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One of the greatest shortcomings of macromolecular energy min-
imization and molecular dynamics techniques is that they generally
do not preserve the native structure of proteins as observed by
x-ray crystallography. This deformation of the native structure
means that these methods are not generally used to refine struc-
tures produced by homology-modeling techniques. Here, we use a
database of 75 proteins to test the ability of a variety of popular
molecular mechanics force fields to maintain the native structure.
Minimization from the native structure is a weak test of potential
energy functions: It is complemented by a much stronger test in
which the same methods are compared for their ability to attract
a near-native decoy protein structure toward the native structure.
We use a powerfully convergent energy-minimization method and
show that, of the traditional molecular mechanics potentials
tested, only one showed a modest net improvement over a large
data set of structurally diverse proteins. A smooth, differentiable
knowledge-based pairwise atomic potential performs better on
this test than traditional potential functions. This work is expected
to have important implications for protein structure refinement,
homology modeling, and structure prediction.

protein � empirical potential � molecular mechanics potential �
knowledge-based � protein structure refinement

The field of protein structure prediction concerns itself with
the generation of models of protein structures that approx-

imate the true, native protein structure as accurately as possible.
These methods are intended to augment, or even replace, the
experimental determination of a protein structure in cases where
the structure is either highly derivative (such as a protein with a
close relative of known structure) or experimentally difficult to
obtain (as with integral membrane proteins). It has been esti-
mated that the generation of an experimental protein structure
costs, on average, between U.S. $250,000 (1) and $300,000 (2).
Improved methods in structure prediction, therefore, hold the
promise of shifting some of the cost burden from experimen-
talists to (relatively) cheap computations, allowing experimen-
talists to focus on those structures of particular interest.

The most recent Critical Assessment of Protein Structure
Prediction (CASP5 and CASP6) experiments have shown that
significant progress has been made in two of the three main
CASP prediction categories: template-free modeling (or ab initio
prediction), in which the fold is either new or fairly unique, and
fold recognition (or threading), in which a similar fold has been
solved experimentally but the sequence homology between the
target and the experimental structure is very weak.

In the third category, comparative modeling (or homology
modeling) (3), in which an experimental structure exists with
significant sequence similarity to the protein of interest, improve-
ment has been less forthcoming since the CASP experiments began
in 1994 (4). In these types of modeling applications, the related
structure is typically within the 1- to 3-Å C� root mean square
deviation (rmsd) range of the true structure (5). Traversing this
seemingly tiny distance, however, from a near-native structure
model (NNSM) to the native structure (NS) has proven to be
extremely challenging. The protein structure refinement problem,
therefore, has proven to be a major bottleneck to further improve-

ment in structure prediction. Recently, there has been some very
encouraging progress toward solving this problem by using tech-
niques that involve either optimization of new potential functions
(5, 6) or inclusion of contact restraints from homologous proteins
(7). The search methods used in refinement techniques, however,
can be highly computationally intensive. We decided to test whether
a technique using more modest computational resources [potential
energy minimization (PEM)] could be applied to the refinement
problem.

Potential functions used in structure prediction and refine-
ment are typically grouped into two general classes: traditional
‘‘physical’’ molecular mechanics (MM) potentials and statisti-
cally derived ‘‘knowledge-based’’ (KB) potentials. In both cases,
the energy of the system is defined as the sum over energetic
terms that are themselves functions of the 3D coordinates of the
atoms. The ENCAD potential, an example of a traditional MM
force field, has the following functional form:
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The first three terms represent the energetic contributions of
bonded interactions: bond stretches, bond angle bends, and
torsion angle twists, respectively. The final two terms represent
the nonbonded interactions: the first, a Lennard–Jones style
potential representing van der Waals interactions, and the
second, a Coulombic term representing electrostatic interac-
tions. Nonbonded terms are weaker than bonded terms, but
there are many more such terms, and they are more likely to
contain systematic errors resulting from the neglect of quantum
mechanical interactions between atoms (8).

