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Summary

Missense mutations in the calcium-sensing receptor
(CaR) gene have previously been identified in patients
with familial hypocalciuric hypercalcemia (FHH) and
neonatal severe hyperparathyroidism (NSHPT). We
studied family members of a Nova Scotian deme ex-
pressing both FHH and NSHPT and found, by PCR
amplification of CaR gene exons, that FHH individuals
were heterozygous and NSHPT individuals were homo-
zygous for an abnormally large exon 7. This is due to
an insertion at codon 877 of an Alu-repetitive element
of the predicted-variant/human-specific-1 subfamily. It
is in the opposite orientation to the CaR gene and con-
tains an exceptionally long poly(A) tract. Stop signals
are introduced in all reading frames within the Alu se-
quence, leading to a predicted shortened mutant CaR
protein. The loss of the majority of the CaR carboxyl-
terminal intracellular domain would dramatically im-
pair its signal transduction capability. Identification of
the specific mutation responsible for the FHHINSHPT
phenotype in this community will allow rapid testing of
at-risk individuals.

Introduction

Familial hypocalciuric hypercalcemia (FHH) is an au-
tosomal dominant disorder characterized by modest ele-
vation of serum calcium concentration, relative hypo-
calciuria, and inappropriately normal parathyroid hor-
mone (PTH) levels (Foley et al. 1972; Marx et al. 1981;
Law and Heath 1985). The condition is inherited as an
autosomal dominant trait and can be diagnosed soon
after birth. While the penetrance of FHH appears to be
e90%, affected individuals exhibit virtually none of the
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morbidity associated with hypercalcemia. Physiological
and biochemical studies on individuals with FHH dem-
onstrate abnormal responses of both kidney and para-
thyroid gland in sensing blood calcium levels. The para-
thyroid gland has a special ability to "sense" extracellu-
lar calcium concentrations. The mechanism whereby
this is achieved recently became clearer, when a calcium-
sensing receptor (CaR), expressed in both parathyroid
and kidney, was cloned and characterized (Brown et al.
1993). This calcium receptor is a member of the G-
protein-coupled receptor family and responds to in-
creased levels of extracellular calcium by triggering a
phospholipase C pathway and elevating intraeldflar
calcium levels. This, in turn, inhibits secretion of PTH
from the parathyroid gland.
The CaR gene has been mapped (Pollak et al. 1993)

to chromosome 3, the same chromosome to which the
FHH disease locus was previously localized (Chou et al.
1992). In most FHH families studied to date, linkage to
chromosome 3q predominates, although, in one family,
linkage to 19p rather than 3q was demonstrated (Heath
et al. 1993). In another family, the FHH locus was not
linked to either chromosome 3, 19, or 11 (Trump et al.
1993). Thus, the disease exhibits genetic heterogeneity.
While the inheritance of a single copy of a mutated gene
causes FHH, homozygous individuals who inherit two
inactive gene copies may have neonatal severe primary
hyperparathyroidism (NSHPT) (Pollak et al. 1994b).
NSHPT (Pratt et al. 1947) is characterized by marked
hypercalcemia, skeletal demineralization, and parathy-
roid hyperplasia and, without parathyroidectomy, is
usually fatal (Goldbloom et al. 1972), although some
cases of less severely affected neonates have been suc-
cessfully managed medically (Marx et al. 1982).

Recently, several different missense mutations in the
CaR gene have been identified in FHH and NSHPT pa-
tients (Pollak et al. 1993; Heath et al. 1994; Pearce et
al. 1994). We sought mutations in the CaR gene in two
families, living in close proximity in Nova Scotia, having
some members affected with FHH and some with
NSHPT. We found that all affected members of both
families had an insertion of an Alu-repetitive element
within exon 7 of the CaR gene.
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Figure I Pedigrees of the two FHH/NSHPT families. The genotypes for five microsatellite markers on chromosome 3q11.2-24 were
determined. Markers are ordered according to their position on chromosome 3q, from centromere to telomere. In all affected individuals, the
disease locus segregated with the boxed haplotypes. In family D, recombination events are indicated by the arrows.

