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Abstract
This study examined the analgesic effect of cocaine in Spontaneously Hypertensive Rats (SHR),
which are considered a suitable model for the study of attention deficit hyperactivity disorder
(ADHD), and in Wistar (WIS) rats of both sexes using the hot-plate test. In addition, we tested
whether habituation to the unheated hot-plate apparatus, that "normalizes" the basal hypoalgesic
phenotype of SHR, alters the subsequent cocaine-induced analgesia (CIA) in this strain. SHR of both
sexes were hypoalgesic compared to WIS rats in the hot-plate test and showed higher sensitivity
to CIA. Habituation to the unheated hot-plate reduced the basal nociceptive latency of SHR,
suggesting cognitive/emotional modulation of pain in this strain, but did not alter the magnitude of
CIA. The present study shows increased sensitivity to CIA in SHR, which may be related to
abnormalities in the mesocorticolimbic dopaminergic system. Further studies using SHR strain may
reveal new information on the neurobiological mechanisms underlying ADHD and its co-morbidity
with drug addiction.

Findings
Pain is a complex and subjective experience that involves
the transduction of noxious stimuli by nociceptive fibers,
but also cognitive and emotional aspects [1]. For instance,
human studies indicate that pain is perceived as less
intense when individuals are distracted from the pain [2].
Gender and genetic differences also influence the pain
perception and a number of animal models have been
used to study the influence of these factors on nociception
[3]. The Spontaneously Hypertensive Rats (SHR) show
abnormal nociceptive reactivity in several nociceptive
tests [4-8]. In the hot-plate test, SHR are hypoalgesic when
compared to rats of other strains [4,5,7,8], but they show
normal properties of nociceptive fibers [9]. We have
recently reported that hypoalgesia was no longer observed
in SHR rats after habituation to the unheated hot-plate

apparatus, suggesting that their hypoalgesic phenotype
may involve cognitive processes (e.g. distraction) [8]. This
is consistent with the fact that SHR have been considered
an animal model for the study of attention deficit hyper-
activity disorder (ADHD), since they show inattention
and impulsivity/hyperactivity [10,11]. It remains to be
clarified whether this characteristic of SHR interferes with
the analgesic properties of drugs.

Alterations in the dopaminergic system in ADHD patients
as well as in SHR have been identified [10,11]. Methyl-
phenidate, the first-choice treatment for ADHD, is known
to block dopamine (DA) uptake by brain DA transporters
in a similar way to potent psychostimulants like cocaine
and amphetamine [12]. In addition, the mesocorticolim-
bic dopaminergic system is one of the main neurochemi-
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cal pathways involved in the interface between pain,
cognition and emotionality [13]. Systemic administration
of DA re-uptake blockers induces analgesia in rodents,
probably by acting on brain dopaminergic pathways
[14,15].

The first aim of this study was to examine the effects of
cocaine on nociceptive responses in the SHR and in the
outbred Wistar (WIS) rat strain (representing a "normal"
genetically heterogenic population) using the hot-plate
test. In order to evaluate the contribution of cognitive/
emotional processes in the analgesic effect of cocaine,
another objective of our study was to evaluate whether

habituation to the unheated hot-plate apparatus, that
"normalizes" the basal nociception of SHR, alters the sub-
sequent cocaine-induced analgesia (CIA) in this strain.
Animals of both sexes were included in this study because
there is a considerable amount of evidence for quantita-
tive and qualitative sex differences in nociceptive-related
behaviors [3].

Adult (12 weeks old) SHR and WIS rats from our own col-
onies were used [8]. The weight of the animals was 230–
310 g for males and 150–210 g for females. They were
housed collectively in plastic cages (5–6/cage), under con-
trolled temperature (23 ± 2°C) with a 12-h light/dark
cycle (lights on at 07:00) with free access to rat chow and
tap water. All experiments were carried out during the
light phase of the cycle.

The animals were injected with cocaine (20 mg/kg,
Merck®) dissolved in physiological solution or an equiva-
lent amount of vehicle (2 ml/kg) via intraperitoneal (i.p.)
route 15 min before the nociceptive tests. The dose of
cocaine was selected based on a pilot study and a previous
report [14]. All procedures performed complied with the
"Principles of laboratory animal care" from NIH.

The hot-plate (Ugo Basile, model-DS37) was maintained
at 52.2 ± 0.5°C following a previously reported procedure
[8]. Briefly, the animals were placed in a glass cylinder of
24-cm diameter on the heated metal surface, and the time
between placement and hind paw licking or jumping
(whichever occurred first) was recorded as nociceptive
latency. A 70-s cut-off was established to prevent tissue
damage. The procedure of the habituation to the hot-plate
apparatus has been described elsewhere [8]. SHR were
submitted to five sessions of 90-s exposure (at 10-min
inter-trial intervals) to the unheated hot-plate apparatus.
Another group of rats remained undisturbed in their
home cages and served as non-habituated animals (test
naive rats). One hour after the last habituation session,
habituated and non-habituated rats were injected with
cocaine as previously described and tested on the hot-
plate. Because cocaine-induced analgesia was of similar
intensity in both genders, this experiment was carried out
only with female rats due to their greater availability in
our laboratory.