PEM was one of the earliest search methods applied to protein
structure refinement (9, 10). Since that time, it has been a
primary tool in the refinement of protein structures in crystal-
lography, NMR, and protein structure prediction and modeling.
The central assumption in PEM is that the NS of a protein should
be at the global minimum of the potential energy surface of an
MM force field. In this article, our aim was to test the central
assumption of PEM vis-à-vis MM force fields. We compare and
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contrast the ability of a number of MM force fields to move the
3D atomic coordinates of an NNSM closer to those of the
experimentally determined NS. In an effort to simplify this
comparison (and limit the scope of this article), we focus on a
single refinement technique that is commonly used in molecular
modeling: that of PEM in vacuo. One attractive feature of PEM
is the lack of ambiguity at the end point of the process; given a
potential function and a starting structure, PEM will find at least
a local minimum on the potential surface, and for each run, there
is a single structure output.

Definition of Testing Criteria
In testing the in vacuo refinement utility of some common force
fields, it is necessary to set up some criteria for comparison as
follows:

1. The refinement process should not significantly perturb the
atomic coordinates of the NS.

2. The refinement process should move NNSMs closer to the NS.

Both of these comparison criteria derive directly from the
assumption that the NS represents a minimum of the potential
energy surface. Criterion 1 is a direct restatement of this
assumption, but it also assumes that the energy surface is smooth
and that the search method is able to reach the closest local
minimum. Criterion 1, therefore, is weak; a nonconvergent
minimization method will seem to not perturb the NS even if it
is not near an energy minimum. Criterion 2, however, puts more
stringent demands on the search technique (positive movement
must be observed to satisfy it) and gives a more global picture of
the shape of the potential in the region around the NS.

In this work we introduce a method for generating sets of
NNSMs for a set of 75 test proteins. These NNSM sets can be
arbitrarily large and seem to cover the conformational space
near the NS uniformly. We then test the MM force fields
AMBER99 (11, 12), OPLS-AA (13), GROMOS96 (14), and
ENCAD (15), and 3 hybrid KB/MM force fields for performance
by using the above-listed testing criteria. The MM force fields
tested in this work were chosen because they are freely available
and have all been implemented for use with the GROMACS
molecular dynamics package.

Hybrid KB/MM force fields (16) are generated by using a
differentiable KB energy function in place of the nonbonded
energy term of an MM force field. We tested three different
KB/MM potentials that vary in the width of distance bins with
which statistics were initially gathered. In tests based on criteria
1 and 2, a KB/MM hybrid works better than all other potentials
assessed here. In particular, it is able to move the NNSMs of
almost all test proteins closer to the native state.

Results
Generating NNSMs to Map the Energy Surface. To ensure that the
results herein are general, a database of 75 native protein
structures and structure fragments was compiled to represent the
larger set of all known protein folds. A detailed discussion of the
database-building procedure can be found in Materials and
Methods.

To test a series of force fields for their ability to draw NNSMs
toward the NS, we then generated sets of NNSMs that closely
resembled what might result from a series of well-built fold-
recognition models or homology models. For each test protein,
a set of 729 NNSMs was generated by perturbing the NSs along
the six lowest-frequency quasiorthogonal normal modes in a
combinatorial manner by using the method of Tirion (17). The
mean of the �rmsd� values over all near-native sets was 1.06 �
0.14 Å. This procedure is described in detail in Materials and
Methods and is represented visually in Fig. 1.

Generating KB/MM Hybrid Potentials. A series of three pairwise,
atomic potentials of mean force (PMFs) were derived by using
counting bins with widths of 0.5, 0.2, and 0.1 Å with 167
residue-specific protein heavy atom types, as defined in Sam-
udrala’s RAPDF potential (Fig. 2) (18). Energies were derived

Fig. 1. Cartoon showing energy vs. conformation. (A) A hypothetical protein
energy hypersurface is projected onto two spatial dimensions that denote
changes in structure. (B and C) Conventional normal modes are calculated
from a quadratic expansion about an exact minimum of the energy surface (B),
whereas the Tirion modes are calculated about an arbitrary point on the
energy surface (C). The orange dotted lines represent the orthogonal normal-
modes eigenvector directions, and the gray points represent conformations
formed by combining amplitudes perturbation of (�1, 0, 1) along these two
directions. Green dots represent conformations produced by similar pertur-
bation along other, out-of-plane eigenvectors. The black vectors from these
green circles represent the change of conformation that occurs as a result of
energy minimization. (B and C) As expected, in the expansion about the exact
minimum (B), the vectors point to the single minimum at the center of the
quadratic expansion, whereas in the expansion about an arbitrary point (C),
energy minimization does not cause such concerted shifts.

