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Summary

In an effort to safeguard against false inference of a major
gene in segregation analysis, it has become common prac-
tice to require nonrejection of the Mendelian-transmis-
sion hypothesis (Mendelian t’s) and rejection of the no-
transmission hypothesis (equal t’s). However, it is not
known how often one would actually infer a major gene,
when one exists, by using these criteria. A simulation
study was undertaken to investigate this issue. Segregation
of a Mendelian gene under a variety of models was simu-
lated in families with both parents and three children. The
data were analyzed by using POINTER; the assumptions
under the generating and analysis models were identical.
By design, the power to reject the no-major-effect hypoth-
esis (g = 0) was >60% for all models considered; tests on
the transmission probabilities were carried out only when
q = 0 was rejected, using @ = 0.05 for all tests. The rates
of Mendelian inference were mostly in the range of 22%-
50% under recessive inheritance, versus 60%-99% under
dominant inheritance. Notably, it was not possible to re-
solve the transmission (from among Mendelian s, equal
v’s, and general unconstrained t’s) in ~20%-70% of the
cases under recessive models, versus 3%-15% under domi-
nant models. Therefore, while tests on transmission prob-
abilities can serve to reduce rates of false inference of a
major gene, it is also possible to fail to infer a major gene
when one indeed exists, especially under recessive inheri-
tance.

Introduction

Segregation analysis of human traits is a means by which
genes influencing quantitative variation can be detected
and, subsequently, identified and mapped. As certain traits
are associated with specific diseases or increased morbid-
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ity, genetic determinants of normal variation, as well as of
extreme variation, are relevant in building an understand-
ing of the complex processes of human metabolism and
physiology. While it is important to utilize safeguards
against spurious evidence of monogenic inheritance, it is
equally important to understand how well the analysis
method performs in providing evidence of single-gene de-
terminants when they exist.

Detection of major-gene effects in contemporary appli-
cations consists of a two-step process: (1) rejection of the
null hypothesis of “no-major-effect,” while minimally al-
lowing for an alternative source of familial resemblance
and, potentially, incorporating a variety of genetic or envi-
ronmental effects as extensions of the basic model, and (2)
performing tests on the transmission characteristics of the
putative gene. The former relies primarily on phenotypic
distributional information and thus is sensitive to depar-
tures from normality, while the latter focuses on transmis-
sion frequencies conditional on the presence of distribu-
tional commingling. Specifically, compatibility of the data
with Mendelian expectations and rejection of the hypoth-
esis that the major effect is not transmitted in families are
usually required (Lalouel et al. 1983; Demenais et al. 1993).
Studies carried out in recent years have demonstrated the
utility of tests on the transmission probabilities in reducing
the rate of false inference of a major gene when the data
are simply skewed, for example (Go et al. 1978; Demenais
et al. 1986). However, while the power to detect a major-
gene effect on quantitative traits in randomly ascertained
families has been investigated to some extent (MacLean et
al. 1975; Borecki et al. 1994), the rate at which the major
gene is corroborated by tests on the transmission proba-
bilities has not been addressed.

Recently, we have documented estimates of the power
to reject the “no-major-gene” null hypothesis, by using
segregation analysis of randomly ascertained nuclear fami-
lies with both parents and three children over a variety of
samples sizes and model variations (Borecki et al. 1994). In
the present investigation, we extend these studies to con-
sider the proportion of cases in which the major gene is
corroborated by tests on the transmission probabilities, by
using simulated data. We restrict our attention to ran-
domly ascertained families with phenotypes simulated on
the basis of a simple genetic model.
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Material and Methods