Subjects and Methods

Families
We studied 15 members of two consanguineous fam-

ily groups from Nova Scotia. Both family D (Goldbloom
et al. 1972) and family S (Pratt et alt 1947;- Cole et al.
1990) have been reported before. Only family S has
been previously haplotyped (Pollak et al. 1994b) (with
markers D3S1303, D3S1267, and D3S1269); there is
no correspondence between the specific haplotype num-
bers in that report and those given here.

Genotyping
Genomic DNA was isolated from blood samples, as

previously described (Ausabel et al. 1987). Genotypes
were defined with five polymorphic microsatellite mark-
ers on chromosome 3q, 3cen-q24: D3S1215, D3S1303,
D3S1267, ACPP, and D3S47 (Naylor et al. 1994). Anal-
ysis was performed by PCR. Oligonucleotide primers
were end-labeled for 30 min at 370C in a 10-,l1 reaction
volume containing 10 gCi [32P]ATP, 50 pmol primer
DNA, 1 x kinase buffer (50 mM Tris Ph 7.6, 10 mM
MgCl2, 5 mM DTT, 100 mM spermidine, 100 jiM
EDTA), and 10 U T4 polynucleotide kinase (Pharmacia
Biotech). The reaction was stopped by heating at 80'C
for 10 min. Labeled primers were used directly or were
stored at -20'C until use. Two hundred nanograms of
each individual's genomic DNA were used as template
in a 14-pi PCR containing 11 pmol of PCR buffer (10
mM Tris-HCI pH 8.3, 50 mM KCI, 1.5 mM MgCl2,
0.001% (w/v) gelatin), 200 gM of each deoxynucleotide
triphosphate, and 0.5 units of Taq polymerase (Perkin-
Elmer-Cetus). The PCR consisted of the follnwig co---
ditions: 5 min at 980C, followed by 30 cycles of 20 s at
940C, 30 s at 580C-620C (varied for each set of primers),

30 s at 720C, and a final elongation step at 720C for 10
min, using a GeneAmp PCR system thermocycler model
9600 (Perkin-Elmer-Cetus). After amplification, samples
were mixed with an equal volume of stop soltfIn
(97.5% deionized formamide, 0.3% Bromophenol Blue,
0.3% Xylene Cyanol FF, 10 mM EDTA) and were elec-
trophoresed on 6% denaturing polyacrylamide sequenc-
ing gels (Long Ranger; J. T. Baker).

Mutation Analysis
We analyzed DNA from at least one individual af-

fected with FHH, one with NSHPT, and one unaffected
individual from each family. PCR amplification of exons
4 and 7 of the calcium receptor gene were performed
with the following primers: 4AF, 5'-ACTCATTCAC-
CATGTTCTTGGTTCT-3'; 4AR, 5'-GAATTCCCG-
GAAGCCTGGGATCTGC-3'; 4BF, 5'-GCCATGCCT-
CAGTACTTCCACCTGG-3'; 4BR, 5'-CCCAACTCT-
GCFII-IATTATACAGCA-3'; 7AF, 5'-AAGTGCCCA-
GATGACTTCTGGTCCA-3'; 7CR, 5'-CCATGGCGT-
TCTTCTGAGGCTCATC-3'; 7BF, 5'-TCGAGCTAC-
CGCAACCACGAGCTGGA-3'; 7BR, 5'-GGATCCCG-
TGGAGCCTCCAAGGCTG-3'. Primers 4AF-7CR and
7BR are the same as those described by Pollak et al.
1993. Primer 7BF is the sequence of the bovine-parathy-
roid calcium-receptor cDNA (Brown et al. 1993) from
nt 2248-2272. Amplified products were resolved on 1%
agarose gels (1 x Tris-borate EDTA pH 8.0) and, if re-
quired, were subcloned into the pCRII TA cloning vector
(Invitrogen Corp). Plasmid DNA was extracted using the
plasmid midi protocol (Qiagen). Dideoxynucleotide se-
quencing, using the T7 Sequencing kit (Pharmacia, LKB)
and [35SqdATP (1,200 Ci/mmol; Amersham), was carried
out on midiprep DNA from at least five positive colonies
for each FHH, NSHPT, and normal individual. Sequenc-
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Figure 2 a, Exon 7 of the CaR gene showing position of the
primers used for amplification from genomic DNA. Flanking intronic
sequence is indicated by the thinner line. b, Pedigree of family S. c,

