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ABSTRACT

In viruses, programmed —1 ribosomal frameshifting
(—1 PRF) signals direct the translation of alterna-
tive proteins from a single mRNA. Given that many
basic regulatory mechanisms were first discovered
in viral systems, the current study endeavored to:
(i) identify —1 PRF signals in genomic databases,
(ii) apply the protocol to the yeast genome and
(iii) test selected candidates at the bench. Compu-
tational analyses revealed the presence of 10340
consensus —1 PRF signals in the yeast genome. Of
the 6353 yeast ORFs, 1275 contain at least one
strong and statistically significant —1 PRF signal.
Eight out of nine selected sequences promoted
efficient levels of PRF in vivo. These findings
provide a robust platform for high throughput
computational and laboratory studies and demon-
strate that functional —1 PRF signals are widespread
in the genome of Saccharomyces cerevisiae. The
data generated by this study have been deposited
into a publicly available database called the PRFdb.
The presence of stable mRNA pseudoknot struc-
tures in these —1 PRF signals, and the observation
that the predicted outcomes of nearly all of these
genomic frameshift signals would direct ribosomes
to premature termination codons, suggest two
possible mRNA destabilization pathways through
which —1 PRF signals could post-transcriptionally
regulate mRNA abundance.

INTRODUCTION

Programmed ribosomal frameshifting (PRF) is a translational
recoding phenomenon historically associated with viruses and

retrotransposons. A PRF signal stochastically redirects trans-
lating ribosomes into a new reading frame (i.e. by +1 or
—1 nt) and, in the typical viral context, these signals allow
ribosomes to bypass the usual in-frame stop codon and con-
tinue synthesis of a C-terminally extended fusion protein. As
with most basic molecular mechanisms, although first
described in viruses, it is becoming increasingly apparent
that PRF is much more widespread and is likely employed
by organisms representing every branch in the tree of life
[for reviews see (1-4)].

This report focuses on programmed —1 ribosomal
frameshifting (—1 PRF) and its use by chromosomally
encoded mRNAs of yeast. The most well defined —1 PRF
phenomena are directed by an mRNA sequence motif com-
posed of three important elements: a ‘slippery site’ composed
of seven nucleotides where the translational shift in reading
frame actually takes place; a short spacer sequence of usually
<12 nt and a downstream stimulatory structure (usually a
pseudoknot). A ‘typical’ —1 PRF signal is shown in Figure 1.
In eukaryotic viruses, the slippery site has the heptameric
motif N NNW WWH (3). Current models posit that
aminoacyl- and peptidyl-tRNAs are positioned on this
sequence while the ribosome pauses at the downstream sec-
ondary structure (5-8). The nature of the slippery sequence
enables re-pairing of the non-wobble bases of both the
aminoacyl- and peptidyl-tRNAs with the —1 frame codons.
While it is generally accepted that mRNA pseudoknots are
the most common type of downstream stimulatory structures,
other mRNA structures are capable of filling this role as well
(9,10). Nonetheless, it is thought that the essential function
of the stimulatory structure is to provide an energetic barrier
to a translating ribosome.

A growing number of examples now exist of PRF signals
in expressed eukaryotic genes (11-16). The existence of
these PRF signals in a wide variety of viral and prokaryotic
genomes suggests an ancient and possibly universal mecha-
nism for controlling the expression of actively translated
mRNAs. There have been several published reports aimed

*To whom correspondence should be addressed. Tel: +1 301 405 0918; Fax: +1 301 314 9489; Email: dinman@umd.edu

Present address:

Jonathan L. Jacobs, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Advanced Technology Center, Gaithersburg,

MD 20877, USA

© 2006 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



166 Nucleic Acids Research, 2007, Vol. 35, No. 1

Spacer Region Pseudoknot
5,.NNNWWWHI V””” i \
) ] S1
Slippery Site | | | | | | 1%
S2
o I 11 T

Figure 1. Typical —1 PRF signals consist of a heptameric slippery site that
fits the motif N NNW WWH (spaces indicate zero frame codons), a short
spacer region of 5-12 nt, and an mRNA pseudoknot with two stem and three
loop regions (S1, S2 and L1-L3, respectively). See Materials and Methods for
the pseudoknot motif criteria used in this study.

at the in silico identification of ‘recoding signals’ using a
wide variety of computational approaches (4,17-21). While
the methodologies of each study covered a broad range of
bioinformatics techniques, the general goal of each of these
[with the exception of (19)] was fundamentally the same.
Specifically, the strategy has been to first find out-of-frame
ORFs followed by the identification of PRF signals in the
overlapping region between them that could act to potentially
redirect ribosomes from the upstream ORF into the down-
stream one, thereby resulting in the translation of a fusion
protein. The strength of this approach is that it can identify
new classes of cis-acting signals capable of directing efficient
PRF. However, this computational strategy is based on the
assumption that PRF outcomes should mimic those observed
in viral genomes, and thus its weakness is that it cannot
identify new functional outcomes of frameshifting.

