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Summary

Until recently, attempts to map disease genes on the basis
of population associations with linked markers have been
based on expected values of linkage disequilibrium. These
methods suffer from the large variances imposed on dis-
equilibrium measures by the evolutionary process, but a
more serious problem for many diseases is that they as-
sume an equilibrium population. For diseases that arose
only a few hundred generations ago, it is more appropri-
ate to concentrate on the initial growth phase of the dis-
ease. We invoke a Poisson branching process for this early
growth, and estimate the likelihood for the recombination
fraction between marker and disease loci, on the basis of
simulated disease populations. The limits of the resulting
support intervals for the recombination fraction vary in-
versely with the age of the disease in generations. We il-
lustrate the procedure with data on cystic fibrosis and dia-
strophic dysplasia, for which the method appears appro-
priate, and for Friedreich ataxia and Huntington disease,
for which it does not. A valuable aspect of the method is
the ability in some cases to compare likelihoods of the
three orders for a disease locus and two linked marker loci.

Introduction

For many rare genetic diseases, linkage analysis has been
very successful in locating the disease gene. Linkage analy-
sis requires recombinationally informative pedigrees, but
the number of meioses observed in typical studies does not
allow recombination events to be detected between loci
within ~1 cM of each other (Hastbacka et al. 1992). More
precise positioning of disease genes on a genetic map may
be possible from population rather than family data, when
measures of allelic association or linkage disequilibrium
are estimated. This method depends on the comparison of
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marker allele frequency distributions in samples of normal
and disease chromosomes. Differences among these distri-
butions may imply linkage between disease and marker
loci, since loci in a neighborhood of the disease locus on
disease chromosomes are likely to carry the alleles present
on the ancestral chromosomes on which the disease muta-
tions first occurred. The size of the neighborhood will vary
inversely with both the age of the disease mutation and the
rate of recombination between marker and disease loci.

Although there are many evolutionary forces that can
cause an association between alleles at different loci, only
recombination is correlated with physical distance be-
tween the loci. For diseases that arose within the past few
hundred generations, it is reasonable to assume that link-
age disequilibrium reflects few recombination events be-
tween disease and marker loci. Marker alleles present on
an ancestral chromosome in the neighborhood of a disease
mutation will therefore be overrepresented in the disease
population, and this is seen for example in data for cystic
fibrosis (CF) (Kerem et al. 1989). In contrast, for diseases
that have been in the population for thousands of genera-
tions, it is likely that disease chromosomes will carry many
fewer ancestral marker alleles, because of the many more
intervening recombination events, unless there is reduc-
tion of recombination in the region surrounding the dis-
ease locus. There can still be linkage disequilibrium be-
tween disease and nearby marker loci, as discussed by Hill
and Weir (1994), but there will not be an excess of ances-
tral marker alleles on disease chromosomes. Assuming that
there is no reduction in recombination, it follows that dis-
eases for which linkage disequilibrium to several markers
in a chromosomal region is observed, and for which the
marker alleles are more frequent on disease than on nor-
mal chromosomes, are most likely of recent origin.

If the disease is not very old, and an association is de-
tected between a marker and the disease, then it might
be expected that at least one disease mutation has a high
frequency in the population of disease chromosomes. In-
deed, if all disease mutations are in low frequency, then,
under the assumption that mutations occur at random, the
ancestral disease haplotypes would be representative of
those in the normal population, and there would be no
subsequent association. CF, an autosomal recessive disor-
der, has one mutation responsible for ~70% of the disease
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population (Kerem et al. 1989), while Huntington disease
(HD), a late-onset dominant disorder, may have one muta-
tion accounting for about a third of the disease population
(MacDonald et al. 1992). Also, in Finland, the majority of
chromosomes carrying the diastrophic dysplasia mutation
may have descended from a single mutation that was prob-
ably present in the founding population (Hastbacka et al.
1992).

A difficulty with population-association studies is quan-
tifying the relation between recombination and degree of
association. As recombination is not an observed event in
these studies, the recombination fraction ¢ must be esti-
mated on the basis of a population genetic model. The
models traditionally invoked assume that the human pop-
ulation has been of constant size and has reached an equi-
librium under such forces as drift and recombination.
Time is scaled in units of the effective population size, N,,
and equilibrium implies that the number of generations
since the disease mutation is at least of the same order
as N,. Equilibrium models also have the recombination
fraction confounded with N,, although this quantity is
generally unknown. In studies such as those of Chakravarti
et al. (1984) or Estivill et al. (1987), the expected value of a
statistic based on squared linkage disequilibrium was ap-
proximated by 1/(1 + 4N,c), and N,c was estimated by
equating this quantity to the observed value of the statis-
tic. A better procedure is to use maximum likelihood to
estimate N,c (Hill and Weir 1994). In addition to the con-
founding with N,, there is the further problem that such
estimates have very large variances because of the stochas-
tic nature of the evolutionary forces that have shaped the
population (Weir 1989; Weir and Hill 1986; Hill and Weir
1988, 1994). Empirical information on this genetic sam-
pling would require information from replicate popula-
tions, which is unlikely to be possible. We have also pre-
viously noted (Weir and Hill 1980) that there is no simple
algebraic expression (over all ¢ values) for the equilibrium
expected value of squared linkage disequilibrium and that
account must be taken of the sampling framework of nor-
mal and disease genotypes (Kaplan and Weir 1992).

For a particular disease mutation, the probability that,
on a disease chromosome randomly chosen from the cur-
rent population, the chromosomal segment between dis-
ease and marker has remained intact since the time of the
mutation is (1 — ¢)° ~ ¢, if ¢ is recombination fraction
between the two loci and G is the number of generations
since that time. Note that this equation confounds ¢ with
G instead of with N,. Therefore, if linkage disequilibrium
due to an excess of the ancestral marker allele in the sam-
ple of disease chromosomes is observed, we can conclude
that 7 is high, meaning that ¢G is small. We might expect
that ¢cG < 1, since e™! = .37 and >40% of the disease chro-
mosomes are expected to carry the ancestral marker al-
leles. This conclusion has important implications. If, for
example, G was as large as 5,000 generations (~100,000
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years for 20-year generations), the condition would re-
quire ¢ < .0002, meaning that every marker in linkage dis-
equilibrium with the disease was fortuitously within 20 kb
of the disease gene. (This assumes the usual rule of thumb
of 1 cM = 1,000 kb.) This is unlikely. In particular, in this
scenario there is no basis for inferring ancestral haplotypes
(Kerem et al. 1989; MacDonald et al. 1992), suggesting
that a larger ¢ and a smaller G is probably more appropri-
ate. Hence, there is a need to focus on modeling the initial
growth phase of the disease rather than its behavior under
an equilibrium assumption.

The approach proposed by Histbacka et al. (1992) for
estimating ¢G was to equate ¢ “° to the proportion of dis-
ease chromosomes in the sample carrying the inferred an-
cestral allele at a marker locus. In their data for diastrophic
dysplasia in Finland, there were marker loci with high allele
frequencies, so there was little doubt as to the ancestral
type. The allele with highest frequency was logically as-
sumed to be ancestral. This method has the same problem
as the method based on equilibrium population theory,
since the probability e C refers to an expectation over all
realizations of the evolutionary process. Equating ob-
served and expected values of marker allele frequencies is,
in effect, estimating an expected value by a single observa-
tion with attendant problems, unless the variance of this
quantity is small.