PCR-amplified products obtained by using primers 7BF and 7BR and
separated on a 2% agarose gel. Both parents (11-3 and II-4) having
FHH are heterozygous with a normal sized fragment of 450 bp (the
only product obtained from unrelated normal individuals N-1 and N-
2) and a larger fragment of 850 bp. Their son (111-1) having NSHPT
was homozygous for the larger fragment of 850 bp. A similar pattern
was observed when primers 7AF and 7CR were used with both parents
being heterozygous for a normal fragment and a fragment larger by
400 bp and their son being homozygous for the larger fragment (data
not shown).

ing reactions were performed using T7 and SP6 primers
and INS-F, 5'-TGATCGCCATCCTGGCGGCCAGCfl-
3'; INS-R, 5'-GCGGCCACCTFGAAAG-3'; and INS-RC,
5'-AGATCGAGACCATCCT-3'. Primers INS-F and INS-
R are part of the normal sequence of exon 7, whereas
INS-RC is within the Alu repeat sequence. In order to
identify positively those at-risk individuals carrying the
mutation, their DNA was amplified by using primer 7NT,
5'-TGAGACGGAGTCTCGCTCTGTCGC-3', which is
the sequence immediately 3' to the poly(T) tract in the Alu
insert sequence and primer 7BR (described above). The
amplified fragment of 374 bp was digested with DdeI
(New England Biolabs) to generate fragments of 278 bp
and 96 bp.
Results
Haplotype Analysis

Because this disease exhibits genetic heterogeneity,
haplotype analysis was first carried out by using poly-

morphic microsatellite markers (Weber and May 1989;
Naylor et al. 1994) in the form of di- or tetranucleotide
repeats for a region of chromosome 3q (D3S1215,
D3S1303, D3S1267, ACPP, D3S47). Genotyping was
performed as described in Subjects and Methods. Geno-
mic DNA was analyzed from nine members of family S
and from six members of family D (fig. 1 and data not
shown). Within each family, the disease locus cosegreg-
ated with the same 3ql 1.2-24 haplotype. This confirmed
and extended an earlier report on family S (Pollak et al.
1994b).

Mutation Analysis
Since the mutations in the CaR gene (Capuano et al.

1994) reported initially were found in exons 4 and 7
(originally called exons 3 and 6, respectively [Pollak et
al. 1993]), we first PCR amplified these exons. Exon 4
was of normal size in both families (fig. 2). However,
amplification of exon 7 revealed the presence of two
fragments of different sizes (450 bp and 850 bp). All
unaffected individuals were homozygous for the band
of normal size, whereas FHH individuals were heterozy-
gous with one normally sized product and one of larger
size. NSHPT individuals were homozygous for the larger
fragment (fig. 2). Use of several different primers sets
confirmed this result (data not shown). Identical results
were obtained with DNA from both family D and family
S members.