In contrast, while ‘outcome-neutral’ approaches using
mRNA motifs known to promote efficient PRF cannot identi-
fy new frameshift signals, they can enable an expansion of
our understanding of functional uses for PRF. In this vein,
the first computational search for eukaryotic —1 PRF signals
(19) did not focus solely on identifying two overlapping
out-of-frame ORFs, but instead aimed to find these motifs
throughout the entire CDS of the yeast genome. This early
study found some 260 putative —1 PRF signals in the anno-
tated portion of the Saccharomyces cerevisiae genome. The
shortcomings of the Hammell et al. (19) study were its lim-
itation by incomplete annotation of the yeast genome, and
relatively insufficient computational resources available at
the time (ca. 1995-1998). Thus, in order to achieve a more
comprehensive approach, a new set of informatics tools
were developed and applied using faster and more robust
computational platforms. The results of the current study
show that: (i) pattern matching approaches coupled with a
predictive method for folding RNA sequences provide a
dramatic improvement in the results; (ii) —1 PRF motifs
are widespread in the genome of S.cerevisiae; (iii) many of
the putative signals identified have predicted secondary struc-
tures with statistically significant measures of free energy;
(iv) putative —1 PRF signals from a variety of S.cerevisiae
genes promote efficient recoding when tested in vivo. Addi-
tionally, analysis of the predicted outcomes of —1 PRF events
suggests that the vast majority would direct translating
ribosomes to premature termination codons, suggesting that
PRF could be used to post-transcriptionally regulate gene

expression through the nonsense-mediated mRNA decay
pathway (NMD).

MATERIALS AND METHODS
Hardware and software

All software was compiled and run on one or more of the fol-
lowing systems: Dell Precision 620, 2x PIII XEON 866 MHz
running Mandrake Linux 10.x; Apple Power Macintosh,
2x G4 1.4 GHz PowerPC running OS X Tiger; SGI Cluster
64x MIPS R14K 600 MHz running Irix 6.5; SGI Altix 3000,
64x 1.5 GHz Itanium II running Linux-64. Supercomputing
resources were made available courtesy of The National
Cancer Institute’s Advanced Biomedical Computing Center
in Frederick, MD (ABCC, http://www.abcc.ncifcrf.gov).
Unless otherwise noted, data mining and analysis was carried
out using scripts written in PERL (www.perl.org), each of
which are available on request. In all cases, data is stored in
a mySQL 4.x relational database (www.mysql.com) referred
to as the PRFdb (http://dinmanlab.umd.edu/prfdb).

Pattern matching

RNAMotif (22) was utilized for finding subsequences in the
coding regions of S.cerevisiae that serve as potential tran-
slational frameshift signals. The descriptor of the putative
programmed frameshift signal motif was created ad hoc from
analysis of 56 known viral —1 PRF signals from the RECODE
(23) database. The RNAMotif descriptor had the following
requirements: (i) define slippery sites as using the ITUPAC
nomenclature ‘N NNW WWH’, where: (A) spaces indicate
zero-frame codon boundaries, (B) N NN represents any
three identical nucleotides, (C) WWW represents AAA or
UUU, and (D) H # G; (ii) allow any sequence between 0
and 12 nt in length to serve as the spacer between the
slippery site and the pseudoknot; (iii) allow G:U base pairing
in pseudoknot stems; (iv) each stem in the pseudoknot must
be between 4 and 20 nt in length; (v) the first loop must be
between 1 and 3 nt in length; (vi) the second loop is optional;
(vii) the third loop must be at least as long as one-half the
length of the first stem and no longer than 100 nt.