Fig. 2. Atomic pairwise KB PMF. For each of the 167 atom types used here,
a pairwise PMF was derived to describe its energy of interaction with every
other atom type. Shown here are three such energy profiles: AN is the alanine
backbone nitrogen, AO is the alanine backbone carbonyl oxygen, and ACA is
the alanine � carbon. This set of curves was initially discretized into 0.1-Å bins.
A repulsive part is added in the region of low distance to account for steric
overlap, and the curves are fit to a quintic spline function to give a continuous,
smoothly differentiable energy term for use in ENCAD. The symbols shown are
the energies from the PMF derivation, and the fit shown is a simple smooth
curve fit in Excel, not the quintic spline as generated in ENCAD.
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and a repulsive term was added as described in Materials and
Methods. The KB/MM hybrids were generated by replacing the
nonbonded terms of the ENCAD potential with quintic spline
fits to the KB potentials. The KB/MM potential derived at 0.5-Å
widths is termed KB�0.5, etc.

Criterion 1: Energy Minimization of the NS. To test criterion 1,
dealing with perturbation of the NS, we performed energy
minimization by using the NS as the starting point. Fig. 3 shows
that the AMBER99 potential showed the smallest mean devia-
tion in rmsd (0.41 � 0.20 Å) of the MM potentials tested,
followed by OPLS-AA, GROMOS96, and ENCAD with values
of 0.92 � 0.23, 1.36 � 0.42, and 1.39 � 0.39 Å, respectively. Our
three KB/MM potentials, derived at 0.5, 0.2, and 0.1 Å bin
widths, were also tested. The best performer by a significant
margin was KB�0.1 (0.38 � 0.14 Å rmsd), followed by KB�0.2 and
KB�0.5 (0.96 � 0.36 and 1.29 � 0.41 Å, respectively). It is
interesting to note that all of the potentials can be grouped into
three categories on the basis of their performance in this test. In
the ‘‘highest-performing’’ category are KB�0.1 and AMBER99,
followed by KB�0.2 and OPLS-AA in the ‘‘middle-performing’’
category, with KB�0.5, GROMOS96, and ENCAD in the ‘‘low-
est-performing’’ category.

Criterion 2: Energy Minimization of Near-Native Structures. To test
criterion 2, dealing with the ability of refinement to draw an
NNSM toward the NS, we performed minimization on all 729
NNSMs for each of the 75 test proteins. The mean of the rmsd
to the NS over the 729 NNSMs for a particular set is denoted as
�rmsd�, and the double mean over all 75 test proteins is denoted
as 		rmsd

. Before minimization, the value of 		rmsd

 was
1.06 � 0.14 Å. Values obtained after minimization depend on
the force field used for the minimization and provide the most
rigorous test of the different potentials.

Of the traditional MM potentials, the best performance
again is shown by AMBER99 (		rmsd

 � 1.03 Å), which is
a slight improvement over the original NNSMs (		rmsd

 �
1.06 Å). The best-performing KB/MM potential, KB�0.1,
showed a larger improvement in 		rmsd

 relative to the
starting structures (		rmsd

 � 0.95 Å). The other potentials
tested showed a net degradation, moving NNSMs further away
from their native states with 		rmsd

 values of 1.17, 1.48,

Fig. 4. PEM of near-native structures. The PI caused by energy minimization is shown for all of the 75 test proteins and a selection of the energy functions. PI
is calculated as described in the text. If minimization improves the structure overall so that �rmsd�min is less than �rmsd�start, then PI is negative. The test proteins
are ordered as best to worst with respect to the KB�0.1 energy function. Of the traditional MM potentials, the best performance again is shown by AMBER99
(with a mean PI of �3% over all decoy sets of all test proteins). The best-performing statistical potential, KB�0.1, showed a larger PI of �11%. All of the other
energy functions moved the decoys away from the NS with PI values of 11%, 40%, and 44% for OPLS-AA, GROMOS96, and ENCAD, respectively. Although both
KB�0.1 and AMBER99 do improve decoy structures, proteins that do well with one energy function do not generally do well with the other energy function.

