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Summary

Sib-pair analysis is an increasingly important tool for
genetic dissection of complex traits. Current methods
for sib-pair analysis are primarily based on studying
individual genetic markers one at a time and thus fail
to use the full inheritance information provided by
multipoint linkage analysis. In this paper, we describe
how to extract the complete multipoint inheritance in-
formation for each sib pair. We then describe methods
that use this information to map loci affecting traits,
thereby providing a unified approach to both qualitative
and quantitative traits. Specifically, complete multipoint
approaches are presented for (1) exclusion mapping of
qualitative traits; (2) maximum-likelihood mapping of
qualitative traits; (3) information-content mapping,
showing the extent to which all inheritance information
has been extracted at each location in the genome; and
(4) quantitative-trait mapping, by two parametric meth-
ods and one nonparametric method. In addition, we
explore the effects of marker density, marker polymor-
phism, and availability of parents on the information
content of a study. We have implemented the analysis
methods in a new computer package, MAPMAKER/
SIBS. With this computer package, complete multipoint
analysis with dozens of markers in hundreds of sib pairs
can be carried out in minutes.

Introduction

Sib pairs are an increasingly important tool for genetic
analysis of complex traits. Sib pairs are relatively easy
to ascertain in large numbers and tend to be more closely
matched for age and environment than other relative
pairs. Moreover, sib-pair studies require no prior as-
sumptions about such parameters as mode of inheri-
tance, penetrance, phenocopy rate, and disease allele fre-
quency.

Conceptually, sib-pair analysis is straightforward
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one simply determines whether each sib pair shares 0,
1, or 2 alleles identical by descent (IBD) at a locus of
interest. For a qualitative trait, affected sib pairs should
share alleles IBD more often than expected under ran-
dom Mendelian segregation. For a quantitative trait, sib
pairs should show a correlation between the magnitude
of their phenotypic difference and the number of alleles
shared IBD.

In practice, the situation is more complicated because
one cannot unambiguously determine the number of al-
leles shared IBD at every position along the genome.
Most sib-pair studies have focused on studying individ-
ual markers one at a time. Such analyses are inadequate
for two reasons: (i) the exact IBD status cannot always
be inferred at the marker loci (the problem is most acute
when parents are unavailable for study, since inferences
must be drawn based only on identity-by-state (IBS) in-
formation for the offspring, but it occurs even when
parents are available, since some parental mating types
are not fully informative); and (ii) the IBD status at
locations other than marker loci is not assessed.

Various partial solutions have been proposed over the
years. For qualitative traits, a common approach has
been to focus only on the subset of sib pairs for which
IBD allele sharing can be determined unambiguously;
this approach clearly wastes information from sib pairs
that are not fully informative. Another approach is to
focus solely on IBS sharing; this approach fails to take
advantage of information available from multiple mark-
ers and is less powerful than analyses based on identity
by descent (Bishop and Williamson 1990). Risch
(1990b) proposed a method based on maximum likeli-
hood (ML) that takes into account partially informative
matings; a similar method was proposed by Sandkuijl
(1989), and has been incorporated in the Extended Sib-
Pair Analysis program. However, both approaches are
based on analysis of single markers one at a time. Re-
cently, Olson (1995) described another approach to
qualitative-trait mapping that uses a pair of flanking
markers; this approach requires prior knowledge of re-
currence-risk information and fails to make use of addi-
tional markers. In general, interval mapping approaches
that rely only on flanking markers extract all inheritance
information in the case of experimental crosses between
inbred strains (Lander and Botstein 1989) but fail to do
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so in the case of human families-owing to the fact that
markers are not completely polymorphic. There is thus
a clear need for a complete multipoint approach to ex-
ploit the full inheritance information in a pedigree.

For quantitative traits, the approaches have been
somewhat different. Most authors have dealt with the
problem of incomplete information by replacing the un-
known value of the number v'i of alleles shared IBD by
the ith sib pair by its expected value vi, given the genetic
data. Originally, the expected value v(i was calculated
only at individual markers, using only the information
for that marker (Haseman and Elston 1972). More re-
cently, some authors have suggested calculating vi(s) at
each point s in an interval based on the genotypes at the
two closest flanking markers (Fulker and Cardon 1994).
These ad hoc approaches, however, suffer from several
limitations. First, as discussed above, examining just one
or two markers does not extract the full information
about IBD status, and confining analysis to two closest
flanking markers is technically undesirable because it
results in discontinuities in the likelihood surface. Sec-
ond, the mean value vi(s) does not fully describe the IBD
status at each point. Rather, one needs to know the
probabilities nio(s), 7ir1(s), and ni2(s) that the IBD sharing
for the ith sib pair is 0, 1, or 2 at each point s. Although
estimates based on the mean value v'i may be asymptoti-
cally consistent in some cases, they waste information,
with the result that they are statistically inefficient (that
is, they have unnecessarily large variance) compared
with using the full IBD distribution. Third, because the
ad hoc approach is not a true ML method, it is also
difficult to analyze its properties -for example, to deter-
mine appropriate significance levels. As an alternative,
some authors have suggested combining single marker
information so as to obtain an estimate of average IBD
sharing across a chromosomal region rather than at indi-
vidual points (Goldgar 1990; Guo 1994). Such ap-
proaches are an incomplete substitute for actually know-
ing IBD sharing at each point: they fail to exploit the
full data and they cannot be used for fine-structure gene
localization.

Clearly, a unified approach to sib-pair analysis of both
qualitative and quantitative traits is desirable. The best
solution would be a complete multipoint analysis using
the information from all genetic markers to infer the full
probability distribution of the IBD status at each point
along the genome. Specifically, one would like to com-
pute the probabilities nio(s), Ri1(s), ni2(s) of sharing 0, 1,
and 2 alleles IBD for the ith sib pair at every point s,
conditional on the data at all genetic markers along the
genome. In fact, such an analysis can be easily and rap-
idly performed by using a linkage analysis algorithm
described elsewhere by Lander and Green (1987) and
recently improved by Kruglyak et al. (1995). With the
IBD distribution in hand, it is possible to perform the

proper ML generalization of any sib-pair method for
both qualitative and quantitative traits. In the case of
qualitative traits, this approach generalizes the single-
point LOD score method of Risch (1990a, 1990b). For
quantitative traits, methods originally considered by
Haseman and Elston (1972) can be generalized and ex-
tended.