Genome randomization

The complete coding sequence (CDS) of S.cerevisiae was
randomized using seven different methods for sequence
randomization. Each method of randomization was conducted
such that each genome had the same number of open reading
frames (ORFs) and identical ORF lengths of the natural
S.cerevisiae genome. In addition, each random genome was
generated in such a way such that stop codons were only
present in the terminal 3’ position (i.e. no in-frame termina-
tion codons). Beyond these similarities, the seven methods
for randomization included: NoBias, randomized ORFs with
unbiased nucleotide bias; ntShuffle, nucleotides from each
natural ORF are shuffled by triplicate mononucleotide permu-
tations; ntBias, randomized ORFs using the CDS single-
nucleotide frequency; cdnShuffle, codons from each natural
ORF are shuffled by triplicate monocodon permutation;
SilentBias, a silent bias where the codons are randomized
in place so as to maintain protein coding sequence; cdnBias,



randomized ORFs using the observed CDS codon usage bias;
diNuc, randomized ORFs generated using the observed CDS
dinucleotide frequency. A total of 100 randomized replicate
genomes were generated for each of the seven methods
(700 random genomes total, ~6.5 billion nucleotides). As
was done for the natural S.cerevisiae genome, RNAMotif
was used to search these randomized genomes.

Secondary structure prediction

Pknots (24) was used to predict the minimum free energy
(MFE) ‘fold’ of each motif hit identified by RNAMotif.
Each motif hit identified by RNAMotif was folded by pknots
and assigned a predicted MFE value (MFE in kcal/mol) and
a predicted secondary structure.

Randomization and statistical analysis

Each folded motif hit was randomly shuffled and refolded
100 times using pknots (with pseudoknot folding disabled),
producing a distribution of random MFEs specific for each of
the motif hits. Distributions of random MFE values using
pknots with pseudoknots folding disabled were in general
not statistically different from those generated using pknots
with this option enabled (data not shown), but had consi-
derably shorter generation time, identical energy parameters,
and could be run on the same computing platform. Motif hits
were then compared to the resulting distribution and assigned
a normalized z-score:
X—-x

ZR = N 1
()

where X is the predicted MFE value for each sequence, x
is the estimate of the mean for the distribution of MFE
values obtained from 100 randomizations, and & is the SD
of random structure MFE values. The normalized value of
zg (z-random) obtained provides an estimate of the statistical
significance and uniqueness of the predicted structure for the
natural sequence: i.e. is the sequence more or less stable than
expected by chance (25-32).

Genetic methods and plasmid construction

Escherichia coli strain DH50. was used to amplify plasmids,
and E.coli transformations were performed using the high
efficiency method of Inoue et al. (33). YPAD and synthetic
complete medium (H™) were used as described previously
(34). Isogenic ResGen yeast strains (Invitrogen, Carlsbad,
CA) derived from BY4742 (JD1158: MATa. his3Al leu2AO
lys2A0 ura3A0 and JD1181: MATo. upf3::Kan® his3Al
leu2 A0 lys2A0 ura3A0) were used for in vivo measurement
of programmed —1 ribosomal frameshifting. All yeast cells
were transformed using the alkali cation method (35). Dual
luciferase plasmids pJD375 and pJD376 have been described
previously (36).

Computationally identified putative —1 PRF signals
derived from BUB3, CTS2, EST2, FKSI, FLRI, NUPS2,
PPRI, SPR6 and TBF1 were designed with the appropriate
restriction sites on the 5’ and 3’ ends (Supplementary Table 1).
Furthermore, naturally occurring termination codons were
eliminated from the —1 reading frame by shortening the
spacer region between slippery site and the putative
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downstream stimulatory structure by a 1 nt. PAGE purified
oligonucleotides (Integrated DNA Technology, Coralville,
IA) corresponding to each —1 PRF signal were annealed
and gel purified. pJD375, the ‘zero-frame’ control dual-
luciferase frameshift reporter (DLR) plasmid, was used as a
vector backbone and each putative PRF signal was cloned
into unique Sall and BamHI restriction sites located in the
multiple cloning site (MCS) between the Renilla and firefly
luciferase orfs. The resulting new PRF-reporter vectors were
verified by DNA sequencing (Macrogen, Seoul, Korea).
In vivo Dual-Luciferase® Reporter Assays (Promega Cor-
poration, Madison, WI) for programmed —1 ribosomal
frameshifting were performed as described previously in
yeast strain JD1158 (36). Luminescence readings were
obtained using a Turner Designs TD20/20™ Luminometer
(Sunnyvale, CA). A minimum of 12 replicate assays were
carried out for each candidate —1 PRF signal. Statistical
analyses of each luciferase dataset followed an established
protocol aimed at identifying outliers, validating the statis-
tical assumptions of sample size and distribution, and for
the accurate comparison of multiple bicistronic reporter
assays (37).