As important as an estimate itself is a characterization of
its sampling properties. In the present case, the important
feature is the value of an upper confidence bound on the
parameter c. Hastbacka et al. (1992) proposed confidence
bounds on ¢, on the basis of Luria-Delbriick considera-
tions, but the error distribution for these ad hoc bounds is
not well characterized. As suggested earlier, the difficulty
in studying the behavior of estimates of ¢ is in taking into
account the evolutionary history of the disease popula-
tion, especially for equilibrium populations. An alternative
to the Luria-Delbriick approach is to specify the evolu-
tionary model and then simulate its dynamics. This was
done for equilibrium models by Hill and Weir (1994), who
used simulations to estimate the likelihood of N,c for spe-
cific data sets.

In an upcoming paper, Kaplan and Weir (in press) mod-
ify the approach of Hill and Weir (1994), by assuming the
disease is not old, and model its growth as a Poisson
branching process. They estimate likelihoods of ¢ for spec-
ified values G for the markers MET and D7S8 near the CF
gene and obtain confidence bounds on ¢ comparable to
those obtained with linkage analysis. In this study we ex-
plore in greater detail the nonequilibrium approach of
Kaplan and Weir. In particular, we generalize the method
to accommodate the joint behavior of alleles at two
marker loci with a view to determining the order among
these loci and the disease locus. We compare the bounds
on ¢ found from this likelihood approach with those ob-
tained by the method proposed by Hastbacka et al. (1992),
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and we further illustrate the method with several addi-
tional data sets from the literature.

Methods

To make the presentation self-contained, we review the
method of Kaplan and Weir (in press). A marker M is of
interest because it is found to be in linkage disequilibrium
with the disease. For simplicity, we assume it has two al-
leles, but all of the analyses can be extended to such
multiple-allele markers as microsatellites. The most fre-
quent allele in the disease sample is denoted M; and is as-
sumed to be the marker allele on the ancestral disease
chromosome. The other marker allele is written as M, . For
microsatellites it may not be clear which of several more
or less equally frequent alleles in the disease sample is the
ancestral allele. We suppose, further, that the disease is so
rare that the marker polymorphism must have existed in
the population at the time of the occurrence of the initial
disease mutation. Even if several mutations have resulted
in the same disease phenotype, the detection of linkage
disequilibrium, between disease status and marker type,
suggests that at least one of the disease mutations is found
with high frequency in the disease population. This is the
case with the AF5ys mutation causing CF. For simplicity,
then, we will assume, from now on, that there was a single
disease mutation and that it occurred on a chromosome
carrying marker allele M, .

Because the disease is in low frequency, we assume that
individual are either heterozygous at the disease locus or
homozygous for the normal allele. For relatively young dis-
eases, the normal chromosome marker allele frequencies
b1, P2, for alleles M, , M,, will be assumed constant over
time. Within the disease population, however, the marker
allele frequencies, p;, and p,,, are changing, and it is the
stochastic process dictating these changes that we need to
model. Sample sizes are written as k,, ks for normal and
disease chromosomes.

Frequency changes between generations are governed
by a Wright-Fisher sampling scheme. Although there may
be a selective advantage for carriers, all carrier individuals
are assumed to be selectively equivalent, as is reasonable to
be assumed for a recessive disease. For a dominant disease,
selective equivalence may also be reasonable to be as-
sumed for such late-onset (postreproductive age) cases as
HD. Time will be measured in generations, with z = 0 be-
ing the generation in which the disease mutation occurred,
and t = G being the generation from which the samples
are taken. We adopt the simplification of nonoverlapping
generations. In generation ¢ there are X4{t) disease chro-
mosomes, partitioned as Xr(t) = X(t) + X(t), where X(?)
carry marker M;, i =1, 2.

Some disease chromosomes have not undergone recom-
bination between disease and marker loci, since the time
of the disease mutation. Those that have undergone re-
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combination (necessarily with a normal chromosome,
since disease homozygotes are assumed to be absent or not
to contribute to the next generation), acquire marker allele
M; with frequency p; . In the gamete pool from which gen-
eration ¢ + 1 is formed, therefore, the fraction g; of disease
chromosomes carrying M; is g; = {1/2N}[(1 — )X{¢?)
+ cXr(t)p; ), where N is the number of individuals in gen-
eration ¢. This size is not assumed to be constant.

As long as g; is small, X{t + 1), i = 1, 2, can be modeled
as two independent Poisson random variables with means
2N(1 + A)g; (Ewens 1979). The quantity A is small com-
pared with 1 and can be interpreted as the sum of two
quantities: p, the growth rate of the overall population,
and s, the possible selective advantage of carriers over nor-
mals. Since the disease population has grown in size, A > 0.
The population size N cancels out of expressions for the
mean, leading to the stochastic recursive relationships

X{t + 1) ~ Poisson{(1 + A)[(1 — O)X{?) + cXt)p:.]}»
i=1,2, (1)

where Poisson{Z} denotes a Poisson variable with mean
Z. Initially, X1(0) = X;(0) = 1, and X,(0) = 0. If there are
more than two marker alleles, equation (1) holds for each
allele.

The stochastic recursion equation (1) can be used to
simulate the evolution of the disease population for any
set of values of the parameters A, ¢, and p; . As time pro-
gresses after the introduction of the disease allele into the
population, the expected fraction of the disease popula-
tion carrying marker allele M; changes from its initial value
to the normal population frequency p;,. The rate of change
in p;, increases with recombination value ¢, and a given
level of linkage disequilibrium corresponds to younger dis-
eases as ¢ increases. This inverse relationship between ¢
and G is seen in the expectation of p,, (Cox et al. 1989):

epr) =(1—°+[1 - (1 -,

~eC+(1—e Py,

since c is small.
A reasonable range of values for c is from zero to a few
cM. An obvious value to assign to p;, is the observed value

f;, in the sample of k, normal chromosomes, although bi-

nomial sampling can be invoked to give an approximate
upper 95% confidence limit f,, + 1.65Vf(1—f.)/kn
There is less guidance available for values of A and G. We
therefore try to choose a range of values for these two
parameters in such a way that simulation results change
very little over these ranges. This choice exploits informa-
tion about the size of the current disease population.
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The size X1(G) of the disease population contains infor-
mation about A and G, and the first step is to estimate this
size. Often an estimate of the incidence of the disease in
the population under study is available. Kerem et al.
(1989), for example, give an incidence for CF of ~1 in
2,000, or .0005, in Caucasian populations of western Eu-
ropean origin. From such estimates and from knowledge
of whether the disease is dominant or recessive, the fre-
quency of disease chromosomes in the population can be
inferred. For the recessive CF, this frequency is estimated
as V.0005 ~ .02. The size X7(G) then follows from the
total size of the population, which we take to be the total
Caucasian population of ~500 million people, or 10°
chromosomes. Hence, X(G) would be ~20 million for
CF. Alternatively, historical records may be available, as
was the case in Finland, where Hastbacka et al. (1992) es-
timated the number of chromosomes carrying the muta-
tion for diastrophic dysplasia to be 80,000.