In this paper, we describe the application of this ap-
proach to sib-pair analysis and its implementation in a
new computer package, MAPMAKER/SIBS. The pro-
gram uses genotype information for each sib pair, to-
gether with information about parents and additional
sibs where available, to infer the IBD distribution at
each point along the genome. Using the IBD distribution,
the program can then perform four types of sib-pair
analyses: (i) Exclusion mapping, to test specific hypothe-
ses about the degree of allele sharing at each location in
the genome; (ii) ML mapping, to identify loci involved
in a qualitative trait; (iii) Information-content mapping,
to assess the extent to which the available genetic mark-
ers have extracted the full inheritance information at
each location in the genome; and (iv) Quantitative-trait-
locus (QTL) mapping, to identify loci involved in a
quantitative trait, by two parametric methods and one
nonparametric method. With these tools, researchers
can now extract maximal information from sib-pair
studies. We also explore the effects of marker spacing,
marker polymorphism, and availability of parents for
typing on the information content of a study. The re-
sults, presented as graphs, should assist in study design.

Results

Calculating the IBD Distribution
Consider a collection of nuclear families Pi (i = 1,

... , N), each consisting of a sib pair Si possibly accom-
panied by parents and additional siblings. In the case of
a qualitative trait, both sibs will be assumed to be af-
fected. In the case of a quantitative trait, both sibs will be
assumed to have been assigned a numerical phenotype.
Phenotypic information about the additional relatives
will be assumed to be unavailable. The pedigree mem-
bers are genotyped for a collection of genetic markers
with known map locations distributed throughout the
genome.
The inheritance pattern of each pedigree Pi at each

location s is completely specified by the inheritance vec-
tor Vi(s) (Lander and Green 1987), in which each com-
ponent corresponds to a particular meiosis and the coor-
dinate is 0 or 1 according to whether the offspring inher-
its the allele at position s from the paternally or
maternally derived chromosome. For a sib pair, the vec-
tor has four components: two for each sibling, with one
specifying whether the mother's maternally or paternally
derived allele has been transmitted to the sib and the
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other specifying the corresponding information for the
father. Typically, the actual inheritance vector Vi(s) can-
not be uniquely determined from the genetic marker
data. Instead, one can calculate the probability distribu-
tion for Vi(s) conditional on the genetic marker data.
Lander and Green (1987) described a hidden-Markov-
model algorithm for computing the probability distribu-
tion over Vi(s), which has recently been improved by
Kruglyak et al. (1995). The improved algorithm has re-
cently been implemented for nuclear pedigrees and
makes feasible complete multipoint homozygosity map-
ping in minutes (Kruglyak et al. 1995). Applying the
same approach to the present situation, the algorithm
allows rapid calculation of the probability distribution
over the inheritance vectors Vi(s) at each location in the
genome. Given this information, one need only add the
probabilities of the appropriate inheritance vectors to
calculate the probabilities 2io(s), nil(s), and 7L2(s) that
the ith sib pair shares 0, 1, or 2 alleles IBD at posi-
tion s.
As with all current multipoint approaches, the algo-

rithm neglects effects of crossover interference. In fact,
the effect of interference on detection of linkage is quite
minor (Terwilliger and Ott 1994). If desired, interfer-
ence effects can be partially included through a choice
of map function.

MAPMAKERISIBS Computer Package
We wrote a computer package, MAPMAKERISIBS,

that implements this approach to calculate the IBD dis-
tribution nio(s), nil (s), and n2t(s) and then uses it to calcu-
late various sib-pair statistics discussed below. Figure 1
illustrates an example of the IBD distribution for a single
sib pair without parents, genotyped across an entire
chromosome. In the example shown, there are apparent
crossovers between 30 and 40 cM (from 2-sharing to 1-
sharing) and between 70 and 80 cM (from 1-sharing to
0-sharing).
The program is extremely rapid. Analysis of 200 sib

pairs with chromosomal map containing 50 genetic
markers required <4 min on a DEC 3000 Alpha work
station. The speed is essentially independent of the pres-
ence or absence of parental information. The program
is written in C and is freely available from the authors
by anonymous ftp (at ftp-genome.wi.mit.edu, in the di-
rectory distribution/software/sibs) or from our World
Wide Web site (http://www-genome.wi.mit.edu/ftp/dis-
tribution/software/sibs). It takes two files as input: (i) a
pedigree file, specifying individuals in each pedigree Pi
and their genotypes; and (ii) a map file, specifying the
locations and allele frequencies of the genetic markers.
The appropriate file formats are described in an accom-
panying user's manual; files in LINKAGE format (Ter-
williger and Ott 1994) may be used directly. The pro-
gram handles autosomal and sex-linked data.
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Figure I The IBD distribution for a single sib pair without
available parents. The sibs have been genotyped at markers spaced
every 10 cM along a chromosome of total length 100 cM. The markers
are assumed to have five equally frequent alleles, corresponding to a
heterozygosity of .8. Shaded areas represent the probabilities 7Lo, ni,
and n2 of sharing 0, 1, and 2 alleles IBD, respectively. Marker geno-
types for the two sibs are shown above the graph. Crossovers appear
to have occurred between 30 and 40 cM (from 2-sharing to 1-sharing)
and between 70 and 80 cM (from 1-sharing to 0-sharing).

Qualitative Traits: Characterizing IBD Sharing
For a qualitative trait, each locus in the genome can

be characterized by the expected proportions zo, zj, and
Z2 of affected sib pairs sharing 0, 1, and 2 alleles IBD.
For a locus involved in causing the trait, (zo, zj, z2) will
differ from the expected Mendelian proportions (aO, a,,
a2) = ( 1/4, I/2, 1/4). Biological consistency constrains (zo,
Z19 Z2) to lie within the "possible triangle" (Holmans
1993) defined by

(1)

The further assumption of no dominance variance is
equivalent to the constraint:

Zi = 1/ (2)

in which case, the sharing proportions are described by
the single parameter z2.