RESULTS
Pattern matching with RNAMotif

The main differences between this study and the previous
work by Hammell et al. are (i) the availability of a complet-
ely annotated yeast genome, (ii) significantly more powerful
computational resources, (iii) application of more sophisti-
cated statistical analyses and (iv) a different parameter was
employed for the —1 PRF motif. RNAMotif (22) was exploi-
ted, and an appropriate albeit somewhat relaxed, ‘descriptor’
of known viral —1 PRF signals was developed (see Materials
and Methods) by analysis of a database of experimentally
confirmed recoding signals (23) as the first step toward com-
putationally identifying putative —1 PRF signals. The results
of this pattern matching approach identified 10340 slippery
sites in the 6353 annotated coding sequences (CDS) of the
yeast genome, 6016 of which are followed by at least one
pseudoknot motif. In total, RNAMotif identified 173452
sequence windows that matched the specified parameters
(many are partly overlapping).

Whole genome randomization

To determine the statistical significance of these results, they
were compared to what would be expected by chance. One
method of identifying statistically significant motifs in
nucleic acid sequences is to repeat the initial motif search
using a large set of randomized sequences. The frequency
of finding the motif in randomized sequences can provide
some insight into the likelihood that a match in a natural
sequence occurs by chance. In this report, a conservative
approach was applied by randomizing the whole yeast CDS
genome using seven different strategies so as to not introduce
bias due to choice of any one method. All of the randomized
genomes contained the same number of ORFs (rORF) as
the natural yeast genome and the same number of total
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Table 1. The yeast genome has a significant number of putative programmed
—1 ribosomal frameshift signals compared to randomized genomes created
using any one of seven different randomization strategies

RNAMotif SD P-value

S.cerevisiae 6016 — —

noBias 3044 64.07 <0.01
nShuffle 4567 70.84 <0.01
nBias 4660 65.89 <0.01
cShuffle 6551 85.13 0.02
sBias 6580 82.13 0.02
cBias 6639 86.52 0.02
dnBias 6774 88.16 0.01

RNAMotif, the number of motif hits using our descriptor of functional —1 PRF
signals (22); stdev, standard deviation of for each randomization strategy.
Seven methods for randomization were used. These were: NoBias, randomized
ORFs with unbiased nucleotide bias; ntShuffle, nucleotides from each natural
OREF are shuffled by triplicate mononucleotide permutations; ntBias, rando-
mized ORFs using the CDS single-nucleotide frequency; cdnShuffle, codons
from each natural ORF are shuffled by triplicate monocodon permutation;
SilentBias, a silent bias where the codons are randomized in place so as to
maintain protein coding sequence; cdnBias, randomized ORFs using the
observed CDS codon usage bias; diNuc, randomized ORFs generated using
the observed CDS dinucleotide frequency.

nucleotides in the CDS sequence space. Furthermore, rORFs
with in-frame premature termination codons were discarded
and randomly re-generated until full length read-through
sequences were obtained. The results (Table 1) show that
the actual number of motif hits found is statistically different
when compared to any of the seven randomized datasets;
suggesting that the prevalence of —1 PRF signals may be
under multiple selective pressures.

Each of the randomization types designed to mimic the
natural CDS of yeast (cShuffle, sBias, cBias and dnBias; see
Materials and Methods), retained the information content of
the yeast genome. These randomization strategies generated
genomes that harbored more —1 PRF signals than are actually
found in the natural genome. This suggests a selective pres-
sure against the random acquisition of functional —1 PRF sig-
nals in yeast; i.e. the yeast genome would be expected to have
more —1 PRF signals than were actually observed. This is
consistent with the notion that —1 PRF signals can lead to
aberrant translation and (most likely) dysfunctional proteins.
In contrast, randomization strategies that seek to mimic the
overall genome-wide or individual CDS nucleotide bias
(nBias and nShuffle, respectively) produce random genomes
with significantly fewer —1 PRF signals than are actually
observed. If there were strong and genome-wide evolutionary
pressures against the presence of any —1 PRF signals, then
they would be expected to be significantly underrepresented
in the yeast genome and statistically indistinguishable from
the nShuffle and nBias randomization datasets. However,
this is not the case. This set of comparisons suggests that
there may be evolutionary pressure for the maintenance of
certain classes of existing frameshift signals. In addition, ran-
domized genomes using an unbiased nucleotide frequency
(noBias) were generated as a negative control. These random
genomes contained far fewer —1 PRF signals than observed
for the actual yeast genome and far less than any of the
other randomization strategies. In sum, the number of slip-
pery sites followed by at least one pseudoknot motif (6016)
present in the actual yeast genome is highly statistically

significant (P < 0.02) when compared to the number of
expected —1 PRF signals for all of the randomization strat-
egies employed (Table 1). Therefore, although unexpectedly
large, this analysis suggests that at least some of the predicted
—1 PREF signals have been functionally selected for.