The results were expressed as the latency (s) to nocicep-
tion or the percentage of maximum possible effect (%
MPE) defined by the following equation:

Statistical analysis was performed using one-, two- or
three-way ANOVA with condition (habituated and non-

%MPE
post-drug latency basal latency

cut-off basal latency
= −

−
×1100

Cocaine-induced analgesia in Wistar and Spontaneously Hypertensive Rats in the hot-plate testFigure 1
Cocaine-induced analgesia in Wistar and Spontaneously 
Hypertensive Rats in the hot-plate test. Male and female rats 
of Wistar (WIS) and Spontaneously Hypertensive Rats (SHR) 
strains were evaluated in the hot-plate test 15 min after i.p. 
injection of cocaine (20 mg/kg) (upper panel). SHR rats were 
habituated to the unheated hot-plate apparatus and 1 h after 
evaluated for CIA in the hot-plate test (lower panel). Data 
are presented as nociceptive latencies (s) or the percentage 
of maximum possible effects (%MPE). * p < 0.05 vs WIS rats 
of the corresponding gender (upper panel) or vs SHR naive 
rats (lower panel) (Newman-Keuls post hoc test).
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habituated) or strain and gender as factors. Repeated
measure was included as an analysis factor for compari-
sons of nociceptive latencies before and after drug treat-
ment. The Newman-Keuls test was used for post-hoc
comparisons. The accepted level of significance was p <
0.05.

The three-way ANOVA (strain, gender and repeated meas-
ure) for the nociceptive latencies in the hot-plate test
revealed effect for strain [F(1,24) = 50.45; p < 0.0001],
repeated measure [F(1,24) = 62.94; p < 0.0001] and for
strain vs repeated measure interaction [F(1,24) = 18.69; p <
0.001]. SHR of both sexes (males: 23.7 ± 2.4 s, females:
26.7 ± 2.3 s) showed higher basal latencies to nociception
(i.e. hypoalgesia) than WIS rats (males: 15.8 ± 1.1 s,
females: 11.0 ± 1.1 s). The analgesic effect of cocaine in
the hot-plate test displayed by SHR and WIS rats of both
sexes is illustrated in Figure 1 (upper panel). The two-way
ANOVA for the % MPE revealed an overall effect of strain
[F(1,24) = 29.59; p < 0.0001], indicating that male and
female SHR showed higher CIA compared to their WIS
counterparts (p < 0.05).

Figure 1 (lower panel) illustrates the basal hot-plate laten-
cies and % MPE of habituated and nonhabituated SHR.
One-way ANOVA (condition) for the basal latencies
revealed that habituated SHR showed lower nociceptive
latencies compared to test naive rats [F(1,11) = 18.18; p <
0.005]. Habituated and nonhabituated rats displayed
analgesic effects of cocaine [F(1,11) = 27.46; p < 0.001].
However, one-way ANOVA (condition) for the % MPE
indicated that CIA was similar in these groups [F(1,11) =
0.63; p = 0.44].

This study provides evidence of increased sensitivity to
cocaine in terms of analgesia in the SHR strain when com-
pared to the WIS strain in the hot-plate test. Moreover,
habituation to the unheated hot-plate reduced the basal
nociceptive latency of SHR without altering the magni-
tude of the analgesic effect of cocaine.

SHR are hypoalgesic compared to Wistar, Wistar-Kyoto,
Sprague-Dawley and Lewis rats [4-8,16]. Thus, the results
here presented for basal nociception are in agreement
with the aforementioned findings. As pointed out by Tay-
lor et al., the exaggerated fight-or-flight stress responses
and sympathetic activation in SHR may be related to their
abnormal nociceptive phenotype [7]. Several studies have
shown that stress can cause intense analgesia [8,17]; how-
ever, we have reported that when a more severe stressor
was employed (forced swimming in cold water), SHR
were less vulnerable to stress-induced analgesia compared
to Lewis and WIS rats [8]. This apparent discrepancy
regarding an "analgesic" effect produced by exposure in a
novel environment and the reduced impact of stressful sit-

uations in SHR suggest that this hypoalgesic phenotype is
more likely to be a result of distraction of the SHR from
the nociceptive stimulus (heated plate) rather than reflect-
ing stress-induced analgesia. Confirming our previous
study [8], habituation of SHR to the unheated hot-plate
resulted in a striking reduction of the basal nociceptive
latency. These findings, taken together with the fact that
the SHR strain is considered a suitable model of ADHD
[10,11], emphasizes that SHR hypoalgesia probably
involves cognitive/emotional processes. Finally, several
studies suggest that the nociception of SHR is not associ-
ated with their inherited hypertensive trait [4,7].

SHR show increased sensitivity to CIA compared to WIS
rats. Moreover, habituation to the hot-plate that "normal-
izes" the hypoalgesic phenotype of SHR did not influence
CIA intensity. There are findings in support of an
increased sensitivity of SHR to other behavioral effects of
psychostimulants. For instance, SHR show increased sus-
ceptibility to convulsions induced by cocaine [18] and
increased psychomotor stimulation induced by ampheta-
mine [19] or methylphenidate [20]. (Although see
[21,22]). Alterations in DA neurotransmission have been
extensively described in the SHR strain, including reduced
release of DA in the prefrontal cortex, nucleus accumbens
(NAcc) and striatum [23], decreased DA turnover in the
substantia nigra, ventral tegmental area and frontal cortex
[23], reduced DA vesicular storage [24] and increased den-
sity of the D1/D5 receptors in the anterior forebrain [25].
Interestingly, stimulus-evoked release of DA was lower in
the striatum of SHR [26], although d-amphetamine
evoked greater release of DA in the prefrontal cortex, NAcc
and striatum of SHR compared to Wistar-Kyoto rats [24].

In summary, SHR have increased sensitivity to behavioral
and neurochemical effects of psychostimulants, which
may be related to abnormalities in the mesocorticolimbic
dopaminergic system. Because hyperlocomotion and
analgesia share a common neural substrate with the
rewarding effects of drugs of abuse [13], it is possible to
suggest that the enhanced behavioral effects of cocaine in
SHR could reflect the higher preference of SHR for drugs
of abuse [27]. Thus, further studies using SHR strain may
reveal new information on the neurobiological mecha-
nisms underlying ADHD and its co-morbidity with drug
addiction.
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