Major-Gene Model

A major-gene model, as parameterized in the unified
mixed model (Lalouel et al. 1983) and implemented in the
computer program POINTER (Lalouel and Morton 1981;
Morton et al. 1983), was used to generate and analyze sim-
ulated data sets. The mixed model assumes that a pheno-
type is composed of the independent and additive contri-
butions from a major effect, a multifactorial background,
and a normally distributed residual. The major effect is as-
sumed to result from the segregation at a single locus hav-
ing two alleles (i.e., A and a). The total variance in the phe-
notype (V) can be decomposed as V = G + C + E, where
G is the variance attributable to the major gene, C is the
multifactorial variance, and E is the residual. The multifac-
torial effect (C) is modeled after polygenic inheritance,
which generates residual correlations among family mem-
bers; for a given level of heritability (H = C/V), the ex-
pected value of the parent-offspring and sibling corre-
lations are the same and equal to H/2. There are six pa-
rameters in the model: the overall variance (V); the overall
mean (u); the frequency of the allele “a” at the major locus
leading to higher trait values (g); the displacement between
the two homozygous means (¢); the relative position of the
heterozygote, or dominance (d); and the multifactorial
heritability (H). For the present, data are generated assum-
ing the simple cases of complete recessivity (d = 0, where
the upper distribution includes aa individuals) or includes
dominance (d = 1, where the upper distribution includes
Aa and aa individuals). The three remaining relevant pa-
rameters describe the probability of transmission of the A
allele from individuals carrying the AA, Ag, and aa geno-
types: T, Tz, and T3 are 1, 1/2, and 0, respectively, under
Mendelian transmission.

Simulation Procedure

Data were simulated by using Monte Carlo methods for
a varying number of nuclear families composed of two par-
ents and three offspring each. The distribution of geno-
types in the parental generation was simulated under
Hardy-Weinberg equilibrium, where the frequency of the
“high” trait distribution is g* under recessive inheritance
and ¢* + 2¢(1 — q) under dominant inheritance. Segrega-
tion of alleles into the offspring followed Mendelian trans-
mission probabilities. Phenotypes were assigned on the ba-
sis of generating models, including genotype-specific
means and residuals with a covariance structure within
families specified by the heritability and assuming no
spouse correlation, such that the distribution of the quan-
titative phenotype had an overall mean and variance of 0
and 1, respectively. Three levels of trait prevalence were
considered—5%, 10%, and 20%—Ileading to different
gene frequencies, depending on whether recessive or do-
minant inheritance was assumed. The displacement be-
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tween the two phenotypic distributions is in units of SD
relative to the total phenotypic variance, and, for each
level of trait frequency, various displacements were con-
sidered, increasing in units of 0.25. For each combination
of parameters for the major gene, two levels of back-
ground polygenic variation were simulated: none and
moderate (H = 30%). A minimum of 50 families were en-
tertained, up to a maximum of 300. Choice of the specific
experimental points was guided by our previous study
(Borecki et al. 1994), wherein the power to detect a major
gene solely on the basis of rejection of the g = 0 null hy-
pothesis was evaluated. For each set of generating param-
eter values for the major gene, the sample size (in terms of
number of families) yielding as close as possible to 90%
power to reject ¢ = 0 was chosen. In addition, the next
smaller sample size also was evaluated, usually representing
a decrement of 50 families.

Analysis of a simulated data set was carried out by using
the computer program POINTER. Parameters are esti-.
mated by the method of maximum likelihood, calculating
the joint probability of observing the offspring phenotypes
and parental phenotypes (i.e., joint likelihood). Four sepa-
rate hypotheses were fitted for each simulated data set: (1)
the Mendelian mixed model estimating V, u, d, t, g, and H
(with 1,, T, and T3 fixed at their Mendelian values); (2) the
null hypothesis of no major effect, estimating V, », and H
(with d = t = g = 0); (3) the general transmission model,
estimating V, u, d, t, ¢, and H and 1, T,, and 13; and (4)
the no-transmission model, estimating V, %, d, t, g, H, and
one common 1 (i.e., Ty = T, = T3). Each hypothesis was
tested, using the likelihood-ratio criterion, which is minus
twice the difference between the log-likelihood obtained
under a more general model and that under a reduced
model. The likelihood ratio is asymptotically distributed
as a %, with df equal to the number of independent pa-
rameter constraints. First, the hypothesis of no major
effect was tested (model 2 vs. model 1), conservatively as-
suming 3 df. Only in those samples in which this null hy-
pothesis is rejected were additional tests on the transmis-
sion probabilities carried out, namely, compatibility with
Mendelian transmission (model 1 vs. model 3; 3 df), and
tenability of the no-transmission hypothesis (model 4 vs.
model 3; 2 df). A Mendelian inference was made if the
Mendelian hypothesis was not rejected and the no-trans-
mission hypothesis was rejected; all inferences were based
on a 5% level of significance. For each experimental con-
dition, the proportion of replications with evidence for a
major gene in which the Mendelian inference is made is
called the rate of Mendelian inference.