Fig. 3. PEM of NSs. For each MM energy function tested here, the 75 native
conformations were minimized to convergence by using the Limited-Memory
Broyden-Fletcher-Goldfarb-Shanno algorithm in vacuo. The rmsd of the re-
sulting minimum-energy structure relative to the NS was calculated. For each
energy function, the rmsd values were sorted from lowest to highest and
plotted against the rank of the sort (along the x axis). Thus, the protein at rank
1 in the OPLS-AA series is not necessarily the protein at rank 1 with the
AMBER99 series, etc. It can be clearly seen that the KB�0.1 potential and
AMBER99 cause the least perturbation of the NS relative to both the other
KB/MM potentials tested and the other MM potentials.
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and 1.51 Å for OPLS-AA, GROMOS96, and ENCAD,
respectively.

Fig. 4 shows the percent improvement in �rmsd� for indi-
vidual NNSM sets, defined as PI � (�rmsd�min � �rmsd�start)/
�rmsd�start (PI 	 0 denotes improvement). As expected from
the 		rmsd

 values presented above, the KB�0.1 potential
performs best. More surprising is its high consistency, in that
only three NNSM sets showed degradation (PI 
 0). With
AMBER99, the top-performing MM potential, 15 sets showed
a percent mean degradation. OPLS-AA produced an improve-
ment in only 18 of the 75 sets, and GROMOS96 and ENCAD
showed improvement for only 9 and 5 sets, respectively. The
correlation between the PI values obtained with KB�0.1 and
AMBER99 is 0.35, showing that good performance with one
potential on an NNSM set does not necessarily imply good
performance with another.

The best-performing MM potential, AMBER99, showed a
mean PI of �3.0% over all NNSM sets. The best-performing
KB/MM potential, KB�0.1, showed a much better PI of �11%.
The other potentials tested showed a mean degradation, namely,
PI � 11%, 40%, and 44% for OPLS-AA, GROMOS96, and
ENCAD, respectively.

To visualize the shape of the potential surface in the region
near the NS, we further examined a randomly selected subset of
30 NNSMs for two proteins, 1CTF and 1PDO, chosen because
they are representative of the best and worst cases with respect
to performance of the KB�0.1 potential. We considered the
starting and minimized confirmations of each NNSM as well as
the native state and calculated a 61 � 61 matrix of pairwise rmsd
values. The program GRAPHVIZ (41) was then used to gen-
erate a projection of the high-dimensional configuration space
into two dimensions (Fig. 5). For a given protein and energy
function, we were able to visualize whether a basin of attraction
exists in conformation space (and, by inference, in the shape of
the energy surface). It also allowed us to determine whether such
a basin is situated about the NS. We see in Fig. 5A that, for test
protein 1CTF, a basin of attraction exists around the native state
when using the KB�0.1 potential. Such a basin is not present for
protein 1PDO (Fig. 5B), which is a poor performer (Fig. 4), and
there seem to be few correlated shifts, suggesting a rough energy
surface. When using the ENCAD potential (Fig. 5 C and D),
which performs badly for these test proteins, there is a basin
situated further from the native state than the ensemble of
starting points.

Discussion
At present, the protein structure refinement problem is one of
the most challenging and important areas in the field of protein
structure prediction (4). The accuracy of the backbone trace of
a protein structure model has a profound impact on the ability
to accurately predict the side-chain placement (19), and, as a
result, places constraints on what can be achieved with structure-
based drug design (20), prediction of multimeric protein com-
plexes (21), and structure-based protein function prediction (22).

In this work, we set out to test how well an MM force field is
able to refine near-native protein structures by using the tech-
nique of PEM in vacuo. We considered two important questions
in our testing: Does the native state represent at least a local
minimum of the potential function, and does the shape of the
potential surface in the area near the native state allow for
downhill searching toward native? A force field with these
properties is of considerable utility for refinement applications
in both structure prediction and the model-building procedure of
experimental structure determination. Such tests might also
allow us to suggest improvements to current force fields.