Exon 7 Contains an Insertion of an Alu Sequence
The large PCR product from one affected family D

member and one affected family S member were sub-
cloned into a plasmid vector. Nucleotide sequence anal-
ysis showed that the inserted sequence is an Alu-repeti-
tive element of -383 bp in length. This Alu element
contains an exceptionally long poly (A) tract of 92-94
bp. The Alu element is inserted in the opposite (anti-
sense) orientation, relative to that of the CaR gene, after
the first C residue of codon 877 (ACC)-encoding threo-
nine (fig. 3). A direct repeat of a 15-bp sequence within
the CaR gene, located just 3' to the insertion point, was
found at the far 5' end of the inserted sequence itself.
This suggests retrotransposition as the mode of inser-
tion.

All Affected Individuals from Both Families Have the Mutation
A primer set was designed with one primer sequence

within the Alu-repetitive sequence itself and the other
within the normal CaR gene sequence flanking the insert
(fig. 4). DNA from normal individuals will not amplify
with these primers; however, in individuals with either
FHH or NSHPT, a PCR product of 374 bp is obtained.
Restriction-enzyme analysis at a diagnostic DdeI site
results in two fragments of 278 bp and 96 bp. As shown
in figure 4, DNA from known affected individuals in
families D and S amplified with this primer set, whereas
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EXON VII
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Figure 3 Diagram of the Alu insertion in exon 7 of the CaR
gene. Partial sequence of exon 7, between nt 2607 and 2652, is shown.
The vertical arrows indicate the point of insertion at codon 877 encod-
ing threonine and loss of 3 nt of normal CaR gene sequence. The Alu
sequence is flanked by 15-bp-perfect direct repeats, one of which is
within the normal CaR gene 3' to the insertion, and the other is at
the far 5' end of the inserted sequence. The horizontal arrow indicates
the antisense orientation of the Alu element with respect to the orienta-
tion of the host gene. Thus, the 3'-most nucleotide of the insertion is
position one of the Alu sequence, which extends to nt 280 and is
followed by the long poly(AIT) tract.

neither PCR products from normal family member DNA
nor DNA of unrelated normal individuals were ob-
tained.

The Alu-Repetitive Element is of the Predicted-Variant/Human-
Specific-I (PVIHS-I) Subfamily
Comparison of the CaR-Alu-repetitive element with

other Alu sequences showed that this sequence is a mem-
ber of the PV/HS-1 subfamily (Batzer et al. 1991). A
comparison of the CaR sequence with the Alu consensus
sequence and the HS consensus sequence is shown in
figure 5. Relative to the HS sequence, the CaR sequence
has only two nucleotide substitutions and a single nucle-
otide deletion. The CaR sequence is very similar to HS
subfamily sequences described as insertions in the NF1
(Wallace et al. 1991), cholinesterase (Muratani et al.
1991), and factor IX (Vidaud et al. 1993) genes, as well
as one in close proximity to the Huntington disease gene
(Goldberg et al. 1993). The CaR sequence has four nu-
cleotide substitutions and one nucleotide deletion, rela-
tive to the NF1 sequence (fig. 5).

Predicted Structural Consequences of the Mutation
From the present sequence analysis it is not possible

to assign the length of the long poly (A) tract definitively.
However, regardless of its length, the consequences of
insertion of the Alu sequence can be predicted to be the
following: Normal CaR sequence will stop at amino
acid 877-the normal length of the protein being 1,085
amino acids -and will be followed by the sequence Gln-
Leu-Thr-Leu-Ser and a tract of 29 phenylalanine resi-

dues encoded by the poly (T) tract (see fig. 3). Then,
depending on the reading frame, a variable-length-
amino acid sequence will be found terminating at either
amino acid 911, 947, or 962.