The reported rates of Mendelian inference are not the
power estimates, per se, since the Mendelian inference in-
volves two components, each of which is subject to a
different type of error. If we define a as the type I error rate
associated with the test of Mendelian transmission and de-
fine B as the type Il error rate associated with the test of no
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Table |

Power to Reject ¢ = 0 under Recessive Inheritance
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TRAIT FREQUENCY = 5% (g = .224)

TRAIT FREQUENCY = 10% (g = .316)

TRAIT FREQUENCY
t=1.75 t=2.0 t=225 t=25 t=15 t=1.75 t=2.0 =20% (q = .447);¢
(%V g = 14.6) (%V g = 19.1) (%oVemg = 24.1) (%V g = 29.8) (%Vmg = 20.2) (%V g = 27.5) (%V g = 36.0) =1.5(%Vng = 36.0)
No. oF
FAMILIES H=0 H=3 H=0 H=3 H=0 H=3 H=0 3 H=0 H=3 H=0 H=3 H=0 H=3 H=0 H=.3

.624(202) .660(203) .955(200) .921(202)
. 905 (201) .835 (206)

. .629(202) .642(201)
.860 (200) .841(207)

.594(202) .667(204) .847(203) .883(205)

444 (205) .855(200) .856(215)
.822(202) .778(203)
920 (200) .935 (200)
.749 (203) .659 (205)
910 (201) .812(202)

861(201) .776 (214)
1923(209)

NOTE.—Shown in parentheses after power estimates is number of valid replications.

transmission, the combined rate of Mendelian inference is
(1 = a) X (1 = B). Another complication is that we have
restricted tests on the transmission probabilities to cases
where the primary null hypothesis of no major effect (g
= 0) is rejected, as is usually done in practice. Thus, the
results presented here should be taken as a conditional rate
of Mendelian inference reflecting a mixture of type I and
type Il errors. However, this conditional rate can be
multiplied by the power to reject g = 0 for any experimen-
tal condition to obtain an estimate of the unconditional
rate.

Occasional numerical difficulties with model fitting were
encountered, especially with respect to the general trans-
mission model. A strategy was developed to maximize the
number of converged solutions (according to usual numer-
ical criteria), by utilizing restarts and perturbations of the
starting values. Whenever a converged solution was not
achieved, the iterative process was restarted, up to three
times, using the most recent estimates from the previous
stalled run as initial parameter values. Boundary solutions
were accepted as they occurred, since our previous experi-
ence suggested that, indeed, the maximum likelihood did
occur at the boundary in the expected cases (e.g., when
data generated under H = 0 were analyzed, the heritability
estimate often moved toward the zero boundary). Difh-
culties in obtaining interior solutions with the parameters
describing the major gene effect were not encountered,
with the exception of the dominance parameter, since we
chose experimental conditions and sample sizes where
there was good power to detect the resulting commingling.
In order to count any particular replication as valid, we
required convergence for each of the four hypotheses; ad-
ditional replications were simulated and analyzed until a
minimum of 200 replications, all with converged solu-
tions, were obtained. In general, a greater number of repli-
cations are used to assess the ¢ = 0 hypothesis than the
transmission hypotheses, since, for the former, valid solu-
tions are required only for the respective null hypothesis
(model 2, described above) and for the Mendelian mixed
model (model 1). The number of replications used to as-

sess the rate of Mendelian inference is restricted, first, by
the presence of invalid solutions for any of the four
hypotheses or numerical anomalies in obtaining the likeli-
hood ratios and, second, by the condition that g = 0 is
rejected.

Results

The proportion of replications in which the null hy-
pothesis g = 0 was rejected for each experiment under re-
cessive models is shown in table 1. As was the case with
our previous study (Borecki et al. 1994), there were mini-
mal problems fitting the relevant models for this test, with
usually none or <1% of the replications being invalid.
Since an independent series of seeds was utilized for this
investigation, there was some variation in the estimate of
the power, as compared with our previous study, although
the rates are quite comparable.