It seems reasonable in any application to consider only
those simulated evolutionary histories that lead to values
of X1(G) close to the estimated value. For the Finnish ex-
ample of diastrophic dysplasia, we might condition on his-
tories resulting in X1(G) values in the interval (50,000-
110,000). The actual size of such an interval is arbitrary
and has little effect on final solutions. A strength of simu-
lation is that this conditioning is very easy to implement.
Demanding that X+(G) lies in a specified interval puts con-
straints on A and G, since the growth of the disease popu-
lation is being described by a Poisson branching process
whose offspring distribution has mean of 1 + A. Fora given
value of G it is necessary to choose A so that X7(G) will
most often fall into the specified interval. A poor choice of
A will make the simulations very inefficient. The mean
value of Xr(G) is (1 + A)°, and the probability that the
disease does not become extinct is ~2A (Ewens 1979).
This suggests that A can be estimated from

(2)

Determination of Xr(G) is not very precise, and it is
therefore important that resulting estimates of ¢ are not
overly dependent on this quantity. Since the behavior of a
branching process is governed by the offspring distribu-
tion, and since the Poisson distribution is completely de-
termined by its mean, 1 + A, changes in A will not materi-
ally change the behavior of the X process, as longas 1 + A
does not change very much. The substantial change in
X7(G) from 100,000 to 20,000,000 changes 1 + A by >3%
(A changes from .047 to .078) when G = 200. For CF, for
example, it is necessary to know only that the size of the
disease population is in the millions, and conclusions
about ¢ do not change very much if that size is 1 million or
20 million.
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It remains to assign a value to G. As discussed earlier,
values of ¢ that are not small imply that G is not large,
since, otherwise, ¢ would be too small. In the examples,
we found that values of G in the hundreds gave reasonable
results. We have also shown (Kaplan and Weir, in press)
that underestimating G, which is the most likely error, is
conservative because it leads to an overestimate of ¢. Of
course, any external information about G should always
be used, as when there are historical records (Hastbacka et
al. 1992).

Once values for p; , A, and G have been decided, simu-
lations are used to make inferences about c. For a given
data set, the likelihood of ¢ is estimated. This is easy to do,
since, conditional on p;,, the number of disease chromo-
somes carrying M, has a binomial distribution with param-
eters k; and p,,. The binomial probability, apart from the
factorial terms, is p71p32, where the disease sample has #;
= kf;, chromosomes with marker M;. To estimate the
likelihood, we simulate the population for G generations,
always requiring that X(G) be near its estimated value, to
obtain p;,. We then average the associated binomial prob-
abilities from repeated simulations. The only numerical
difficulty is that the likelihood must be scaled in order to
obtain non-negligible values, and we scale by dividing by
f1f32. By repeating this process for many values of ¢, we
establish the likelihood function. As is usual, we decrease
the log-likelihood by two units from its maximum value,
to establish a support interval for ¢ corresponding approx-
imately to a 95% confidence interval. To find the maxi-
mum, the likelihood is evaluated for values of ¢ that were
multiples of a small number: usually 0.001, but sometimes
as small as 0.0002. For multiple-allele markers, we use a
multinomial instead of a binomial distribution.

This method for generating confidence levels is heavily
dependent on simulated data, in contrast to the method of
Histbacka et al. (1992), which used only experimental
data. These authors appealed to Luria-Delbriick argu-
ments to find confidence limits (c_, c,) satisfying

|y XdGlew |, _
7 [ln — 2] 1-f,
3)
Clp XdGle Lol
% [ln x + 2] 1-f,.

The performance of these bounds is examined in the Re-
sults section.

The model can be generalized to accommodate two
marker loci. There is then the added feature of having to
specify the relative positions of the disease and marker
loci. The previous notation can be extended with an addi-
tional subscript for the second locus. For example, disease
chromosomes with alleles i and j at the two marker loci
have population frequency p;;,. The recombination frac-
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tion between disease locus and the kth marker is ¢,. Sto-
chastic recursion equation (1) has three extensions, one
for each of the three possible orderings of the loci. These
equations are as follows, where a dot subscript indicates
summation over all values of the corresponding index, and
both ¢, and ¢, are assumed to be small. The equations as-
sume no interference.

Marker-1-Disease-Marker-2
Xiit +1) ~ Poisson{(1 + A)[(1 — ¢; — ) Xi{(?)
+ap X)) + oop,; X1}

Marker-1-Marker-2-Disease
Xi{t + 1) ~ Poisson{(1 + A)[(1 — c1)X;{t)
+ Copij, Zrrisni X Xeft) + (c1 — )p; X ()]}

Disease-Marker-1-Marker-2
Xi{t + 1) ~ Poisson{(1 + A)[(1 — c)Xi{¢)
+ a1, Zrwigi X Xedt) + (2 — a)p,;, Xi(®]}.

The parameters of the model are specified as before. For
each order, and specified values of c;, c,, the p;, values can
be simulated, and observed frequencies can be compared
with the corresponding multinomial samples. When the
recombination value ¢;, between the markers is known,
and the assumption of no interference is made, there is
only one unknown recombination value.

The three different orderings of the two markers and
disease locus can be compared on the basis of likelihoods.
The haplotype counts in the disease sample have a
multinomial distribution, with parameters given by the
haplotype frequencies in the disease population, and the
likelihoods can be estimated by simulation. Again, just as
for a single marker, it is necessary to normalize the likeli-
hoods by dividing by [, fi where f;,, n;,and i = 1, 2, 3, 4
are the sample frequencies and counts of the ith haplo-
types in the disease sample.

Results

We illustrate the method by reference to four diseases,
rather than by extensive simulations, partly because of the
number of nuisance parameters that must be specified. The
diseases are CF, diastrophic dysplasia, Friedreich ataxia
(FA) and HD. We assumed that the most frequent marker
allele on the disease chromosomes was the ancestral allele,
i.e., the marker allele on the chromosome on which the
disease mutation arose. In most cases this was an obvious
choice, but for such highly variable markers as microsatel-
lites the choice may not be as clear. For convenience, we
always take the observed marker allele frequencies in the
normal sample to be the population frequencies for the
simulations, and we always used 1,000 simulations to esti-
mate the likelihoods. We found that 1,000 gave a reliable
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picture of the likelihood curve in several test cases when
we also used 10,000 simulations.

CF

CF is an autosomal recessive disease that provides the
best example of the utility of linkage disequilibrium in
mapping disease genes. As already noted, linkage disequi-
librium for CF has been found in several Caucasian popu-
lations of western European origin. Therefore, we
multiplied the frequency, .02, of the disease gene by 10’ to
obtain X7(G) = 2 X 10”. Accordingly, we retain only those
simulation runs for which the size of the disease popula-
tion is in the interval (1.6 X 107, and 2.4 X 107). The size
of the interval is arbitrary, and the main effect of this size
is in determining the number of simulations needed. If the
age G of the disease is specified, then the growth rate A
follows from (1 + A)¢/2A = 2 X 10".

Likelihoods were calculated with G = 200 and A
= 0.078. As Kaplan and Weir (in press) showed, the likeli-
hoods are essentially the same for the same values of ¢G,
so that support intervals for c, using other values of G can
be obtained from those given here by multiplying them by
200/G. In tables 1 and 2 we show estimates, and upper
and lower support limits, for ¢ for the markers MET,
D758, XV2C, and KM19. For MET and D7S8, the likeli-
hood was evaluated for values of ¢ that were multiples of
0.001, whereas for XV2C and KM19 the values of ¢ were
multiples of 0.0005. We have used G = 200 in all calcula-
tions and have documented elsewhere (Kaplan et al., in
press) our doubts about the recent revision in the age of
the AF;o3 mutation for CF to 2,600 generations (Morral et
al. 1994).