.......... :PS)t4m,66a -. -. -. 'L -;z
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The sharing proportions (zo, z1, Z2) can also be ex-
pressed in terms of relative risks (Risch 1990a), in the
case that only a single locus is involved. If Xs is the
relative-risk ratio for a sib (defined as prevalence in sib-
lings of affected individuals divided by population prev-
alence), X0 is the relative-risk ratio for an offspring, and
XM is the relative-risk ratio for a monozygotic twin, then
the following relations hold:

ZO = aO/XS;

Zi = (Xiks; (3)

Z2 = a2XM/xS.

In the absence of dominance variance, Xo = Xs and
XM - 1 = 2(ks - 1), and the relations in equations (3)
simplify accordingly. If multiple loci are involved in the
trait, the relations continue to hold, provided that the
loci interact multiplicatively and the X's are defined as

the component of the relative risk attributable to the
locus (the relations are more complex for other types of
interactions between loci; see Risch [1990a] for details).

Qualitative Traits: Exclusion Mapping
In scanning the genome, one may wish to identify and

exclude those regions unlikely to have a major effect on
the trait-for example, to contain a locus with a relative
risk exceeding a given threshold. One may then focus
attention on the remainder of the genome.

Such exclusion mapping is easily performed by calcu-
lating a LOD score comparing the likelihood of the data
arising under any specific hypothesis (zo, z1, Z2) to the
likelihood under the Mendelian alternative (a0, al, a2).
By Bayes's theorem, the probability pi,(s) of observing
the marker genotype data for the ith sib pair, given that
the pair shares alleles IBD at position s, is proportional
to 7iE(s)/a%. The likelihood ratio for the ith sib pair at
position s is thus

Li(s) ZOPiO + ZlPil + Z2Pi2

apXiO + apjil + a2pi2

and the LOD score for the collection of pedigrees is

Z(s) = I logloLi(s) .

Using MAPMAKER/SIBS, one can test any specific
collection of hypotheses-specified either in terms of
the sharing proportions zo, z1, Z2 (for any model) or

in terms of the relative risks Xs, ko, and XM (for single
locus or multiplicative models). An exclusion map is

given in figure 2. The example shows the LOD score
for 100 sib pairs without parents along two represen-
tative chromosomes-the first containing no loci af-
fecting the trait and the second containing a locus at
25 cM with no dominance variance and a relative risk
Xs = 5. The LOD score is shown for the hypotheses
Xs = 1.2, 1.5, 2, 3, 5, and 10 for the locus, assuming
a multiplicative model and no dominance. Adopting
the traditional exclusion criterion of Z < -2, it is
possible to exclude a locus with Xs > 3 from the entire
first chromosome.

Qualitative Traits: ML Mapping
In searching for loci involved in a complex trait,

one needs to scan the genome to identify regions of
significant excess allele sharing. A simple and effective
approach is to estimate the ML values of the allele-
sharing proportions (20, Z1, Z2) at each location along
the genome and then compute a maximum LOD score
Z(s) at each location, comparing the likelihood of the
observed data arising under these ML values to the
likelihood under random Mendelian segregation.
MAPMAKER/SIBS allows one to calculate the ML

proportions (A, Z, 22), either subject only to the "possi-
ble triangle" constraint (eq. [1]) or to the additional
constraint of no dominance variance (eq. [2]). The con-
strained maximizations are performed by a simple ex-
pectation-maximization (EM) algorithm, described in
appendix A.

Figure 3C shows a LOD score plot for the same data
set used for the exclusion map in figure 2. Note that the
LOD score is never negative, because the ML solution
(O, 2, 22) at each location can never be worse than the
random Mendelian segregation. The LOD score near
the true locus on the second chromosome reaches a peak
of 6.8 within 1 cM of the true locus.
What LOD score threshold should be used for a

genomewide false-positive rate of 5% in a ge-
nomewide search? The correct dense-map threshold
for the possible triangle method is 4.0, which corre-
sponds to a nominal (single-test) significance level of
2 x 10-5 (Lander and Schork 1994). Holmans (1993)
correctly observed that a LOD score of 2.3 corre-
sponds to a nominal significance level of iO-' but did
not discuss whether this threshold is adequate for a
genomewide false-positive rate of 5%. In fact, a LOD
score of >2.3 will occur by chance (i.e., when there
are no susceptibility loci in the genome) somewhere in
the genome, with ~-80% probability. Misinterpreting
statements about single-test p values as statements
about genomewide significance can thus lead to unac-
ceptably high false-positive rates.
Although the threshold of 4.0 is based on the assump-

tion of a dense map, we strongly recommend it even for
studies using a map of moderately spaced markers. The
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Figure 2 Exclusion mapping. Results of a simulation in which 100 sib pairs without available parents are genotyped for markers spaced
every 10 cM on a 100 cM chromosome, each with five equally frequent alleles, corresponding to a heterozygosity of .8. LOD scores are
computed under the assumptions of no dominance variance and a single locus (or several loci interacting multiplicatively) for the hypotheses
Xs = 1.2, 1.5, 2, 3, 5, and 10 (in the case of several loci, Xs is the risk ratio associated with one locus). A, The chromosome contains no loci
affecting the trait. It is possible to exclude the hypothesis of a locus with Xs > 3 from the entire chromosome at the exclusion threshold of
LOD < -2 (dotted horizontal line). B, A locus with Xs = 5 and no dominance variance is located at 25 cM. High values of Xs can be excluded
from a large region at the other end of the chromosome, while all Xs values give positive LOD scores at 25 cM.

reasons are twofold: (1) Although the threshold will be
somewhat more stringent than the 5% significance level,
the difference is relatively small. (2) It can be anticipated
that investigators will increase the marker density in
regions showing suggestive evidence of linkage, and that
other investigations are likely to carry out similar studies
of the same sample or, at least, of the same trait. The
dense-map assumption is thus a fair description of the
situation. Because of the selection bias that only positive
results tend to be reported, the scientific literature must
regard all proposed linkages as if they were obtained by
scanning the entire genome with a dense map. Other-
wise, published papers will contain an excess of false-
positive linkages. This recommendation is consistent
with the traditional rule that a LOD threshold of 3.0 be
required for linkage analysis of human monogenic traits,
regardless of the number of chromosomes or marker
loci examined. The only difference is the threshold of
4.0, which is based on the appropriate calculation of
the genomewide false-positive rate for sib-pair studies.
It may be worth reporting studies in which the observed
p value falls short of the nominal 2 x 10-5 significance
level, but such results should be considered "suggestive"
since they would be expect to occur simply by chance in
>5% of studies. Such suggestive results may, of course,
become statistically significant when one pools the data
from the initial study with the data from subsequent
studies.