Discussion

Recently, inactivating mutations in the CaR gene were
implicated as a cause of FHH and NSHPT (Pollak et al.
1993). Several different missense mutations and at least
one nonsense mutation have now been found scattered
(Pollak et al. 1993; Heath et al. 1994; Pearce et al. 1994)
throughout the CaR gene, with preferential localization
to exons 4 and 7. Exon 4 encodes part of the NH2-
terminal extracellular domain, which is thought to be
involved in calcium binding, and mutations in this re-
gion would be expected to interfere with this function.
Exon 7 encodes all seven putative transmembrane-span-
ning regions, the extracellular and intracellular loops,
and the COOH-terminal intracellular tail. In one family
with FHH, an R796W mutation lying within the portion
coding the third intracellular loop of the CaR was found.
When the mutated receptor cRNA was injected into
Xenopus laevis oocytes, markedly attenuated responses
to increases in perfusate Ca2+ were observed (Pollak et
al. 1993). In addition, two activating mutations have
been described recently. One, E128A, segregates with
the affected status in a family with autosomal dominant
hypocalcemia (Pollak et al. 1994a); the other, Q246R,
segregates with the disease status in a family with au-
tosomal dominant hypoparathyroidism (Finegold et al.
1994; Perry et al. 1994).

In the present study, we describe a novel type of inacti-
vating mutation for the CaR gene, that of an insertion
in exon 7 that disrupts the normal amino acid sequence
after codon 877. This insertion is an Alu element. The
Alu repeats comprise about 6% of the human genome
and represent the most abundant family of SINEs (short
interspersed elements) (Jelinek and Schmid 1982). A typ-
ical Alu-sequence element is an -300-bp-long imperfect
dimer with two sections separated by an A-rich region,
a poly (A) tract of variable length, and flanking direct
repeats (Deininger 1989). Alu sequences are normally
transcribed by RNA polymerase III, and the sequence
similarity between 7SL RNA and Alu elements suggests
that the latter are derived from this RNA (Jurka and
Smith 1988). The 7SL RNA is a part of the signal recog-
nition particle that is essential for the movement of se-
cretory polypeptides through the endoplasmic reticu-
lum. It is believed that retrotransposition by nonviral
retroposons is a mechanism for scattering Alu repeats
throughout primate genomes (Weiner 1986). At the in-
sertion target site, sequence duplication results in direct
repeats flanking each Alu element. The flanking repeats
vary in size-usually 9-21 bp-and they are different
for each individual Alu element. Alu elements are pri-
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mate specific and, on the basis of sequence similarity,
they have been divided into different subfamilies that
probably appeared at different evolutionary times
(Weiner 1986; Jurka and Milosavljevic 1991). Individ-
ual Alu sequences differ from the consensus, as a result
of single nucleotide substitutions and insertions and de-
letions. The CaR-Alu element is a member of the sub-
family known as "PV" (Shen et al. 1991) or "HS"
(Matera et al. 1991) that is one of the most recently
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Figure 5 The CaR-Alu sequence compared with those of the
Alu consensus, the Alu HS (which is the most recently inserted subfam-
ily of Alu repeats), and a de novo inserted Alu element in the NF1
gene. The CaR-Alu insertion differs from Alu HS at only 3 nt (a
substitution of C for A at position 96, a substitution of A for C at
position 98, and a nucleotide deletion at position 157). The poly(A)
tract that follows the consensus sequence is not shown.
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Figure 4 a, Schematic representation of exon 7 of the calcium-
receptor gene (solid rectangle) and the insertion (open rectangle).
Primer 7NT located within the insertion and primer 7BR located in
the normal exon 7 sequence were used for amplification. b, Pedigree
of family S. c, Agarose gel electrophoresis showing the amplified prod-
uct of 374 bp obtained from genomic DNA of FHH and NSHPT
individuals of family S with absent amplification from DNA of normal
family members and unrelated normal individuals (N-i and N-2). d,
Pedigree of family D. e, Same result obtained in family D as in family
S. When the amplified product was cut with restriction enzyme DdeI,
the expected fragments of 278 bp and 96 bp were obtained (see
panel a).