The first extensive sets of haplotype data for MET and
D758 were published by Beaudet et al. (1986). The data
were from several laboratories, and we have pooled them
for this study. In table 1 we show bounds on ¢ for the MET
polymorphisms pmetD/Tagql, pmetH /Tagl, and pmetH/
Mspl. The pmetD/Taql allele frequencies from the Lon-
don data were different from those from the other labora-
tories, so the bounds were calculated with those data ei-
ther included or excluded. The data given by Beaudet et
al. (1986) for pmetH /Tagql did not show evidence of sig-
nificant linkage disequilibrium and so were not used.
However, two other data sets for this marker did have sig-
nificant % statistics and so were included. All of the data
sets except two, pmetH /Mspl of Beaudet et al. (1986) and
pmetH /Taql of Kerem et al. (1989), suggest that a conser-
vative upper bound on c is .01. The two discrepant data
sets suggest slightly larger bounds (.013 and .014). The
lower bound on c is ~.002.

The 2 values in table 1 are those for the 2 X 2 contin-
gency tables of disease versus marker types, and they indi-
cate the strength of the association between the two loci.
As expected, the likelihood curves in figure 1 show likeli-
hood curves with less spread for higher %* values.
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Upper and Lower Support Limits for the Recombination Fraction between the CF Gene and Markers MET and D7S8 (under the

Assumption That G = 200 and A = .078)

GREATEST MARKER-

ALLELE FREQUENCY DISEASE MAXIMUM-

SAMPLE LowEer UPPER LIKELIHOOD

MARKER Disease Normal S1ze x? LiMIT LiMIT ESTIMATE
pmetD/Tagl* ........ .88 77 402 17.4 .002 .008 .005
pmetD/Taql ........ 92 77 296 251 .001 .006 .003
pmetD/Tagl’ ........ 95 .80 79 8.7 .000 .006 .002
pmetH/Tagql® ........ 73 47 115 15.0 .001 .008 .004
pmetH /Tagl ........ 71 .54 69 4.5 .002 .014 .006
pmetH/Mspl* ....... 71 .57 150 6.5 .003 .013 .007
pmetH /pmetD* ..... .62 42 348 29.0 .003 .010 .005
pmetH /pmetD? ..... .64 .34 115 20.3 .003 .008 .005
pJ3:11/Mspl* ........ 56 41 448 18.5 .005 .012 .008

2 Beaudet et al. (1986).

b Beaudet et al. (1986) without London data.

¢ Kerem et al. (1989).
4 Cutting et al. (1989).

Table 2

Upper and Lower Support Limits for the Recombination Fraction between the CF Gene and Markers XV2C and KM19 (under the

Assumption That G = 200 and ). = .078)

GREATEST MARKER-
ALLELE FREQUENCY DISEASE MAXIMUM-
SAMPLE LOwWER UPPER LIKELIHOOD
MARKER AND COUNTRY Disease Normal SIZE LiMIT LimiT ESTIMATE

XV2C:

Denmark® ........cueuene. 97 .38 280 .0001 .0009 .0004

.86 46 178 .0005 .0035 .0020

.87 .52 680 .0010 .0035 .0020

.88 .48 60 .0005 .0040 .0015

.73 .50 100 .0020 .0080 .0050

.74 .48 254 .0020 .0070 .0050

Northern Europe® ..... .83 S1 64 .0000 .0060 .0030

United States? ........... 92 46 409 .0000 .0018 .0010
KM19:

Denmark® .................. 94 25 280 .0002 .0011 .0006

.86 31 178 .0006 .0024 .0016

.90 28 680 .0004 .0015 .0010

.90 27 60 .0000 .0024 .0010

72 .34 100 .0010 .0060 .0030

.79 .30 228 .0010 .0035 .0025

.88 .30 80 .0000 .0025 .0015

93 27 409 .0004 .0014 .0010

2 Serre et al. (1990).
b Estivill et al. (1988).
¢ Kerem et al. (1989).

4 Cutting et al. (1989) plus Beaudet et al. (1989).
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Figure |

0.015 0.020

The likelihood function for two samples from table 1, showing the effects of the strength of the association between disease and

marker loci. The dotted line is for pmetD /Tagql* data with a x® of 17.4, and the solid line is for pmetH /TagI° with a %2 of 4.5. The 2-LOD intervals are

also indicated.

Since pmetD/Tagql and pmetH /Tagl are so close, we
also considered them as constituting a single three-allele
marker (see Beaudet et al. 1986, table 7). We excluded the
very rare double recombinant, and the results also support
the bounds of .002 and .01 on c. Table 1 also shows
bounds on ¢ for the flanking marker pJ3.11=D7S8. These
results show that upper and lower bounds on ¢ for the
polymorphism p]3.11/Mspl are still .012 and .005, for G
= 200.

Beaudet et al. (1986) used linkage analysis to obtain up-
per confidence bounds of .012 and .011 from the disease
locus to MET and D758, respectively. These bounds are
consistent with those given in table 1. The lower bounds
in the table are >0, whereas Beaudet et al. could not ex-
clude zero recombination rates. Kerem et al. (1989) gave
a physical map for the region surrounding the CF gene,
showing ~900 kb from MET to CF and ~800 kb from
D758 to CF. These translate to recombination fractions of
.009 and .008, if 1 cM = 1,000 kb.

In table 2 support limits on ¢ are given for two closer
markers, XV2C and KM19. Data and results are shown for
six European countries and two pooled samples, northern

Europe and United States. Apart from Denmark, which
may have been more isolated than the other European
countries sampled, the most frequent marker alleles in the
normal populations had very similar frequencies. How-
ever, the most frequent marker alleles in the CF popula-
tions show a clear increase from south to north. Spain and
Italy have lower frequencies than do Germany, France, and
Great Britain, while Denmark has the highest frequencies.
The simplest explanation is that the CF mutation spread
across Europe by migration. The higher the frequency of
the most frequent marker allele in the disease population,
the more recent was the introduction of the disease into
the population, and the less time there has been for the
association between disease and marker to have been
weakened by recombination. This hypothesis has been dis-
cussed in detail by Serre et al. (1990). The calculations in
table 2 use 2 X 107 for the worldwide size of the CF pop-
ulation. We repeated the calculations, using the sizes for
individual countries, and found little change in the results.

The data from France, Great Britain, and Germany sug-
gest that the recombination fraction between XV2C and
CF < .004, assuming G = 200. Spain and Italy give compa-
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rable estimates if the disease is =300 generations old in
those countries. The bound for Denmark is much lower,
suggesting the reasonable scenario of a more recent intro-
duction of CF into Denmark. The same pattern is found
for KM19, except that the bounds are somewhat smaller,
which would suggest KM19 is closer to CF than is XV2C.
The U.S. data lead to smaller bounds on ¢ for XV2C and
KM19 than any of the European data, with the exception
of Denmark.

There do not appear to be any linkage data between CF
and XV2C or KM19, probably because these markers are
so close to the CF gene. Values have been suggested, from
indirect evidence, for the recombination values from CF
to these markers by Farrall et al. (1988) and Beaudet et al.
(1989).