Information-Content Mapping
How dense a genetic map should be used in sib-pair

analysis? Ideally, one would like to know the IBD status
with certainty at every location in the genome. Unfortu-
nately, this would require an infinitely dense map with
infinitely polymorphic markers. Instead, it is sensible
to ask how close one has come to extracting the full
information by using a given collection of genetic
markers.

Using the methods above, one can obtain a good mea-
sure of the amount of IBD information extracted. The
measure is based on the variance of the IBD distribution.
Before genotyping is performed, the a priori IBD distri-
bution for the ith sib pair is (/14, 1/2, 1/4) for sharing 0,
1, or 2 alleles IBD. This distribution has mean 1 and
variance i, initial =-/2. After genotyping has been per-
formed, the a posteriori IBD distribution at a point s is
calculated to be (rco(s), sir(s), ntj2(s)). This new distribu-
tion has a new variance ai residual(s) at position s.
If the IBD sharing at s is known with certainty,
i6 residual(s) = 0. The quantity

)1 _Ei(T residual(S) = 1 - 2(Gr~esidual(S)) X

Mi(i, initial

where ... .) denotes the average over all the sib pairs,
measures the extent to which the uncertainty in the
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Figure 3 ML mapping. Results of a simulation in which 100
sib pairs without available parents are genotyped for markers spaced
every 10 cM on a 100 cM chromosome, each with five equally frequent
alleles, corresponding to a heterozygosity of .8. ML estimates of the
sharing proportions are plotted as Z2 and z, + Z2. Likelihood is max-
imized under the assumption of no dominance variance (i.e., z, is fixed
at 0.5). A, The chromosome contains no loci affecting the trait. Note
that there is little deviation from the null values of 0.25 and 0.75. B,
A locus with Xs = 5 and no dominance variance is located at 25 cM.
Note that Z2 is substantially above the null value of 0.25 in the vicinity
of the true locus. C, With same data as in panel B, multipoint LOD
score is plotted. The LOD score reaches a peak value of 6.8 within 1
cM of the true locus.
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IBD distribution for the collection of sib pairs is re-

solved by the genotype information. Values of r2(s)
near 1 indicate that most of the inheritance informa-
tion has been extracted, while values substantially be-
low 1 indicate that little information has been ex-

tracted and that additional markers would be useful.
(We note that it is formally possible that the informa-
tion content r2(s) can be negative. As a simple exam-

ple, consider the case of a single family studied with
a single marker at which both parents and both sibs
have heterozygous genotypes a/b. The IBD distribu-
tion at the locus is then (sto, t, It2) = ( 1/2, 0, '/2), which
has greater variance than the a priori distribution (1/4,
1/2, 1/4). The negative information content correctly re-

flects our increased uncertainty about the extent of IBD
sharing. In situations with multiple sib pairs and multi-

ple markers, negative information contents are unlikely
to be encountered in practice.)

Information-content mapping is illustrated in figure
4. The examples show results for simulations of 100
sib pairs analyzed with genetic maps of various densi-
ties and polymorphism rates. Observe that a genetic
map with an average spacing of 10 cM and marker
heterozygosity of .8 (a polymorphism rate typical of
the current generation of human microsatellite poly-
morphisms) extracts -70% of the total information
about IBD status at marker loci and -60% of the
total information at the middle of intervals.

Information-content mapping makes clear where the
vast majority of the IBD information has been extracted
and focuses attention on the regions in which further
genotyping would provide substantial additional infor-
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Figure 4 Information-content mapping. The amount of IBD information extracted by the genotype data (r2(s); see text for details) is
plotted along a chromosome for different marker densities and heterozygosities, for a collection of 100 sib pairs without available parents. A,
Effect of marker density. Markers with five equally frequent alleles, corresponding to a heterozygosity of .8, are spaced every 5 cM, 10 cM,
20 cM, and 50 cM. Note that the use of a denser map increases the information extracted, not only between markers but also at the marker
locations; this illustrates the advantage of a multipoint approach over studying single markers individually. B, Effect of marker heterozygosity.
Markers with 10, 5, and 2 equally frequent alleles (heterozygosities H = .9, .8 , and .5, respectively) are spaced every 10 cM.

mation-for example, to increase or decrease the LOD
score in a region with a suggestive result.

Information Content and Study Design Considerations:
The Quality of a Map

In order to plan a sib-pair study, it is useful to know
the expected information content that can be extracted
as a function of the study design. We performed simula-
tions to explore the effects of map density, marker poly-
morphism rate, and availability of parents for genotyp-
ing. We generated 100 replicate data sets containing 100
sib pairs each, both with and without parental genotype
information. The average information content for the
replicates was computed as a function of marker density
(assuming evenly spaced markers) and marker polymor-
phism rate (assuming a given number of equally frequent
alleles; see fig. S legend for details). Information content
was measured in two places: at marker loci, where it
is greatest; and midway between markers, where it is
lowest.
We first consider the effect of marker density, assum-

ing a polymorphism rate of 75% representative of the
current generation of microsatellite markers (fig. 5). A
10-cM map extracts ~-85% of IBD information at mark-
ers and 70% midway between markers when parents
are available, and 65% and 55% when parents are un-
available. With a 20-cM map, these numbers fall some-
what, to 75% and 50% when parents are available and
55% and 35% when parents are unavailable. With

marker spacing >40 cM, there is essentially no interac-
tion between markers, and, thus, no additional benefit
is derived from using a map. In practice, it would be
best to use a nested screening approach. For example,
one might initially screen a sib-pair collection with a
sufficient marker density to extract 50%-75% of the
information and then employ a denser set of markers in
any region showing a LOD score >1.
We next consider the tradeoff among marker poly-

morphism rates (fig. 6). For example, one can extract
-75% of the information between markers either by
using a 9-cM map of current microsatellites (75% het-
erozygosity) or a 5-cM map of perfect biallelic markers
(50% heterozygosity), when parents are available. More
generally, the sib-pair information extracted by a micro-
satellite map of a given density can be equivalently ob-
tained by using biallelic markers at a density that is
higher by a factor of about two. This tradeoff is relevant
to consider, inasmuch as it may be possible to achieve
considerably higher degrees of automation for biallelic
markers (requiring only plus-minus detection systems)
than for microsatellites (requiring length measurement).