inserted Alu families. The presence of five diagnostic
nucleotide substitutions and a pure polyadenine tail dis-
tinguish this Alu family from other groups. Alu-repeti-
tive sequences are detected mostly within introns or
within the 5'- and 3'-noncoding regions of genes. The
presence of an Alu sequence in a coding region is a rare
event (Makalowski et al. 1994), since such changes in
coding sequences are under strong negative selection.
The mutant CaR-Alu element contains an exception-

ally long poly (A) tract of >90 bp. The exact length has
not been definitively assigned, because of the inherent
difficulties in PCR amplifying and sequencing such
DNA. In addition, poly(A) tracts in some Alu repeats
have been shown to be polymorphic, differing in length
in different members of the same family (Economou et
al. 1990). Regardless of the precise structure, the inser-
tion yields a truncated protein of 911-962 amino acids
in length, with loss of the normal CaR sequence of 878-
1,085 amino acids. Loss of the majority of the carboxyl-
terminal intracellular domain would be predicted to lead
to impairment in the signal transduction capabilities of
the receptor, possibly by loss of the appropriate coupling
with a G protein. Alternatively, by analogy to rhodopsin
and the P-adrenergic receptor, the carboxyl-terminal tail
could be involved with turning off the signal by phos-
phorylation, and loss of this region could lead to a per-
manently activated receptor. However, the phenotype is
clearly not that of an activating mutation. It is also possi-
ble that the insertion destabilizes the protein or alters its
subcellular localization. There are several documented
examples of Alu sequences incorporated into mRNA
that is translated into protein (Lundwall et al. 1985;
Caras et al. 1987; Brownell et al. 1989). In all described
cases, only short incomplete Alu-like sequences- s,50
amino acids-were inserted and translated but not the
complete Alu element, including the poly (A) tract. It
has been speculated (Brownell et al. 1989) that antisense
Alu elements found within exons are not translated, be-
cause of their complementarity to 7SL RNA. The RNA
would hybridize with the antisense Alu sequence,
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thereby inhibiting the elongation process and resulting
in a truncated form of the protein.
The genotype predicts a truncated, nonfunctional pro-

tein that dissociates key tissue responses-parathyroid
gland secretion, for example-from their stimulus ele-
ments, namely, ambient calcium concentrations. This
prediction is consistent with the observed phenotypes,
both in vitro (Marx et al. 1986) and in the patients
themselves (Cole et al. 1990). Both families under study
can claim a common ancestry that dates back at least
11 generations, to settlement of the area by a few New
England fishing families in the mid-1700s. Although
both families share common ancestral names, historical
events such as unrecorded adoptions of individuals or-
phaned by local tragedies make any pedigree reconstruc-
tion suspect. This situation is not unlike the genetics of
nephrogenic diabetes insipidus in the Maritime prov-
inces of Canada (Bichet et al. 1992, 1993). Molecular
analysis can confirm suspected common origins but may
also reveal occult heterogeneity. Although we can pre-
dict that a third affected family (Marx et al. 1986) also
living within a short distance of the two families de-
scribed here will carry the same mutation, only molecu-
lar analysis will provide the definitive answer. However,
the availability of rapid mutational testing should be of
direct benefit to all families in the region of Nova Scotia
who are shown to be at risk, by virtue of simple bio-
chemical testing for an elevated serum calcium and/or a
reduced urinary calcium excretion index.
The age of the insertion is not known, but we can

speculate that it goes back at least as far as the first
known generation of the S pedigree. Moreover, any at-
tempt to estimate, at present, the size of the deme would
ignore the effects of genetic drift associated with subse-
quent outmigration from the original settlement. This
possibility can be explored by more widespread muta-
tional analysis, to include families more recently settled
elsewhere in North America.

In summary, we describe a mutation that deletes much
of the carboxyl-terminal region of the CaR gene. The
finding that FHH patients have one copy and NSHPT
patients have two copies of the mutated allele confirms
the gene dosage effect described previously (Pollak et al.
1993, 1994b). Structure-function studies of mutations
in the CaR gene will lead to a better understanding of
normal CaR function, as well as of the role of the recep-
tor in the pathogenesis of FHH and NSHPT.
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