The Near-Native Chain Set. To test for the presence and position of
an attraction basin near the native state, it was necessary to (i)
choose a set of nonredundant protein chains for testing so that
our results were not protein-dependent, and (ii) generate a set
of NNSMs for each chain to sample the configuration space as
widely as possible about the native state. Our method, which
involved perturbation of the chains by using Tirion-style normal
modes expanded about the native state, generated a diverse set
of NNSMs. This method generated a set of NNSMs that retained
the bulk of the secondary structure present in the NS, akin to
what one might find when generating an initial protein model
from homology modeling or threading. An added benefit of this
technique is its generality; generation of the normal modes need
not occur at a deep energy minimum (a constraint present in
most other normal-mode generation techniques), allowing such
configurational sampling about any point in protein conforma-
tion space.

Creating NNSMs by combining Cartesian coordinate shift
vectors, however, can generate atomic clashes and highly
strained bond lengths and angles. With PEM, such stereochem-
ical deformations quickly correct themselves (9), but this may not
be true as we begin to explore other methods of searching
configuration space. An ideal NNSM-generation method would
combine the torsion angle shift vectors directly; a more complex

Fig. 5. Directionality of movement caused by minimization. Shown are matrices of the rmsd distances between all pairs of structures in a random subset of
30 decoys before and after minimization (including the NS). We map the data into a 2D space to visualize the attraction basin around the native state (or the
lack thereof). Each decoy starts at a green point and, after minimization, moves to a red point; the shift is shown as an arrow between these two states. (A) The
presence of an attraction basin is most apparent. Shown is the performance of the KB�0.1 potential on the set 1CTF. In this case, the vectors point radially inward
toward the NS. (B) For the protein 1PDO, the vectors seem to be pointing toward an area in the upper left region of the plot (although most seem to be unable
to fully reach that area), and there is no apparent attractor near the native state. (C and D) When the same decoys minimized by using the ENCAD potential are
considered [1CTF (C) and 1PDO (D)], an attraction basin seems to be present, but, unfortunately, it appears in an area of configuration space far from the native
state. This figure was generated by using the open-source program GRAPHVIZ (41).

3180 � www.pnas.org�cgi�doi�10.1073�pnas.0611593104 Summa and Levitt



process because increasing a torsion angle produce changes in
Cartesian coordinates that do not lie on a straight line and are
not monotonically increasing.

Potential Function Performance. Of the MM potentials tested,
AMBER99 showed the best performance when performing
PEM on native protein structures, causing the smallest pertur-
bation on average from the experimental structure. In our tests
of NNSM minimization, AMBER99 was the only MM potential
tested that was able to show a mean improvement in rmsd after
PEM averaged over all NNSM sets. After AMBER99,
OPLS-AA was the best performer on both tests, followed by
GROMOS96 and ENCAD. It is interesting to note that both
AMBER99 and OPLS-AA are potentials parameterized for use
with explicit solvent, whereas the versions of the GROMOS96
and ENCAD potentials tested were parameterized for vacuum
calculations. Thus, the performance ranking seen herein is
contrary to our intuition before this work was begun, which
indicates the need for careful, NNSM-based testing of energy
functions.

It is interesting to consider at this point what upper limit of
refinement performance is to be expected; this has been ad-
dressed in recent work in which structures of the same proteins
have been structurally compared in different experimental crys-
tal-packing arrangements. Eyal et al. (23) estimated the ‘‘accu-
racy limit’’ of crystal structures to be 0.8 Å rmsd, and Vriend and
coworkers (5) estimated an accuracy limit of 0.48 Å for rmsd and
0.95 Å for all heavy atoms. If we assume that a model within 0.8
Å rmsd is indistinguishable from native, the seemingly modest
improvements of 3% and 11% of rmsd attributed to AMBER99
and KB�0.1, respectively, for NNSMs with a mean of �rmsd� of
1.06 Å become much more substantial.

It would be satisfying at this point to state specifically why one
potential works better than another in these tests. Because the
energy for a given configuration is a sum over many hundreds,
and often thousands, of individual energy contributions, and
because a single bad contact along a trajectory can have a much
larger contribution to the overall energy than a large number of
small, favorable interactions, teasing out the energetic differ-
ences between potentials is an exceedingly difficult task. We
have not yet fully resolved this issue to our satisfaction.

It is possible that the reductionist viewpoint, stated in the
preceding paragraph, may not be sufficient to explain our results:
the shapes of the energy landscapes encoded by the potentials
are far more important than the individual interactions them-
selves. The ruggedness of the energy landscape may also be
important.