Application to Type I Diabetes (IDDM)
To test the methods described above on actual data,

we applied them to a sib-pair study of IDDM recently
reported by Davies et al. (1994). IDDM is known to
have a substantial but complex genetic component, with
the strongest genetic contribution arising from HLA on
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Figure 5 Expected IBD information content as a function of marker density and marker heterozygosity. A total of 100 simulations
consisting of 100 sib pairs each, with and without available parents, were generated for even marker spacings of 1, 5, 10, 20, 25, 33, and 40
cM, and for markers with m = 2, 3, 5, 10, 20, and 100 equally frequent alleles. Information content was computed both at marker loci (highest
information) and midway between markers (lowest information). Curves show average IBD information content for, going from top to bottom,
m = 100, 20, 10, 5, 3, and 2 (the values of m are shown where space allows). For clarity, the actual data points (circles) are shown only for
m = 2; standard deviation of the mean is not shown, as it is smaller than the size of the circles. A, Expected information content at markers;
parents available for typing. B, Expected information content midway between markers; parents available for typing. C, Expected information
content at markers; parents unavailable for typing. D, Expected information content midway between markers; parents unavailable for typing.

chromosome 6. Using data from chromosome 6 shared
by J. L. Davies and colleagues, we carried out exclusion
mapping, ML mapping, and information-content map-

ping. Using single-point analysis, Davies et al. (1994)
previously found LOD scores of 8, 1.8, and 1.2 near

HLA on 6p, near ESR on 6q (designated IDDM5), and
at D6S264 on distal 6q. With multipoint ML analysis,
HLA is easily detected with a peak LOD score of 11
(see fig. 7A: HLA marker TNFa is at 29 cM; ESR is at
128 cM; and D6S264 is at 155 cM). The region near

ESR shows a peak LOD of 2.25, with a smaller peak
of 1.1 near D6S264. These results illustrate the greater
power of the multipoint approach-at HLA, the
multipoint LOD score is 3 log units higher (correspond-
ing to 1,000-fold greater odds in favor of linkage) than
the single-point LOD score, with a smaller increase at
ESR. When likelihood maximization is carried out under
the assumption of no dominance variance, the peak
LOD score near HLA is only 8.6, significantly lower
than the unconstrained peak (fig. 7A). This supports
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A (with parents)

0.5 0.6 0.7 0.8 0.9 1

Marker heterozygosity

B (no parents)

0.5 0.6 0.7 0.8 0.9 1

Marker heterozygosity

Figure 6 Map density required to achieve a given expected IBD information content. Simulations were carried out as described in fig.
5. Marker spacing in centimorgans required to extract 50% (squares), 75% (diamonds) and 90% (circles) of the IBD information midway
between markers is plotted against marker heterozygosity. Data points are for markers with 2, 3, 5, 10, 20, and 100 equally frequent alleles
(heterozygosities of .5, .67, .8, .9, .95, and .99, respectively). A, Parents available for typing. B, Parents unavailable.

the well-known partial dominance effect at HLA. No
dominance effect is observed at ESR.

Exclusion mapping allows loci with substantial effects
to be excluded from the middle section of chromosome
6, but only Xs = 10 can be excluded from the entirety
of the chromosome apart from a 45-cM region around
HLA (fig. 7B). Observe that allele sharing in the HLA
and ESR regions is substantially above the Mendelian
expectation (fig. 7C). Allele sharing can be used to esti-
mate risk ratios according to the formulas above (under
the single locus or multiplicative model). At HLA, we

find Xs = 2.55 and Ao = 1.63, once again showing evi-
dence of dominance variance (fig. 7D). Note that while
the best estimates of the risk ratios are higher 10-20
cM away from HLA, the likelihood of a locus at that
location is significantly lower than at HLA (see fig. 7A).
At ESR, we obtain Xs z Be - 1.8, consistent with no

dominance. Finally, we looked at information content
(fig. 7E), which is high around HLA (97%) and ESR
(96%) and drops to -50% in the middle of the chromo-
some, where the markers are less dense and no substan-
tial excess sharing is observed.

This example illustrates the utility of the methods de-
scribed in this paper. Higher LOD scores are obtained
with the multipoint analysis, indicating greater power.

In this study, the parents of all sib pairs were available
for typing. In studies without parents, the increase in
power of multipoint analysis over single-point analysis
will be even greater. Continuous plots of LOD scores,

allele-sharing proportions, and risk-ratio estimates pro-

vide additional insight into the data. Information-con-

tent mapping allows one to choose additional markers
where they are needed most.

Quantitative Traits: Methods, Given Complete Data
We next consider sib-pair studies aimed at detecting

linkage to a quantitative trait, a problem first considered
by Penrose (1938). The underlying idea is simple: sib-
lings that share more alleles at a locus affecting the trait
should be more similar in phenotype than siblings that
share fewer alleles. More precisely, let 4li, '2i denote
the phenotypes of the two siblings; let Di = 0i- 42i

denote the phenotypic difference; and let vi denote the
number of alleles shared IBD at a locus of interest. At
all loci in the genome, the expected value of D is 0
independent of v (because the order of the sibs is arbi-
trary). At loci affecting a quantitative trait, however, the
variance of D depends on v-specifically, it is smaller
when more alleles are shared. QTL mapping in humans,
thus, corresponds to testing whether cao > csl > a2,
where a denotes the variance of the difference D when
j alleles are shared. (By contrast, QTL mapping in exper-
imental crosses involves comparing means of progeny

inheriting specific parental alleles-which is simpler and
more powerful than comparing variances of phenotypic
differences.)
Three basic approaches can be used to test whether

i > ai > qs. Below, we focus on the situation in which
allele sharing is unambiguously known. In the next sec-

tion, we discuss the generalization to the situation of
incomplete data.