In the cases where the no-major-effect hypothesis (g
= 0) was rejected, we determined whether a Mendelian
gene would be supported by tests on the transmission
probabilities involving nonrejection of Mendelian segrega-
tion and rejection of no transmission of the major effect.
The conditional rates of Mendelian inference, conditional
on evidence of a major effect, are shown in table 2. In gen-
eral, the proportion of cases in which a Mendelian gene is
inferred increases with sample size and effect size of the
major gene. Overall, the rates are rather low. For example,
in those cases where the frequency of the recessive homo-
zygote is low (5%), the Mendelian inference is achieved
in only 25%-35% of the samples drawn under conditions
characterized by ~84%-95% power to detect the major
effect. The rates are generally lower (mostly, 22%-26%)
under conditions characterized by lower power to detect
the major-gene effect (59%-66%), albeit the tests on trans-
mission probabilities are conditional on evidence of the
major effect. As the homozygous recessive genotype fre-
quency doubles to 10%, the rates of Mendelian inference
improve to 33%-60% for those conditions characterized
by >80% power to detect the major effect. The highest



322

Table 2
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Rate of Mendelian Inference under Recessive Models for the Set of Replications in Which q = 0 Was Rejected

TRAIT FREQUENCY = 5% (¢ = .224)

TRAIT FREQUENCY = 10% (g = .316)

TRAIT FREQUENCY
t=175 t=20 t=225 t=25 t=15 t=175 t=20 =20% (q = .447); ¢
(%0V g = 14.6) (%V g = 19.1) (%V g = 24.1) (%V g = 29.8) (%V g = 20.2) (%V g = 27.5) (%V g = 36.0) = 1.5 (%V g = 36.0)
No. oF
FAMILIES H=0 H=3 H=0 H=3 H=0 H=3 H=0 H=3 H=0 H=23 H=0 H=23 H=0 H=23 H=0 H=23

.220(123) .258(124) .364(187) .282(174)
.320(172) .301(163)

.387(119) .228(123)

300 ........ .339(168) .331(166)

.250(120) .236(127) .267(165) .251(167)

299 (87) .447(170) .335(158)
444 (160) .358(151)
511(184) .464(181)

725 (171) .613(150)
593 (182)

460 (150) .389(131)

.592(179) .394(160)

NOTE.—Shown in parentheses after power estimates is number of valid replications.

rates are associated with the highest gene frequency inves-
tigated in this study.

Since in an appreciable number of cases the tests on
transmission probabilities did not support the Mendelian
inference under recessive inheritance, the question re-
mains, what conclusion would be drawn? As shown in ta-
ble 3, it was not possible to resolve the transmission for
the bulk of the remaining replications, that is, neither the
Mendelian nor the no-transmission hypotheses could be
rejected. While these rates of nonresolution are compara-
tively modest for models assuming a 20% trait frequency,
there was an apparent lack of statistical information to dis-
tinguish among the transmission hypotheses in 27%-69%
of the cases under various other models with lower trait
frequencies. The inference that there was no transmission
of the major effect (i.e., rejection of Mendelian transmis-
sion and nonrejection of no transmission) was supported,
on average, ~8% of the time (range 1%-13%), and both
transmission hypotheses were rejected in the remaining
small number of instances.

The power to detect a major effect under dominant
models is reported in table 4. As noted elsewhere (Borecki
et al. 1994), the power to detect major gene effects is

Table 3

greater for dominant models, as compared with recessive
models, and the presence of a polygenic background is as-
sociated with a decrease in power for all dominant models,
with not much discernible effect in recessive models. In
our previous study, we suggested that the greater power
to detect dominant genes must be attributable to actual
segregation information, since the comparisons can be
matched precisely on the characteristics of the commin-
gling information. This supposition is strongly supported
by the results shown in table 5, where the rate of Mende-
lian inference is >80% in all but one instance and is gener-
ally >90% for those combinations of parameter values and
sample sizes yielding power to detect a major effect in the
85%-95% range. Inference of no transmission of major
effect was rare and, for many conditions, was not the con-
clusion in any replicate. No conclusion could be drawn
regarding the transmission patterns in ~3%-15% of the
replications (i.e., nonrejection of both transmission
hypotheses), and both transmission hypotheses were re-
jected in the remaining few cases. Thus, in general, it
would appear that there is a much better chance to detect
and infer a dominant Mendelian gene influencing a quan-
titative trait than a recessive one.