It is gratifying to note that use of criteria 1 and 2 give the same
overall ranking of force-field performance: KB�0.1 works best,
followed by AMBER99, KB�0.2, OPLS-AA, KB�0.5, GRO-
MOS96, and ENCAD. Individual test proteins that perform well
under PEM with a particular energy function from the native
state (criterion 1) do not necessarily score well when the same
energy function is used to attempt to move NNSMs closer to the
NS (criterion 2). Specifically, there is no correlation whatsoever
between scores of individual protein under criterion 1 with the
scores of the same proteins under criterion 2.

Use of KB Potentials in Refinement. Our secondary aim was to test
whether a statistical KB/MM hybrid potential could perform as
well as, or better than, traditional MM potentials in refinement
applications. We found that a force field in which the nonbonded
terms of ENCAD have been replaced by a smoothed KB
potential derived with bin widths of 0.1 Å showed the best
performance of any of the potentials tested in this work. Two
other statistical potentials derived with bin widths of 0.2 and 0.5
Å were tested also, but their performance lagged significantly
behind that of KB�0.1.

KB PMFs are derived by using statistics culled from the 3D
structures of known proteins. Clearly, the widths of the distance
bins into which pairwise atomic interactions are sampled from
the database have a significant impact on the resultant PMF’s
performance in our tests. There are two factors that likely
contribute to this impact: (i) the more accurate placement of
energy minima in the energy-vs.-distance curves, and (ii) the
more accurate placement of the repulsive ‘‘overlap’’ segments of
each curve.

An underlying assumption when deriving pairwise PMFs is
that the frequencies of atom-pair contacts are statistically inde-
pendent from one another. We (24) and others (25–27) have
pointed out that this assumption is not valid for proteins, given
the complex bonding topology of the atoms in amino acids.
Phantom, cooperative interactions can turn into explicit, ‘‘real’’
favorable interactions in this treatment (26). It may be precisely
this effect that enables the KB/MM potentials in this work to
draw NNSMs closer to native via minimization. Also, the
formulation of a PMF implicitly contains the effects of solvent,
because all of the experimental structures in our derivation
database are folded.

Finally, our choice of a PMF-derivation scheme (28) was made
at a very early stage in this work. Each of the currently used PMF
derivations (18, 28–30) differs primarily in the method used to
calculate the expected pairwise atomic distributions, which
affects the energies assigned to each distance bin in the energy
profiles.

Materials and Methods
Choice and Generation of NNSM Test Set. Test proteins were
selected to be accurately determined and have a broad, repre-
sentative set of folds. First, all 27,570 coordinate files in the
Protein Data Bank (release 23, August 2004) were sorted by
decreasing Summary Protein Data Bank ASTRAL Check Index
(SPACI) (31, 32) score, and all structures with prosthetic groups
or heteroatoms other than SO4, Mg, Ca, Cl, Na, K, NO3, and NH4
were removed. Starting at the top of the list, we selected one
representative of each Structural Classification of Proteins
(SCOP) (33) fold to give a list of 99 domains. If some of these
domains were split parts of a single chain, we also included the
entire chain in our test set. We included additional domains if
CATH (34) or our domain parsing split a chain that was treated
as a single domain by SCOP, which gave us a list of 122 protein
chains and domains. This list was pruned further on the basis of
preliminary minimization using the ENCAD potential: chains
that showed poor behavior upon minimization of the NS
(rmsd 
 2.0 Å) were discarded, leaving 77 chains in total.

Generation of sets of near-native, structurally perturbed vari-
ants of each chain was performed by our method of normal-
mode perturbation. This method involves calculating quasielastic
modes of each NS by using the single-bond torsion angles as
degrees of freedom. We generated the required V and T
matrices by using numerical differentiation (35) with the Tirion-
like (17) energy function, Uij � 90�(r2 � R2)2/{R4�[aR4  (1 �
a)r4]}, where r is the separation of atoms i and j, R is the constant
separation of the same atoms in the NS, and the constant a is set
to 0.2. With this function, the energy and its first derivative are
zero at the NS (r � R), and its second derivative, which is always
positive, decreases as R�6.