1. Traditional Haseman-Elston QTL regression analysis.-
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Figure 7 Analysis of genotype data from chromosome 6 data
for IDDM study. Davies et al. (1994) typed 92 pairs of affected sib-
lings, as well as their parents, for 28 markers. Chromosome 6 contains
HLA, known to contribute to IDDM suseptibility, at position 29
on the map (marker TNFa). Marker ESR, near the locus designated
IDDMS, is at position 128, and marker D6S264 is at position 155.
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method (solid line) and under the additional assumption of no domi-
nance (dotted line). B, Exclusion mapping. LOD scores are computed
under the assumption of no dominance variance for the hypotheses
) = 1.5, 2, 3, 5, and 10. C, ML estimates of allele sharing. D, ML
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Haseman and Elston (1972) approached the problem of
estimating variances by noting that

E(DIvi) = -vi

where IP = cag is the additive genetic variance attributable
to the locus; a somewhat more complex relation holds
when dominance effects are present. They suggested esti-
mating P by linearly regressing D? on vi, which is easy

to do, provided that the vi's are unambiguously known.
Although often used, this approach has certain statis-

tical drawbacks. Specifically, linear regression guaran-

tees an ML estimate only if the noise process is normally
distributed and uncorrelated with the dependent vari-
able-assumptions that are both likely to be false in the
case at hand. Even if the underlying phenotype q5 has
normally distributed and uncorrelated error, the square

difference D2 does not have these properties. As a conse-

quence, significance levels-either single-point or ge-

nomewide-cannot be evaluated by standard tests. In
particular, the usual t-test formed by dividing , by its
standard error is not correct, because both the estimate
of the standard error and the distribution of the test
statistic are based on the assumption of normal, uncorre-

lated error.

2. ML QTL variance estimation.-Alternatively, given the
assumption of normally distributed phenotypic noise,
one can simply derive direct ML estimates of the aj2
based on the phenotypic differences observed for each
value of v (See appendix C). Estimates can be made
subject to a simple constraint of biological plausibility,

2> (72 >
2
2

or subject to the more restrictive assumption of no domi-
nance variance:

2G2 O20 + G2
a1 2

Although this approach offers conceptual and technical
advantages over the regression approach, it has not been
adopted, probably owing to difficulties in coping with
incomplete data. We show below how to overcome this
problem.

3. Nonparametric QTL analysis.-Both approaches above
require restrictive assumptions about the distribution of
phenotypic effects, which may be violated in real appli-
cations. An alternative is to use a nonparametric ap-

proach, in which no assumptions are made about the
distribution of phenotypic differences (Haseman and El-
ston 1972). Kruglyak and Lander (1995) have recently
developed such an approach for genomewide QTL map-

ping in experimental crosses based on the Wilcoxon

rank-sum test, which carries over directly to the case of
human sib pairs.

In brief, the sib pairs are first ranked according to the
absolute value of the phenotypic difference, with rank(i)
denoting the rank of the ith sib pair. For each location
s in the genome, one defines the statistic:

n

XW(s) = A, rank(i) x f(vi),
i=-

where f(v) is a simple function of the number of alleles
shared IBD, chosen to have expected value 0. In the
absence of dominance effects, for example, an appro-
priate choice is f(2) = -1, f(l) = 0, f(O) = 1. (See Krug-
lyak and Lander [1995] concerning other choices.) In the
absence of linkage, the statistic Xw(s) has expectation 0

and variance V = n (n + 1)(2n + 1) and the ratio Z(s)12 ,adtertoZs

X=(s) is asymptotically distributed as a standard nor-

mal and follows an Ornstein-Uhlenbeck diffusion pro-
cess (Kruglyak and Lander 1995). This property allows
one to compute the genomewide significance levels for
observed deviations (Lander and Botstein 1989; Krug-
lyak and Lander 1995). In the case of QTL mapping
with sib pairs, a one-sided test (Xw(s) > 0) is appro-
priate, and the threshold for a genomewide significance
level of p = .05 is Z = 4.1; this threshold corresponds to
a nominal single test p value of 2 x 10-5. Nonparametric
analysis has the virtue of being robust to violations of
the assumptions of normality but may be somewhat less
powerful when the assumptions are satisfied.

QTL Mapping: Incomplete Information
The three approaches above are straightforwardly ap-

plied when the IBD sharing is unambiguously known,
but they have not been successfully generalized to the
(usual) situation of incomplete information. We show
below how to generalize them by using the complete
IBD distribution 7t0(s), t1(s), t2(s).

1. Traditional Haseman-Elston QTL regression analysis.-
When the vi are not known with certainty, standard
regression cannot be performed. Several authors have
suggested performing regression with the expected val-
ues C',s used in place of the unknown vi. Haseman and
Elston (1972) describe using the expectation based only
on the data for a single marker, while Fulker and Cardon
(1994) generalize this by using the expectation based on
the data for two flanking markers. These approaches
have two drawbacks: they do not make full use of avail-
able genotype information, and they fail to carry out
missing-value regression correctly.
A better approach is to perform regression using the

full information inherent in the complete IBD distribu-
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tion. In fact, this can be done by employing well-estab-
lished ML techniques for missing-value problems (Little
and Rubin 1987). In particular, one can use the EM
algorithm to perform regression not on the expected
value vi but on the actual distribution of vi (i.e., i0io, Otic,
Xi2). Indeed, this approach has already been imple-
mented for QTL mapping in experimental crosses in the
MAPMAKERIQTL computer package. The details are
given in appendix B.

2. ML QTL variance estimation.-In a similar fashion, the
EM algorithm can be used to calculate ML estimates of
the af even when the vi's are not known with certainty.
The details are given in appendix C.

3. Nonparametric QTL analysis.-In the case of nonpara-
metric analysis, the statistic Xw(s) can be replaced by its
expectation over the IBD distribution: Yw(s) = E[Xw(s)

data]. In the case of no dominance variance, this
amounts to simply replacing f(vg) by its expected value
at position s, which is nLo(s) - nL2(s). Yw(s) still has
expected value 0, but its variance V(s) is now a function
of s (here, the expectation and the variance are com-
puted over ossible realizations of the data). Z(s)
= Yw(s)/ V(s) is asymptotically distributed as a unit
normal.

Strictly speaking, the variance should be computed
over all possible realizations of the data. This is not
computationally feasible, but this "population" vari-
ance can be estimated by the "sample" variance within
the data set. This estimate will be quite accurate when
large numbers of sib pairs are used, which is the realistic
setting even for the detection of moderate effects.

