simulated data from uniform to a more realistic S
shape. Multiplying e1 and e2 in the ith simulated duplicate genotype (i ¼ 1, . . ., n) by

2

3
1� cos p

i � 1

n � 1

� �� �2

1
n � 2i

10n

skews the distribution of error probability so that 1.7% of error probability is distributed in the first 20% of the
simulated genotypes and 48% in the last 20%. This expression was designed to mimic to the most severely skewed error
distribution observed among the 16 fox microsatellite loci.

Conversion of per-allele to per-genotype error rates: For allelic dropout

p ¼ 2e1

e1 1 1
;

where p is the per-heterozygote dropout rate for a single locus (Wang 2004). The conversion of e2 to f is less
straightforward because, assuming that dropouts override false alleles, when e1 is high f must be adjusted to account
for the proportion of false alleles that will be obscured by allelic dropout. If e1 is zero then f¼ 1� f0¼ 2e2� e2

2, which
can be adjusted to allow for allelic dropout by multiplying by the probability of a false allele not dropping out (ignoring
genotypes where both alleles are false), so that

f ¼ ð2e2 � e 2
2 Þ 1� e1

e1 1 1

� �
;

which simplifies to

f ¼ 2e2 � e 2
2

e1 1 1
:
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