Proportion of Replications under Recessive Inheritance in Which Neither Mendelian Nor No-Transmission-of-Major-Effect

Hypotheses Could Be Rejected

TRAIT FREQUENCY = 5% (q = .224)

TRAIT FREQUENCY = 10% (¢ = .316)

TRAIT FREQUENCY
t=175 t=20 t=22§ =25 t=15 t=175 t=20 =20% (q = .447); ¢
(%V g = 14.6) (%V g = 19.1) (%V g = 24.1) (%V g = 29.8) (%V g = 20.2) (%V g = 27.5) (%V g = 36.0) = 1.5 (%V g = 36.0)
No.oF
FAMILIES H =0 H=23 H=0 H=3 H=0 H=3 H=0 H=23 H=0 H=23 H=0 H=23 H=0 H=23 H=0 H=3

.667(123) .677(124) .471(187) .557(174)
506 (172) .528(163)

oo 504 (119) 1642 (123)
300 ........ 482(168) .512(166)

667(120) .685(127) .576(165) .563(166)

598(87) .465(170) .532(158)
406 (160) 490 (151)
272(184) .348(181)

.170(171) .213(150)
.148 (182)

460 (150) .473(131)

274(179) .350(160)

NOTE.—Shown in parentheses after power estimates is number of valid replications.
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Table 4

Power to Reject q = 0, under Dominant Inheritance
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TRAIT FREQUENCY = 5% (q = .025)

TRAIT FREQUENCY = 10% (¢ = .051)

TRAIT FREQUENCY
t=1.75 t=20 =225 t=25 t=15 t=175 =20% (q = .106); t
(%V g = 14.4) (%V g = 18.8) (%V g = 23.8) (%V g = 29.3) (%V g = 20.1) (%V g = 27.4) = 1.5 (% Vg = 36.1)
No. oF
FAMILIES H=0 H=3 H=0 H=3 H=0 H=3 H=0 H=3 H=0 H=3 H=0 H=23 H=0 H=3
641 (234)  .467(212) .814(236) .735(211) .938(209) .877(204) .764(212) .608(212) .743(202) .617(222)
.892(223) .808(219) .983(230) .952(208) 995(208) .848(204) .990(204) 916(215)
.858(211)  .635(219) .883(206)  .707 (208)
947(209)  .763(224) 960(202)  .852(210)
.908 (218)

NoTE.—Shown in parentheses after power estimates is number of valid replications.

As might be expected, some numerical difficulties were
encountered in fitting the relevant transmission hypothe-
sesand in carrying out the respective likelihood-ratio tests.
A particular replication was unacceptable—and therefore
the generated sample was rejected—if either of the follow-
ing situations pertained: (@) any one of the four hypotheses
did not converge owing to numerical difficulties, or (b)
construction of the likelihood-ratio-test statistic resulted
in a negative %2, after allowance was made for some toler-
ance for numerical variations. Of course, in practice, one
would attempt to resolve both of these situations by alter-
ing the parameters of the numerical algorithm or by choos-
ing alternative initial parameter estimates on the basis of
interactions with the data or grid searches. However, in
the context of a simulation study, it is extremely difficult
to develop an algorithmic approach that recognizes all of
the problems that could arise and that responds in the cor-
rect manner. Therefore, we took best advantage of what
information was available to us to maximize the return of
admissible solutions at the global maximum—namely, that
the exact model and generating parameters are known. De-
spite our use of excellent initial values, some proportion
of samples were rejected.

The mean sample-rejection rate for tests on the trans-

Table 5

mission probabilities over all the recessive models we con-
sidered was 4.3%, with a range of 0%-10.7% and a distri-
bution skewed to the right. Under otherwise identical con-
ditions, sample-rejection rates were higher for generating
models having a polygenic background than for those with
no residual familial resemblance. Considering the com-
plexity of the hypotheses being fit, we consider this to be
a tolerable rate.

In contrast, sample-rejection rates were much higher for
dominant models—an average of 21.5% of the replica-
tions were excluded for possible reasons cited above, with
a range of 3.1%-40.7%. In order to investigate this situa-
tion further, we chose to examine an experiment in de-
tail—one with good power to detect the major-gene effect
(.908) and with a large number of families and, thus, good
segregation information. We refer to the experiment for a
5% trait, ¢ = 1.75 and H = 0.3; the following results are
fairly representative of those for other experiments with
substantial sample-rejection rates. Of 209 replications in
which it was possible to reject the g = 0 hypothesis, 69
(33%) of those samples were rejected, and the problem was
with the general transmission model. There were numeri-
cal difficulties in the iterative process in approximately
one-quarter of these rejected replications, resulting in non-

Rate of Mendelian Inference under Dominant Models for Set of Replications in Which q = 0 was Rejected

TRAIT FREQUENCY = 5% (g = .025)

TRAIT FREQUENCY = 10% (q = .051)