Under the assumption that the CF mutation is =200
generations old, the bounds in table 2 for Germany,
France, and Great Britain are consistent with the physical
distances given by Kerem et al. (1989). These authors’ esti-
mates of ¢ for XV2C and KM19 are .003 and .023, respec-
tively. Serre et al. (1990) set up transition equations for
marker haplotype frequencies and manipulated these to
arrive at a moment estimator for the recombination frac-
tion from French data. They reported .0015 for XV2C and
.0008 for KM19, assuming G = 200. These values are
lower than those in table 2, probably because of the use of
expected values by Serre et al. (1990). The moment esti-
mate of Histbacka et al. (1992) also gives underestimates
for the recombination fraction c.

Two-locus data were considered for determining the or-
der between MET, D758 and CF. Using linkage analysis,
Beaudet et al. (1986) estimated c;,, the recombination
fraction between MET and D7S8, to be .018, with a con-
fidence region of .008-.036. For several different values
of ¢;,, we maximized the likelihood for each of the three
possible orderings of pmetH /Taql, p/311/Mspl, and CF,
by using the haplotype data given by Beaudet et al. (1986).
We assumed that G = 200 and that A = .078. For CF be-
tween the two markers, the likelihood function was eval-
uated at nine equally spaced points along the marker in-
terval, and the maximum value was plotted in figure 2. For
the other two orders, the likelihood was evaluated for a
series of recombination values from CF to the nearest
marker calculated as multiples of 0.001, and the maximum
of these values was plotted in figure 2. Clearly, the order
with best support has CF between the two markers. For
¢z = .01, however, the odds against the order CF-MET-
D758 are only 5:1. Because the curve for this order de-
creases very rapidly as ¢;, increases, and because .01 is at
the lower end of the support interval for c,,, the data do
not lend strong support to the order. In almost all cases,
the likelihood for the MET-CF-D7S8 order was maxi-
mized for ¢; = 3¢,,/8, so, for example, if ¢,, = .018, the
estimates of ¢; (CF-MET) and ¢, (CF-D7S8) are .007 and
.011, respectively. When the likelihood calculations were
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Figure 2 For each of the three orderings of CF, MET, and D7S8,

the maximum value of the natural logarithm of the likelihood is plotted
as a function of ¢,,, the recombination fraction between MET and D7S8.

repeated with G = 300, ¢;, > .0135, the curves were signifi-
cantly lower than those for G = 200, suggesting that ¢;, >
.015 and G = 300 are not compatible. Recently, Serre et
al. (1990) also concluded that G lies between 150 and 250.

Since the markers XV2C and KM19 are so close, we
ignored the possibility that the CF gene lies between them,
and considered only the other two orderings. We evalu-
ated likelihoods for the two values of the recombination
fraction ¢, between these two markers: .0006 (Kerem et
al. 1989) and .001 (Beaudet et al. 1989). We used G = 200
and A = .078, and chose ¢, ¢, values to maximize likeli-
hoods for ¢;, values that were multiples of 0.0004. Data
from France (Serre et al. 1990), Italy (Estivill et al. 1988),
and the United States (Cutting et al. 1989) were analyzed.
The results in table 3 strongly support the order XV2C-
KM19-CF.

Diastrophic Dysplasia

Diastrophic dysplasia is an autosomal recessive disease.
Histbacka et al. (1990) used linkage analysis to localize, to
chromosome 3, the gene (DTD) responsible for the dis-
ease, and Hastbacka et al. (1992) used linkage disequilib-
rium in Finnish data to give a more precise location. These
Finnish data provide an excellent example for the present
method. There is evidence that the current Finnish popu-
lation descended from a founding population ~2,000
years ago and has subsequently been isolated. It is reason-
able to hypothesize that the current frequency of DTD in
Finland, ~0.8%, is the result of a founder event due to a
population bottleneck. The present-day population size of
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Table 3

Likelihoods for the Orders of XV2C, KM19, and CF (under the Assumption that G = 200 and ). =

.078)

Maximum Maximum-Likelihood
Sample and Order 12 In(Likelihood) Estimate of ¢*

France®:
XV2C-KM19-CF ......... 0006 {—2.54 .0012
CF-XV2C-KM19 ......... ] ’ —8.30 .0008
XV2C-KM19-CF ......... 001 [-—1.54 .0012
CF-XV2C-KM19 ......... } ’ —9.80 .0008

Italy:
XV2C-KM19-CF ......... ] 0006 [—2.42 .0020
CF-XV2C-KM19......... . —4.67 .0016
XV2C-KM19-CF ......... 001 [—1.52 .0020
CF-XV2C-KM19 ......... ] . —5.45 .0016

North America®:
XV2C-KM19-CF......... 0006 {—4.1 8 .0008
CF-XV2C-KM19 ......... ] ’ —-5.68 .0004
XV2C-KM19-CF ......... 001 [—3.60 .0008
CF-XV2C-KM19 ......... ] ’ —6.25 .0004

2 Recombination fraction from CF to nearest marker.

b Serre et al. (1990).
< Estivill et al. (1988).
4 Cutting et al. (1989).

Finland is ~$ million, so the disease population size is
~80,000 chromosomes. With G = 100 and 20 years per
generation, the growth rate is A = .102 if X(0) = 1. If
Xr(0) # 1, equation (2) needs to be modified. Since the
probability that the disease population does not go extinct
is ~1 — X1 it follows from equation (2) that X7(G)
= [XH0)1 + A)°)/[1 — e 2*1%, Under the assumption of
Histbacka et al. (1992) that the founding population had
a size of ~10°, ~8 of these people are expected to have
carried the disease mutation, and the corresponding value
of A is .094. The size of X7(0) has little effect on A.

Histbacka et al. (1992) used a slightly different approach
for determining A. They assumed a founding population
size of 1,000 and a current population size of 5 million and
related the two by exponential growth, i.e., 107 = ¢*°10°.
This provides A = .092, but it makes little difference to the
results if we use A = .092, .094, or .102, and we choose to
use the last value.

Five informative polymorphisms were identified in the
CSF1R gene on chromosome 5. The upper bounds on re-
combination fractions between the DTD locus and Styl
and EcoRI are .0026 and .0022, respectively, suggesting
that the DTD gene is within ~250 kb of these polymor-
phisms. The bound given by Histbacka et al. (1992) was
.00086 (86 kb). The two-marker analysis was not informa-
tive, because the markers are too close together and be-
cause only one chromosome in the disease sample (the
haplotype 1-2: allele 1 at locus Styl and allele 2 at locus
EcoRlI) could have been a recombinant. There is no com-

pelling evidence from linkage disequilibrium in favor of
either of the orders DTD-Styl-EcoRI or Styl-EcoRI-
DTD. We also treated Styl-EcoRI as a single polymor-
phism with four alleles, and found an upper bound of
.0021 forc.

Hastbacka et al. (1992) also typed three microsatellite
markers in the neighborhood of the two RFLPs. Although
the high mutation rate for these markers limits their use
in association studies, they do provide useful evolutionary
information. For example, the five-marker haplotype
(CCTT-CA-Styl-TAGA-EcoR]) for the single 1-2 Sty-
Eco haplotype is 1-1-1-1-2, which is the same as the most
frequent disease haplotype 1-1-1-1-1, apart from the
EcoRlI allele. This haplotype is not seen in the normal sam-
ple, suggesting that it has a low frequency in the normal
population. The simplest explanation for the 1-1-1-1-2
haplotype is that a recombination event occurred between
microsatellite TAGA and EcoRlI, involving a disease chro-
mosome with haplotype 1-1-1-1-1 and a normal chromo-
some having the EcoRI-2 allele. As Histbacka et al. (1992)
pointed out, this scenario would imply that the DTD gene
is distal to the CSF1R gene.