QTL Mapping: An Example
We have implemented generalized Haseman-Elston

QTL regression analysis, ML QTL variance estimation,
and nonparametric QTL analysis in MAPMAKER/SIBS.
The use of these methods is illustrated in figure 8. The
example shows the results of a simulation in which
1,000 sib pairs without available parents were geno-
typed for markers spaced every 10 cM on a 100-cM
chromosome, each with five equally frequent alleles, cor-
responding to a heterozygosity of .8. A locus with envi-
ronmental variance ca, = 1.0, additive genetic variance
ag2 = 0.5, and no dominance variance is located at 25
cM. Thus, 33% of the variance is explained by the QTL.

In figure 8A we compare the t statistics obtained by
Haseman-Elston regression analysis by using regression
on the distribution of vi (solid line) and on the expected
value vi (dashed line). Note that the t statistic for the
correct missing-value regression on the full distribution
is always higher, indicating greater power. In figure 8B
we compare the LOD scores obtained by ML variance
estimation (solid line) and for Haseman-Elston regres-
sion on the distribution of vi (dashed line). The LOD
score is always higher for variance estimation, illustrat-

ing the greater power of the approach that uses the cor-
rect model. We would generally recommend the use of
variance estimation over regression analysis. ML esti-
mates of the three variances computed under the as-
sumption of no dominance variance are plotted in fig-
ure 8C.

In figure 8D we plot Z scores produced by nonpara-
metric mapping. The peak Z score is 2.66, reached at
25 cM (the true location of the locus). This Z score
corresponds to a highly significant single-test p value of
.004. However, it would not be statistically significant
in a genomewide scan, since the threshold for a 5%
false-positive rate is Z = 4.1, as described above. A Z
score of >2.66 would be expected to occur by chance
(i.e., in the absence of QTLs) about four times in the
genome. This observation underscores the importance
of using significance thresholds (single-point or ge-
nomewide) that are appropriate for the test being per-
formed.
The example also emphasizes how difficult it is to

prove linkage to a QTL in humans: even with a large
effect (33% of variance explained) and a collection of
1,000 sib pairs, the statistical evidence by all three meth-
ods is still quite modest. (We assume an unselected sam-
ple of sibs. There has been discussion in the literature
of the increased power of samples selected for extreme
phenotypic differences [Carey and Williamson 1991;
Cardon and Fulker 1994]. We do not address this issue
here, other than to note that in applying the analytic
methods described above, care must be taken to include
the effects of selection. Simply using pairs with extreme
phenotypic differences violates the underlying distribu-
tional assumption, greatly increases the risk of false-
positive linkages, and inflates the population variance
explained by the locus. One can solve the problem by
incorporating the phenotypes from all pairs, even if the
nonextreme pairs are not genotyped). The dramatic dif-
ference between QTL mapping in humans and experi-
mental crosses among inbred strains is made evident by
the fact that a similar QTL explaining 33% of the vari-
ance in a backcross involving 1,000 progeny would yield
a LOD score of 55 (Lander and Botstein 1989).

Misspecification of Allele Frequencies
Marker allele frequencies do not enter into the calcu-

lation of IBD when parents are available for typing, but
they matter when parents are unavailable. Misspecifica-
tion of allele frequencies can produce false-positive re-
sults. Specifically, underestimating the frequency of an
allele will lead to overestimating the degree of IBD shar-
ing at the locus. Ideally, one should obtain good esti-
mates of allele frequencies from the appropriate popula-
tion. In addition, one should perform sensitivity analysis
to test the sensitivity of results to changes in allele fre-
quencies. To facilitate this process, MAPMAKER/SIBS
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Figure 8 QTL mapping. Results of a simulation in which 1,000 sib pairs without available parents are genotyped for markers spaced
every 10 cM on a 100 cM chromosome, each with five equally frequent alleles, corresponding to a heterozygosity of .8. A locus with ai = 1.0
and ac = 0.5 and no dominance variance is located at 25 cM. A, t statistics are plotted for Haseman-Elston regression analysis by using
regression on the distribution of v, (solid line) and on the expected value of vi (dashed line). B, LOD scores are plotted for ML variance
estimation (solid line) and for Haseman-Elston regression analysis by using regression on the distribution of vi (dashed line). C, ML estimates
of the variances computed under the assumption of no dominance variance. D, Z scores produced by nonparametric mapping

incorporates a feature allowing one to set a lower bound
on the frequency of all alleles. Although the allele fre-
quencies may sum to >1 in this sensitivity analysis, the
corresponding LOD scores will be conservative.

Discussion

Sib-pair studies provide an increasingly important
tool for genetic analysis of complex traits. Individual

loci affecting a complex trait may have small effects and
can be difficult to detect, requiring large studies. It is
therefore desirable to have methods of analysis that
make use of all available information. Current analysis
methods study markers one at a time. In recent years,
dense maps of genetic markers covering the entire hu-
man genome have become available (Buetow et al. 1994;
Gyapay et al. 1994). Nonetheless, today's genetic mark-
ers are not infinitely polymorphic, and, thus, consider-
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able additional power can be gained from studying mul-
tiple markers at once. This is especially true when par-

ents are unavailable for typing, which is frequently the
case, particularly with late-onset disorders.
We have now developed methods for carrying out

complete multipoint sib-pair analysis. We use a rapid
algorithm for multipoint likelihood computation, origi-
nally developed for homozygosity mapping (Kruglyak
et al. 1995), to completely characterize the probability
distribution of sharing 0, 1, or 2 alleles IBD for every

sib pair at every point in the genome. This distribution
contains all information available from marker geno-

types. The knowledge of the IBD distribution allows
every kind of statistical analysis to be carried out in a

fully multipoint fashion.
In this paper, we develop methods for exclusion and

ML mapping of qualitative traits. We also describe in-
formation-content mapping, a novel analytic technique
that measures how much of the total inheritance infor-
mation has been extracted by the markers and indicates
where additional markers might be desirable. Using this
technique, we examine the effects of map density,
marker polymorphism, and availability of parents on

the expected information content of a study. The results
provide useful guidelines for study design. They also
support the feasibility of a using a third-generation ge-

netic linkage map based on plus-minus biallelic markers.
In addition, we develop a multipoint extension of the

traditional QTL mapping approach of Haseman and
Elston (1972), and describe two additional techniques
for mapping quantitative trait loci: direct variance esti-
mation by ML and nonparametric mapping. A number
of other regression models have been proposed for QTL
analysis (see, e.g., Cardon et al. 1994). All of these meth-
ods have performed regression on the expected number
of alleles shared IBD, vi. As described above, the pre-

ferred procedure is to regress on the distribution of the
number vi of alleles shared IBD. Any regression model
can be generalized in this fashion according to the EM
procedure outlined in appendix B.
The analytical methods described above have been

incorporated in a software package, MAPMAKER/SIBS.
This package allows very rapid analysis and exploration
of sib-pair data in a user-friendly environment. The
MAPMAKER/SIBS package provides direct access to the
full IBD distribution of vi, making it straightforward to
extend the package to any additional analysis tech-
niques.