TRAIT FREQUENCY
t=1.75 t=20 t=225 t=25 t=15 t=175 =20% (q = .106); ¢
(Y%oV g = 14.4) (%V g = 18.8) (%V g = 23.8) (%V g = 29.3) (%V g = 20.1) (%V g = 27.4) =1.5(%Vpg = 36.1)
No. oF
FAMILIES H=0 H=3 H=0 H=3 H=0 H=.3 H=0 H=3 H=0 H=.3 H=0 H=3 H=0 H=3
.830(112)  .780(82) .843(140) .893(122) .936(172) .943(158) .850(147) .838(105) .869(145) .883(111)
.891(147) .940(133) .988(166) .974(151) .977(171) 943(193) .934(152) .938(195) .902(174)
.864(147)  .840(100) 919(173)  .933(135)
926(162) .936(125) 936(188) 956 (160)
943 (140)

NoTE.—Shown in parentheses after power estimates is number of valid replications.
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converged solutions. However, in three-quarters of these
cases, all solutions were apparently converged, but nega-
tive X% were encountered. Specifically, the Mendelian
model had a better likelihood than did the general trans-
mission model in which all three transmission probabilities
were estimated. These particular data sets were examined
by hand, and, in all these cases, another solution could
be found for the general transmission model with a better
likelihood, resulting in a Mendelian inference. This expe-
rience suggests that the presence of multiple maxima may
be a relatively common phenomenon under the general
transmission model.

It was difficult to assess from these data whether the
estimated rates of Mendelian inference were biased in
some way on account of exclusion of the faulty replica-
tions, since the observed rate of Mendelian inference was
high at 94%, and, indeed, most of the faults would resolve
to that conclusion. Of greatest concern was the effect of
multiple maxima, since this problem accounted for the
majority of rejected replications under dominant models.
Thus, the question becomes, What would be the distribu-
tion of outcomes if the rate of sample rejection could be
reduced? Further, multiple maxima also could potentially
bias our results under recessive models, even if there are
no outward signs of problems in convergence or negative
x%s. Recall that the results under recessive models were
characterized by moderately low rates of Mendelian infer-
ence and by moderately high rates of nonresolution of
transmission hypotheses—if there is another solution with
a better likelihood for the general transmission model in
some proportion of cases, then one might expect a de-
crease in the number of replications falling into the latter
category and an increase in any of the three remaining pos-
sible inference categories, depending on the magnitude of
the improvement.

In an attempt to assess the potential direction and mag-
nitude of bias, if any, we reexamined four experiments un-
der each of dominant and recessive inheritance, using an
alternative strategy to evaluating transmission hypotheses.
We preferentially included experiments that had high sam-
ple-rejection rates under dominant inheritance, as follows:
(I) 5% trait, ¢t = 1.75, H = .3, N = 200 families; (II) 5%
trait, ¢t = 2.25, H = 0, N = 50 families; (III) 5% trait, ¢
= 225, H = .3, N = 50 families; and (IV) 10% trait, ¢
=1.75, H = .3, N = 50 families.

The corresponding models under recessive inheritance
were evaluated also. The idea of the alternative approach
was that reducing the dimensionality of the general trans-
mission model would improve the chances of obtaining
converged solutions at the global maximum. Thus, we re-
stricted our attention to the specific Mendelian hypothesis
of 1, = '/, as originally suggested by Lalouel et al. (1983),
since most information on transmission comes from seg-
regation from heterozygotes anyway. Now the test of the
Mendelian hypothesis is a 1 df test where T, alone is esti-
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mated in the general transmission model, with 7, and 1,
fixed at 1 and 0, respectively. The approach to testing the
no-transmission model also had to be modified, since the
equal-t model is no longer nested. The comparison was
carried out using the Akaike (1974) information criterion;
since the two models have the same number of estimated
parameters, the likelihoods were compared directly: if the
modified general transmission model was =0.5 points bet-
ter (on the scale of twice the log likelihood), then the no-
transmission hypothesis was rejected.