The five-marker haplotypes of the eight DTD chromo-
somes whose Styl-EcoRI haplotype differs from 1-1 call
into question the original assumption that all these haplo-
types are products of recombination. From table 2 of Has-
tbacka et al. (1992), seven of the eight had StyI-EcoRI hap-
lotype 2-2, six had Styl-TAGA-EcoRI haplotype 2-5-2,
five had CA-Styl-TAGA-EcoRI haplotype 7-2-5-2, and
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four had CCTT-CA-S#yl-TAGA-EcoRI haplotype 1-7-2-
5-2. These haplotypes are such that at least four of them
may be the consequence of a single recombination event.
How could this have happened? With only recombination
as a mechanism, a substantial fraction of the non-1-1-dis-
ease Styl-EcoRI haplotypes are a consequence of a single
recombination, and at least four (and possibly seven) of
the eight were chosen at random from descendants of this
event. This seems unlikely. Alternatively, there may have
been additional disease mutations, or immigration of
different disease haplotypes. (A reviewer pointed out that
Finland received a large number of immigrants from Swe-
den during the Middle Ages [de la Chappelle 1993].) Mu-
tation seems improbable, given that the 1-7-2-5-2 haplo-
type is rare in the normal population also. Even though
the assumption that the eight non-1-1 Styl-EcoRI disease
haplotypes are all recombinants may not be correct, the
assumption is conservative and, at worst, leads to an over-
estimate of the recombination fraction c.

Hastbacka et al. (1992) proposed using equation (3) to
provide an upper bound on the recombination fraction.
We performed simulations to evaluate the behavior of this
bound. For each of four different values of ¢, .0006, .0012,
.0018, and .0024, we simulated 100 samples of DTD chro-
mosomes. Each sample was obtained by first simulating a
population of DTD chromosomes and then taking a ran-
dom sample of size 152. The simulation parameters were
the same as those used to obtain the likelihood estimates
of ¢ for Styl and EcoRI (G = 100, A = .102, and p,, = .26).
We found for small values of ¢ that evolutionary forces
skew the values of p,, toward 1. The estimate of Hast-
backa et al. does not adequately compensate for this, so
they underestimate the actual value <70% of the time in
the simulations. We also found that the upper bound pro-
posed by Histbacka et al. was less than the actual value of
¢ 240% of the time. Moreover, those values of the bound
less than the true value had a mean of about two-thirds the
true value. The likelihood-based bound on ¢ was almost
always greater than the true value. Although this is satis-
factory, the bound was typically at least twice the true
value and so quite conservative (table 4).

FA

FA is an autosomal recessive neurodegenerative disease
with an incidence reported to be 1 in 50,000 for the United
Kingdom (Chamberlain et al. 1988) and 1 in 25,000 for
Italy (Romeo et al. 1983). The FA gene, FRDA, was local-
ized to chromosome 9, by linkage analysis (Chamberlain et
al. 1988) and found to be within 1 cM of the tightly linked
markers D9SS and D9S15 (Chamberlain et al. 1993), with
few recombinants observed between the disease and these
markers (Rodius et al. 1994). Linkage disequilibrium be-
tween FA and the marker D9S15 /D9SS has been found in
some populations (e.g., see Fujita et al. 1990; Hanauer et
al. 1990; Pandolfo et al. 1990) but not in others (Chamber-

27

lain et al. 1993), suggesting either a founder effect (Sirugo
et al. 1992) or multiple disease mutations, with none in
high frequency. Much of the linkage disequilibrium data is
from France (Fujita et al. 1990; Hanauer et al. 1990), so we
consider only these data and use the size of the French
population of approximately 10® chromosomes. Accord-
ingly, XH{G) = 5 X 10°.

Since there is no evidence for the age of the disease mu-
tation, we used G = 200 and A = .056 for the likelihood
calculations. The resulting bound on ¢, from the D9S15/
Mspl data of Fujita et al. (1990) is .012, which is compara-
ble to the bound found by linkage analysis (Hanauer et al.
1990). If a smaller G were chosen, the bound would have
been even larger. These data, therefore, do not provide
much additional information regarding the location of the
FA gene. For these data to be of help, the disease mutation
would have to be older than 200 generations. The lower
bound on ¢ was .002, whereas Hanauer et al. (1990) could
not rule out ¢ = 0 with linkage analysis.

Fujita et al. (1990) presented additional polymorphisms
at D9SS5 and D9S15. The three-allele marker D9S5 /26P-
BstXI data do exhibit linkage disequilibrium with FA, un-
like the D9SS5/Mspl polymorphism, although we found
the resulting bound on ¢ to be >.03, which is larger than
the .015 value found by linkage analysis. They also identi-
fied a six-allele microsatellite marker for D9S15 that shows
linkage disequilibrium with FA, and the likelihood bound
on c is .02. The upper bounds on ¢ were too large for these
markers to be of great use. For each marker, the large
bound results from both the low frequency of the most
frequent marker allele and the small size of the disease
sample. For example, the disease sample size for D9S15/
Mspl was 76, and the highest marker allele frequency was
.55, as compared with .3 in the normal sample. Apart from
factors such as multiple disease mutations, gene conver-
sion, and double recombination events, there is the addi-
tional possibility of mutation at this microsatellite marker,
lowering the highest marker frequency in the disease pop-
ulation.

Pandolfo et al. (1990) sampled Italian families but did
not find linkage disequilibrium between D9S5 /26P-BstXI
and FA. This may be a sampling phenomenon. They did
find linkage disequilibrium for the D9S15 /Mspl polymor-
phism, but the M, allele had a frequency of .60 in the dis-
ease sample and of .80 in the normal sample. This situation
is one in which the marker shows linkage disequilibrium
with the disease, but the marker allele frequencies are not
consistent with the theory in this paper. It is difficult to
distinguish between noncompliance with the model and
the effects of small sample size. :

Additional evidence for possible ambiguities in linkage
disequilibrium data for FA is provided by Chamberlain et
al. (1993). No associations were found between disease
and alleles at either D9S5 or D9S15 in a worldwide sample
of 104 FA families or in a subset of 41 U.K. FA families.
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Table 4
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Comparison of Bounds on c Given by Histbacka et al. (1992) and by Likelihood Method, by Using
Styl Data of Histbacka et al., on the Basis of 100 Simulations

HASTBACKA ET AL. LIKELIHOOD
Mean (SD) Proportion of Mean (SD) Proportion of
c Bound* Bounds < ¢ Bounds® Bounds < ¢
6 .. 36 (.11) 49 1.82(.67) .00
1.2..... .83(.21) 40 3.40(1.30) .01
18 ...... 1.33(.31) .66 3.95(1.15) .01
24 ... 1.71(.39) .64 4.68(1.11) .01

NOTE.—Values of ¢ and bounds are X103,

* Mean and SD are calculated conditional on the bound being less than ¢ (Hastbacka et al.) or on the bound

being greater than c (likelihood method).

The linkage studies of Chamberlain et al. (1993), however,
did provide additional evidence that both D9S5 and
D9S15 are within 1 cM of the disease locus. On the basis
of a rare recombinant event, Chamberlain et al. (1993) pro-
posed the order FA-D9S5-D9S15. If there were a single
disease haplotype, this order could not support the ex-
tended haplotype data of Fujita et al. (1990), on the basis
of only single recombination events. Given the rarity of
double recombinants within map distances of 1 cM, it
seems more likely, as suggested by Chamberlain et al.
(1993), that there are multiple ancestral mutations, none
of which have a high frequency in the disease population.