Eigenvectors derived in torsion-angle space are straight-line
Cartesian coordinates. We use the shifts of atomic positions
caused by a very small shift along a torsional mode denoted as
vij for the ith Cartesian coordinate of the kth mode. These shift
vectors are not necessarily orthogonal in Cartesian coordinates
(¥vikvij � 0). Adding components from such vectors can fail to
span the subspace of K modes properly. We dealt with this by
selecting the lowest frequency mode and then testing the next
lowest-frequency modes in order of increasing frequency. A new
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mode is selected if the largest value of its dot product to modes
already selected is 	0.4. This procedure is continued until 6
quasiorthogonal modes have been selected. We use these six
modes with a value of m � 1 (amplitudes of ��, 0, and �) to give
a total of 36 � 729 NNSMs.

In this initial test, modes were generated only for the heavy
atoms and polar hydrogen atoms. Normal-mode generation
succeeded in 75 of the 77 cases; this set of 75 chains is analyzed
in this work.

Derivation of Continuous KB Potentials. Proteins from the Top500
Database were used for the counting of pairwise atomic contact
frequencies. With a total of 
74,000 nonhydrogen atoms, it was
possible to use all of the 167 atom types used before in
Samudrala’s RAPDF KB potential (18). Interactions between
pairs of atoms in the same residue or in residues adjacent along
the sequence were ignored. The �250 million pairwise interac-
tions were counted in bins centered at distances of i�S, where S
is the bin width (Å), and i is the bin number, starting with 0. Each
pairwise count is fractionally assigned to the two bins on either
side of the exact interatomic distance. Specifically, for a pair of
atoms at an interatomic distance, d, where i�S 	 d 	 (i  1)�S,
the count of bin i is incremented by [1 � (d � i�S)/S] and the
count of bin (i  1) is incremented by [(i  1)�S � d]/S. These
counts are converted to an energy value by using the formalism
of Lu and Skolnick (28).

The repulsive close-contact portion of each pairwise interaction
was calculated by using

E�i� � �
E�iL� � 5�iL � i0c�0.5�

�1�iL � i� i0c�0.5 	 i 	 i0c

E� iL� � 30� i0c�0.5 � i0c�1.0�
�1 i0c�1.0 	 i 
 i0c�0.5

� � i0c�0.5 � i�
Ez i 
 i0c�1.0.

[2]

Here iL is the index and E(iL) is the knowledge-based energy of
the first distance with at least a fractional count, and i0c (zero
counts) is the immediately preceding bin. i0c-0.5 is the index of the
bin in which the r(i0c) distance is decreased by 0.5 Å, i0c-1.0 is the
index of the bin in which the r(i0c) distance is decreased by 1.0

Å, and Ez is the plateau energy value [80 kcal/mol (1 kcal � 4.18
kJ)] used for smaller distances.

Each distance-dependent pairwise curve was then fit to a
quintic spline function. These differentiable KB potentials were
used together with the bonded terms of the ENCAD force field
by replacing all nonbonded energy terms in ENCAD with the
corresponding KB terms. The KB/MM hybrid potential was
smoothly truncated to 0 kcal/mol between 9 and 11 Å.

Minimization Protocol. Proteins were minimized in vacuo by using
the Limited-Memory Broyden-Fletcher-Goldfarb-Shanno (36)
minimizer in either GROMACS (37–39) or ENCAD (15, 40). In
every case, the minimizer was set to run for 10,000 steps of
minimization or until convergence to machine precision. In
minimizations using the ENCAD potential, a force-shifted trun-
cation method was used with nonbonded (Lennard–Jones and
Coulomb) cutoff values of 6 Å. When using GROMOS96,
AMBER99, and OPLS-AA, the simple nonbonded cutoff
scheme of GROMACS was used for long-range force truncation
beyond 9 Å. In all cases, the dielectric constant was set to 1, and
the hydrogen atoms were built by the program used for energy
minimization to produce neutrally charged side chains. The
version for the GROMOS96 potential used was GROMOS96
43b1, which was parameterized for vacuum simulations, as was
the ENCAD potential.

Note. Our method of PEM with KB�0.1 was tested in the ‘‘Physics-Based
Refinement’’ section of CASP7. For the eight near-native structures
released, our minimized submissions showed a mean rmsd improvement
of 0.05 Å and PI of �3.2%. We expect more robust search methods to
improve this performance.
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