The results are shown in table 6. For reference, the
power to reject the null hypothesis of g = 0 is given for
each experiment. First, it is apparent that, in all but one
case, the number of valid replications (“valid” being de-
fined as acceptably converged solutions with positive x%s
for the likelihood-ratio tests), of the total in which g = 0
was rejected, increases with the alternative approach of
restricting our attention to T, alone, especially under do-
minant models. Consistent with the predictions outlined
above, the rate of Mendelian inference under recessive
models increased from 23%-36% to 46%-54%, and cor-
responding drops in the rate of ambiguous situations
where neither transmission hypothesis could be rejected
and modest increases in the rates of rejection of both
transmission hypotheses were found. The results under
dominant inheritance appear to be more robust: slight de-
creases in the rates of Mendelian inference are accompa-
nied by small increases in the rates of rejecting both trans-
mission hypotheses.

Discussion

Historically, the use of transmission frequencies has
been part of segregation analysis from its inception, origi-
nally, in the form of segregation ratios for fully penetrant
dichotomous traits. Extensions to accommodate quanti-
tative traits also modeled the segregation of alleles under
Mendelian assumptions, and it was Elston and Stewart
(1971) who first suggested that tests on the transmission
probabilities (7’s) should be required in addition to evi-
dence of admixture before concluding the existence of a
major gene. Go et al. (1978) investigated the properties of
segregation analysis under the generalized single-locus
model, specifically addressing issues of robustness of the
model against false inference of a major gene in the pres-
ence of polygenic inheritance with distributional skewness
and kurtosis, and environmentally based sibling correla-
tion. Go et al. concluded that inclusion of the transmission
probabilities in the model allows one to distinguish be-
tween the Mendelian hypothesis and environmentally
caused skewness. Evidence of an admixture of distribu-
tions was used to distinguish between polygenic and sin-
gle-gene inheritance; however, while it was expected that
the transmission probabilities would be consistent with
the Mendelian hypothesis when the true underlying mech-
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Table 6
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Comparison of Results, Using Alternative Strategies for Testing Transmission Models

RATE OF MENDELIAN TRANSMISSION

RATE OF AMBIGUOUS
TRANSMISSION

RATE OF GENERAL
TRANSMISSION

POWER Ty, T2y T3 T, Ty, T2, T3 1, T1, T2y T3 T
EXPERIMENT (g=0) estimated estimated estimated estimated estimated estimated
Recessive:
642 .228(123/129) 1461 (128/129) .033 .078 642 414
955 364 (187/190) .487 (189/190) .070 .079 471 407
921 .282(174/186) 462 (184/186) .029 .082 557 .386
444 299 (87/91) .544(90/91) .026 111 .598 311
| (O, .763 936 (125/171) 914 (162/171) .008 .086 .056 0
| § AP 983 988 (166/226) .870 (208 /226) 0 130 012 0
I ............ 952 974 (151/198) 907 (193/198) .007 093 .020 0
IV s .608 .838(105/129) 728 (81/129) .019 259 .143 .012

NOTE.—Data are the proportion of replications in which either of Mendelian, general, or ambiguous transmission was inferred, followed in paren-
theses by (no. of valid replications)/(total no. of replications in which g = 0 was rejected).

anism was a major gene, the issue of the “power” of this
test was addressed only cursorily: it was suggested that ex-
amination of the point estimates of the transmission proba-
bilities would be useful in indicating that the likelihood was
flat in those dimensions if the estimates were inexplicably
different from the Mendelian values with little loss of fit. Cau-
tion in concluding a major gene effect in this case was advised,
because the focus was very much on minimizing the type I
error.

In the meanwhile, segregation analysis under the so-
called mixed model, developed by Morton and MacLean
(1974), incorporated a multifactorial background and sib-
ling correlation, in addition to a single locus. While spe-
cifically allowing for these effects improved the robustness
of the model in some circumstances, accumulating experi-
ence suggested that other unaccounted determinants or
sources of variation could cause distributional non-nor-
mality or false evidence of a major gene. Thus, transmis-
sion probabilities were introduced by Lalouel et al. (1983)
into the “unified model,” to aid in distinguishing true
Mendelian effects. Simulation studies carried out by De-
menais et al. (1986) again demonstrated dramatically the
utility of tests on the transmission probabilities, in pre-
venting false inference of a major gene, for data simulated
under a polygenic model with skewness: the frequency of
false inference of a major gene was reduced from 80%-
100% of the simulations to 10%-40%. Moreover, these
authors showed that the conservative approach of apply-
ing a power transformation to ameliorate skewness was
associated with a decrease of 55% in the power to detect
a major gene. On balance, these observations led to the
important recommendation that, to prevent false infer-
ence, it may be preferable to rely on tests on the transmis-
sion probabilities, including both nonrejection of the

Mendelian hypothesis and rejection of the hypothesis of
no transmission of major effect. Still, the emphasis was on
controlling type I error.