HD

HD is a very rare dominant, late-onset disease that
affects ~1 in every 10,000 people of European descent
(The Huntington’s Disease Collaborative Research Group,
1993). The gene responsible for the disease has been local-
ized by linkage analysis to a region of chromosome 4 (Gil-
liam et al. 1987; Whaley et al. 1988). Crossover events pre-
dicted two physically separated candidate regions contain-
ing the disease gene: a 100-kb terminal region near the
telomere and a 2.5-Mb internal region between markers
D4510 and D4S168 (Andrew et al. 1992). Linkage disequi-
librium data did not clarify the picture, although the evi-
dence appeared to favor the internal region. Unlike the
situation for CF, there is no predictable pattern to the
marker associations, and so these data have not provided
a more precise placement of the HD gene. There has also
been discussion about possible misdiagnoses of the disease
(Andrew et al. 1994).

An alternative strategy is to compare detailed haplo-
types of HD and normal chromosomes in the candidate
region and look for subregions containing a consistent HD
haplotype. MacDonald et al. (1992) used a number of
multiallele polymorphisms to study the internal candidate
region and found that >40% of the HD chromosomes in
their sample had one of two distinct haplotypes in a 500-

kb subregion between markers D45180 and D4S182. This
suggests that these HD chromosomes may be ancestrally
related and that the genetic defect may be in this subre-
gion. Subsequent work by the Huntington Disease Collab-
orative Research Group (1993) identified in the subregion
a new gene, IT15, with an expandable unstable trinucleo-
tide repeat, which is believed to be the genetic alteration
responsible for the disease.

The subregion identified by MacDonald et al. (1992)
contains the marker D4S95, which shows consistent link-
age disequilibrium with HD, for the polymorphisms Accl
and Mbol (Thielmann et al. 1989; Adam et al. 1991; Mac-
Donald et al. 1991; Andrew et al. 1992; Skraastad et al.
1992; Snell et al. 1992) but does not show disequilibrium
for the nearby Tagl polymorphism. As pointed out by
MacDonald et al. (1992), one explanation of this disequi-
librium inconsistency is that the two most common hap-
lotypes in their sample differ for Tagl alleles but not for
Accl or (presumably) Mbol alleles. We proceeded with the
likelihood analysis for the Accl and Mbol data, recognizing
that there are multiple ancestral haplotypes and that the
bounds may underestimate the true value of c.

For table S, five data sets are considered in which there
is evidence of linkage disequilibrium between HD and
D4S95 /Accl. Two of these data sets are from the United
Kingdom (Snell et al. 1989; Adam et al. 1991); one is from
the Netherlands (Skraastad et al. 1992); one is from Can-
ada, which can be regarded as a western European sample
(Andrew et al. 1992); and one is a western European sam-
ple (MacDonald et al. 1991). We adopted the same ap-
proach as for CF and took the population size to be 10’
chromosomes. The disease-population size was assumed
to be 10°, and we used G = 200 and A = 0.047. The upper
bounds on c in table 5 range from .008 to .015. We also
pooled the data, to obtain a bound of .008. These values
are in line with the conclusion of MacDonald et al. (1992),
giving a 700-kb region around D4S95 as most probably
containing the disease gene.
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Table 5
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Upper and Lower Support Limits for the Recombination Fraction between the HD Gene and Markers D4S95 and D4S127 (under the

Assumption That G = 200 and A = .047)

GREATEST MARKER-
ALLELE FREQUENCY DISEASE MAXIMUM-
SAMPLE LOWER UPPER LIKELIHOOD
DATA SET Disease Normal SIZE 0 LiMIT LIMIT ESTIMATE
DA4S95/Accl:
Snell et al. (1989) .88 .59 1 11.1 .000 .008 .003
Adam et al. (1991) . .84 .64 56 8.0 .001 .012 .004
Skraastad et al. (1992) ......... 92 .68 24 52 .000 .011 .002
MacDonald et al. (1991) ..... .88 73 51 4.6 .000 .015 .004
Andrew et al. (1992) ........... 81 .68 112 8.1 .001 .015 .006
Pooled data .........c.cvevuun.. 85 67 284 419 .001 .009 .005
D4S95 /Mbol:
Snell et al. (1989) ................ .90 .63 51 11.9 .000 .007 .002
Adam et al. (1991) . .84 .56 51 13.5 .001 .008 .003
Skraastad et al. (1992) ......... .89 .57 45 14.9 .000 .006 .002
Andrew et al. (1992) ........... 81 .64 115 12.2 .001 012 .005
Pooled data .85 .61 262 50.1 .001 .007 .004
D45127 /Pvull:
MacDonald et al. (1991) ..... .84 58 58 12.7 .000 .008 .003

Also included in table 5 are results for four data sets,
two UK., one Netherlands, and one Canadian, showing
linkage disequilibrium for the D4S95/Mbol polymor-
phism. The bounds in these cases are slightly smaller, with
the pooled data suggesting a bound of .007. The final data
setin table 5 is for the marker D4S127, located near D4S95
and included in the haplotype analysis of MacDonald et
al. (1992). The bound on ¢ was found to be .008.

The marker D45S98 also shows linkage disequilibrium
with HD (Snell et al. 1989; Thielmann et al. 1989; Mac-
Donald et al. 1992), but the allele frequency pattern at this
locus is not consistent with our evolutionary model. The
most frequent marker allele among the HD chromosomes
is less frequent than it is among the normal chromosomes.
The ? statistic for association between marker and disease
is large for reasons other than discussed here, and we cau-
tion against the use of this marker. Either a small sample
size or population heterogeneity may be responsible for
this finding, and indeed, linkage disequilibrium for D4598
and HD is not found in the data of either Skraastad et al.
(1992) or Andrew et al. (1992).

There are many reasons to be cautious when interpret-
ing linkage disequilibrium results for HD. Andrew et al.
(1992) showed three tightly linked markers ~3 Mb te-
lomeric to D4S95 that were in linkage disequilibrium with
HD, although several intervening markers did not show
allelic associations with the disease. This behavior is not
expected if it is recombination that is responsible for
marker variation in the disease population. One obvious
explanation for this unusual association pattern is the oc-
currence of multiple ancestral mutations at different loca-
tions on chromosome 4. MacDonald et al. (1992) haplo-

typed 78 HD chromosomes in the region around D4S95,
identified two possible ancestral haplotypes comprising
about one-third of the sample, and suggested that there
may be more. It would be very interesting if the chromo-
somes were also typed for the markers identified by An-
drew et al. (1992), to see whether haplotype patterns can
be explained by the multiple mutation hypothesis.

Discussion

Linkage analysis has proved to be very successful in lo-
calizing disease genes. Its usefulness is limited in fine-scale
mapping, however, because of the difficulty in obtaining
recombinationally informative families. An alternative
strategy based on linkage disequilibrium has been used
with some success. This approach, which is population
based rather than family based, compares marker allele fre-
quencies in normal and disease chromosomes. If these fre-
quency distributions are judged to be different, then the
marker is of interest and may be close to the disease locus.