Previous approaches to sib-pair analysis have been
partial solutions that fail to exploit the available data
fully. The approach described here is the best possible,
in the sense that it extracts all of the information about
IBD status that can be gleaned from all markers and
all individuals in the nuclear family. Inasmuch as the
approach is also computationally rapid, there is no need
to resort to partial solutions.

Finally, we note that these ideas and methods can be
extended to general pedigree analysis. Such an extension
will be described elsewhere.

Note added in proof.-An approximate multipoint
approach to QTL mapping using regression on the ex-
pected number of alleles shared IBD was recently re-
ported by Fulker et al. (1995).
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Appendix A
EM Algorithm for Constrained Likelihood
Maximization

We seek to maximize the likelihood

L = ~ZoPio + ZlPil + Z2Pi2
i 0oPio + clPil + a2Pi2

where pij is the probability of observing the data for the
ith sib pair, given that the pair shares j alleles IBD, and
z,, the sharing proportions, are parameters to be esti-
mated. We use the EM algorithm (Dempster et al. 1977;
Little and Rubin 1987) to carry out the maximization
and obtain ML estimates of the zi (it is easily seen that
the likelihood function belongs to an exponential-form
family, and thus the EM algorithm applies).

In the E-step, we compute the expected sharing pro-
portions in each pair according to

Zipij

We then sum the zij over the pairs to obtain the expected
numbers no, nj, n2 of pedigrees sharing 0, 1, and 2 al-
leles IBD.

In the M-step, we use these expected numbers to ob-
tain the new estimates of zo, Zi, Z2. For unconstrained
maximization, the estimates are trivial: z, = nln, where
n is the total number of pairs.
The E- and M-steps are iterated until convergence to

the (unconstrained) ML values of zo, z1, Z2. If the ML
estimates fall within the possible triangle, they are ac-
cepted. If they fall outside the possible triangle, the likeli-
hood is remaximized along one of the sides of the trian-
gle (see Holmans [1993] for details). Here the E-step is
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exactly as above. The M-step is slightly different: if the
constraint is z1 = '/2, the new estimates are

no n2

2(no + n2) 2(no + n2)

If the constraint is z1 = 2zo, the new estimates are

no + ni 2(no + nj) n2
ZU =- ; Zi = ; Z2-3n 3n n

Constrained maximization can also be carried out from
the start in order to test a particular model of inheri-
tance.

Appendix B

Missing-Value Regression

In simple linear regression, one is given a set of N
data points (xi,yi) assumed to be generated by y = a
+ bx + e, where £ is a random normal variable with
mean 0 and variance a2. Here, a, b, and a2 are unknown
parameters to be estimated. The linear regression solu-
tions are

a = xI yi - Xi Xiy,
NEz xi-( i

N 2 xjyj - E xi E yjb= Nx (Exi)2
and

a =-1(yi-a - bxi)2iN

ith data point, given that xi = x. Standard linear regres-
sion cannot be performed. In particular, simply using
the expected values E[xi] in place of the unknown xi
does not produce an ML solution. Instead, the likelihood
function must be maximized explicitly.

This maximization can be easily accomplished by the
EM algorithm (Dempster et al. 1977; Little and Rubin
1987), since the likelihood of the complete data belongs
to an exponential-form family. In the E-step, one
reestimates the probability distributions pi(xi) given par-
ticular values of a, b, and c2 according to

pest(x) pi(xi)(yi - a - bxi, a2)
t pi(xi)4(yi - a - bxi, a2)'

and then computes the expected values of 1xi, Ex?, and
Yxiyi conditional on the distributions. In the M-step,
one substitutes the expected values of 1xi, Ex?, and
Yxiyi in the simple regression formulas above to obtain
new estimates of a, b, and a2. The E- and M-steps are
iterated until convergence. The EM algorithm is guaran-
teed to converge to a local maximum of the likelihood
function.

Appendix C
ML Estimation of Variance

When the number vi of alleles shared IBD by each sib
pair i is known, the likelihood function is

L1 -DiL = f 27La2- exp )
Th Vaia a sl

The ML estimates of the variances are easily seen to be

These solutions are ML estimates, with the likelihood
given by

L(a, b, a2) = H /(yi - a - bxi, a2) ,
i

where /(ta2) is the probability density at t of the normal
distribution with mean 0 and variance a2.

In missing-value regression, the xi's are not known
with certainty. Instead, one has probability distributions
over the possible values of xi. The likelihood is then

L(a, b, .2) = H I pi(x)Li(x) i
i x

where i ranges over the data points, x ranges over the
possible values of xi, pi(x) denotes the probability that
xi = x, and Li(x) denotes the likelihood function for the

E Di2
=2= vi=j

(i IVi=j)

i.e., the variance of D within each IBD class.
When the vi's are not known with certainty, the likeli-

hood function is

1 -Di)L = H pi exp(J

where the sum is over possible allele sharing numbers j
(j = 0, 1, 2), and pii is the probability that the ith pair
shares j alleles IBD. This likelihood can be easily max-
imized by the EM algorithm (Dempster et al. 1977; Little
and Rubin 1987) in a manner similar to that described
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in appendix B. In brief, in the E-step, one re-estimates
the probability distributions pij given the current esti-
mates of aj and then computes the expected values of
1jijv,=j) D2 (=Xi p,1D?) and 4I"jv,=j) 1 (=Zi pi1), conditional
on the distributions. In the M-step, one substitutes these
expected values in the simple formula for the variances
above to obtain new estimates of c<. Constraints, such
as the assumption of no dominance variance. (i.e., acs
= (Y20 + ai)/2), can be easily incorporated at this M-
step. The E- and M-steps are iterated until convergence.
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