Many of the quantitative phenotypes of interest to in-
vestigators in the present are likely to be etiologically com-
plex, and their analysis poses new challenges. Application
of traditional segregation analysis still represents a reason-
able first approach to such traits; however, it may be the
case that the simple mixed model is not sufficient to ex-
plain the observed familial resemblance. In at least two
cases, modification of the basic segregation model to in-
clude genotype-specific age and gender effects resulted in
resolution of Mendelian-segregation patterns for both a
putative gene for systolic blood pressure (Pérusse et al.
1991) and another for the body-mass index (Borecki et al.
1993), suggesting that transmission probabilities are sensi-
tive to violations of model assumptions. Further, it has
been demonstrated that even one paternity exclusion can
be responsible for strong rejection of Mendelian transmis-
sion probabilities for a patently Mendelian trait (Bonaiti-
Pellié et al. 1992). Thus, the question arises: how often do
we fail to detect a true major gene because the tests on the
transmission patterns do not satisfy the stated require-
ments?

Before considering other variations either of the model
or of the study design, we endeavored to establish a base-
line rate referring only to the effects of sampling variation;
for this task, we chose to investigate randomly sampled
nuclear families. Indeed, when traits are common (as con-
sidered here), it becomes unnecessary to enrich the sample
by selecting through clusters of affected individuals, and,
insofar as segregation analysis is concerned, an appropriate
ascertainment correction is difficult to specify under many
high-density sampling schemes. Greenberg (1992) also has
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suggested that there may be substantive advantages to the
study of nuclear families (as opposed to the relatively less
common multiplex pedigrees), even for linkage studies,
since nuclear families (i) are readily available, (ii) usually
represent the common form of the disease or trait, and (iii)
can provide information on heterogeneity by subdivision
of the sample on the basis of clinical presentation or cri-
teria. Therefore, although we considered randomly sam-
pled nuclear families as a simple starting point, this type of
sample also can have considerable appeal in certain cir-
cumstances.

The studies conducted here are not exhaustive, but they
suggest that dominant major genes are detected quite suc-
cessfully under a variety of models and that the condi-
tional rate of Mendelian inference is usually >80% in the
cases we examined. Those sets of conditions with greater
power to reject the g = 0 null hypothesis also are charac-
terized by higher rates of Mendelian inference. These gen-
eral conclusions hold even after our approach to hypothe-
sis testing was modified to examine T, alone, although it is
possible that the “true” rates of Mendelian inference may
be slightly lower than those indicated in table 5. In con-
trast, the situation appears much worse for detecting re-
cessive major loci. The rate of Mendelian inference is quite
low, suggesting that this methodology may not be very
efficient for detecting recessive major loci—a large part of
the remaining replications were characterized by nonreso-
lution of transmission patterns. Even after reduction of
the number of solutions at local maxima, the rate of Men-
delian inference increased from ~20%-30% to only 46%-—
54%. It should be noted that the “true” rates of Mendelian
inference may be higher than those indicated in table 2
on account of undetected multiple maxima; however, the
estimated rates in our modified approach are still suffi-
ciently low to warrant concern. Slight differences were
noted between models without and with a moderate poly-
genic background under recessive inheritance only: pres-
ence of a polygenic component was associated both with
slightly lower rates of Mendelian inference and with
slightly higher rates of ambiguous transmission (where nei-
ther transmission hypothesis could be rejected).

In summary, tests on the transmission probabilities in
segregation analysis of quantitative traits remain useful in
safeguarding against false inference of major genes in a va-
riety of circumstances. However, the present study shows
that, by adhering strictly to those tests, quite often one
will fail to correctly infer a major gene and that the error is
more frequent for recessive than for dominant traits,
largely on account of a lack of segregation information.
It should be remembered that these conclusions apply to
samples of nuclear families as considered here, and it is not
known whether the conclusions apply to extended pedi-
grees. In general, resolution of Mendelian segregation may
be sought by increasing the sample size, extending the basic

Am. ]. Hum. Genet. 56:319-326, 1995

model to include interactions, utilizing a linked marker, or
simultaneously analyzing another (other) quantitative trait(s)
influenced by the same underlying gene. For the present, cau-
tion should be exercised in rejecting the Mendelian inference
in cases indicating recessive inheritance.
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