It is not easy to quantify physical or genetic distance
on the basis of linkage disequilibrium. We have criticized
previous attempts to estimate recombination values ¢ be-
tween disease and marker loci from linkage disequilibria
on several grounds, including the large variances associ-
ated with such estimates and lack of attention to sampling
strategies. The issue we have taken up here concerns the
underlying evolutionary model. Until the work of Haist-
backa et al. (1992), previous attempts to estimate ¢ have
assumed a state of equilibrium between the forces of drift
and recombination, and sometimes mutation. Equilibrium
models are almost certainly not appropriate for rare hu-
man diseases.
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Linkage disequilibrium analysis rests on the simple ob-
servation that descendants of a disease mutation tend to
share the ancestral haplotype in the neighborhood of the
disease locus. The size of this neighborhood depends on
the recombination rate ¢ and the age G of the mutation,
with the product ¢G being the critical parameter. The
value of this parameter cannot be large if the current pop-
ulation contains ancestral disease haplotypes. The equilib-
rium model requires large G values, and hence values of
c that are unrealistically small for all markers in linkage
disequilibrium with the disease. This problem is overcome
by abandoning the equilibrium model, as must be done
if ancestral haplotypes are present in the current disease
population. This conclusion holds in general and not just
for isolated populations, as might be inferred from the Fin-
nish study of Hastbacka et al. (1992).

Under reasonable assumptions, a Poisson branching
process gives an adequate description of the early growth
of the disease population. Simulation can be used to pro-
vide maximum likelihood bounds for the recombination
fraction ¢ between a marker and the disease locus. The
evolution of marker allele frequencies in the disease popu-
lation is simulated many times, and samples are drawn
from these simulated populations for the likelihood calcu-
lations. An advantage of basing estimation on simulations
is that additional information can be incorporated into the
analysis. For example, if there is information on the size of
the disease population, then it can be required that simu-
lated disease populations have a size close to this value.
The results are fairly robust to the several parameters that
must be specified for simulation, except for the age G of
the disease. Fortunately, G acts as a scale parameter
(Kaplan and Weir, in press), so a single value can be used in
simulations. This still allows the comparison of results
over several marker loci, for which G will be the same.

To carry out the simulations it is necessary to specify
the ancestral marker allele. Usually, the obvious choice is
the most frequent allele in the disease sample. In cases
where the choice is ambiguous, such as for microsatellite
markers, computing the likelihood conditional on each al-
lele being ancestral, weighting each likelihood by the a pri-
ori probability on ancestry and then maximizing the over-
all likelihood seems to be a reasonable strategy that would
merit further research.

Another benefit of using simulations is that it is not nec-
essary to assume a constant population size. For the
branching process model, changing the population size
causes A to change, and it is a simple matter to incorporate
these changes into the simulation. The human population
has increased rapidly, especially in recent generations, and
one simple way that this may be modeled is with a constant
A for all but the most recent generations. Since allele fre-
quencies do not change very much in large populations,
we would not expect this modification to alter our conclu-
sions very much. This was borne out by simulation.

Am. J. Hum. Genet. 56:18-32, 1995

An idea of the success of the simulation approach is pro-
vided by an examination of the marker allele distribution
in the disease sample. The theory adopted here supposes
one marker allele in the initial disease population, and then
a decrease in the frequency of this allele to the value in the
general population. Detection of linkage disequilibrium,
where the most frequent marker allele has a lower fre-
quency in the disease than in the normal population, indi-
cates that the theory does not hold in those cases: e.g.,
D4598 /Sstl and HD (Snell et al. 1989) and D9S15/Mspl
and FA (Pandolfo et al. 1990). Caution should be exer-
cised for markers with this kind of allele frequency distri-
bution.

Four human diseases were discussed in this paper. Re-
combination values found by the likelihood approach for
CF were consistent with the physical map given by Kerem
et al. (1989). It is instructive to point out why CF is the
best example of the use of linkage disequilibrium to map a
gene. In the first place, most disease chromosomes descend
from a single ancestral mutation, AFsg. Second, most of
the markers on the ancestral haplotype in the vicinity of
the disease locus had alleles with low frequencies in the
general population. Finally, the mutation is recent enough
so that recombination has not yet had the opportunity to
break up the ancestral haplotype. This argument was made
by Serre et al. (1990) in arguing for the disease being young.
(An alternative hypothesis, based entirely on arguments
about mutation, was made by Morral et al. [1994] to argue
for a much greater age. We have doubts about this argu-
ment [Kaplan et al., in press].) This evolutionary scenario
made CF a lucky” case for using linkage disequilibrium,
and there is no reason to expect other diseases to have
such a favorable history.

Indeed, linkage disequilibrium was not very informative
for FA or HD. For FA, the most frequent marker alleles in
the disease population have relatively low frequencies,
and, at best, the likelihood bounds on recombination from
linkage disequilibrium are comparable to those found
from linkage analysis.

The picture is confused for HD. Although all published
studies show markers near D4S95 in disequilibrium with
the disease, the most frequent alleles have similar frequen-
cies in the normal and disease samples. The Dutch data
may be more informative, because of greater homogeneity
of that population, and suggest that the recombination
fraction between D4S95 and the HD gene is <.014. The
real problem is that there are multiple ancestral haplotypes
(MacDonald et al. 1992), and no single haplotype has a
high current frequency. It is possible that larger sample
sizes will help, but clinical variation in the disease (e.g.,
variable age at onset, severity, and rate of progress) sug-
gests that there are multiple disease mutations. It is also
possible that expansions of the trinucleotide repeat asso-
ciated with the disease occur only on particular haplo-
types, and that this is why linkage disequilibrium is ob-
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served for D4S95 /Accl and D4S95 / Mbol. Of course, this
phenomenon would invalidate the present model.

The fourth example discussed was diastrophic dysplasia
in Finland. The linkage disequilibrium data there are very
compelling, and there is no question that markers close
to the disease locus have been identified. Histbacka et al.
(1992) gave a moment estimate of ¢G, and then appealed
to the Luria-Delbriick theory to place an upper bound on
¢G values. Our simulations showed that, by failing to take
into account the stochasticity of the growth process, these
authors gave an estimate that is too low ~70% of the time
and a bound that is less than the parameter value ~40%
of the time. We recommend caution when using this
bound. In contrast, the likelihood bound is almost always
greater than the true value but tends to be conservative.

The likelihood method was easily extended to two
marker loci and may help to determine the relative order-
ing of disease and marker loci. We were able to identify
the correct order for markers MET and D758 and the CF
locus. The analysis depends on the estimated recombina-
tion fraction ¢;, between the markers, and could proceed
by estimating likelihoods conditional on c,,, weighting the
results by the likelihoods of ¢;, obtained from linkage
studies, and then maximizing the overall likelihood. This
approach, which would be superior to the simpler one we
used in this paper, would require detailed linkage analyses
for marker loci.

Linkage disequilibrium data do not require the identi-
fication of many members from disease families, but the
conclusions from such data can be ambiguous. There is
the danger that diseases such as CF, where linkage disequi-
librium can help locate the disease gene, will prove to be
the exception, and diseases such as FA will prove to be the
norm. We hope that the discussion in this paper will lead
to appropriate caution in interpreting linkage disequilib-
rium data but will lead to useful conclusions when these
are warranted.

Copies of a program to carry out the likelihood calcula-
tions described in this paper are available from B.S.W.
Hastbacka et al. (1994) cloned the DTD gene and found it
in the predicted location, 70 kb proximal to the CSF1R
gene.
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