Secondary structure prediction

The next step was to assign additional layers of predictive
metrics to the dataset so as to enhance the ability to identify
functional —1 PRF signals for empirical testing. The first step
was to assign a MFE value to each motif hit identified
by RNAMotif. This was not a trivial task since nearly all
known —1 PRF signals require an mRNA pseudoknot
(7) and pseudoknot prediction represents a well known and
computationally difficult problem (38). However, pknots (24),
an algorithmic extension of mfold (39) is capable of predict-
ing H-type pseudoknots of the type that are generally found
associated with functional —1 PRF signals. Coupled with a
set of scripts written in PERL (40), pknots was able to fold
every sequence window identified as a potential motif hit
by RNAMotif (173452 sequence windows) in ~5000 CPU
h. (~5 months) using the computational resources available
at the National Cancer Institute’s Advanced Biomedical
Computing Center in Frederick, MD. Once the initial folding
was completed, the dataset was then reduced to a structurally
non-redundant dataset of 66 842 structures. The nearly 3-fold
reduction in the data was possible due to the huge number of
overlapping motif hits initially made by RNAMotif. These
analyses provide each non-redundant RNAMotif match with
a predicted RNA secondary structure and MFE value. The
overall distribution of all MFE values determined by pknots
for the most stable predicted secondary structures (lowest
kcal/mol) for each structure 3’ from the slippery motif is
shown in Supplementary Figure 1A and fits a normal distri-
bution. The distribution of base pair counts for each structure
fits an extreme-value distribution and is shown in Supple-
mentary Figure 1B. The feature correlations and summary
statistics of these 10340 predicted structures are shown in
Supplementary Tables 2A and B, respectively.

Statistical significance of predicted MFE values

To identify statistically significant motif hits, z-scores (zg)
were calculated for each predicted RNA secondary structure
folded by pknots (see Materials and Methods). For each
candidate signal, the MFE value of the predicted structure
was compared to the distribution of MFE values obtained
from 100 permutations (mononucleotide shuffles) of the same
sequence using an implementation in PERL of a similar
algorithm previously described (28). The randomization
approach disrupts the nucleotide base order and any potential
secondary structure for each input sequence but preserves the
exact mononucleotide count of each base within the shuffling
window. Significance scores derived from permutation shuf-
fling approaches such as this have previously been successful
in finding biologically meaningful RNA structures from prim-
ary sequence data both by ourselves (41) and several other
research groups (25,26,28,42). Furthermore, it is expected
that this measure of significance is sufficient since functional
secondary structures in mRNA sequences are considered
more stable than random sequence and are under selective



pressure (29,31,43,44). It should be noted, however, that
several reports have indicated that this randomization strategy
is not accurate for estimating the significance of RNA sec-
ondary structures in-general and that a superior method of
randomization lies in preserving both mono- and dinucleotide
ratios (32,45-47). Nonetheless, for the purposes of this study
the randomization strategy employed for the calculation of
zg was adequate. For this dataset, the randomization step was
limited to 100 permutations per sequence due to the sheer
number of input sequences that required zz scores. This
reasonably estimated a normal distribution of MFE values for
each input sequence and a probability plot correlation coeffi-
cient (PPCC) goodness-of-fit test (48) was carried out for
each distribution to statistically verify each estimation of a
normal distribution. A PPCC = 0.98 was found for greater
than 99% of all the candidate signals in the database indicat-
ing that 100 random shuffles was sufficient for good estimates
of zz (data not shown).

Any zz < —1.65 indicates a structure that is more stable
than expected (P < 0.05). The distribution of zx scores for
all candidate PRF signals fits a normal distribution (Supple-
mentary Figure 1C, PPCC = 0.98). A total of 3228 candidate
signals (out of 66842 non-redundant structures) include
putative structures that meet or exceed the criteria for signi-
ficance, having zx scores in the range of zg = [—7.10,—1.65].
These significant motif hits are distributed among 2025
ORFs. A total of 1203 individual slippery sites in 751 ORFs
are found to have more than one significant structure imme-
diately downstream. Each of these statistically significant
structures (and the associated 5’ slippery sites) are consi-
dered candidate —1 PRF signals (cPRF) open for further
investigation.

An interesting finding from this analysis is that statistically
significant motif hits do not necessarily have low MFE val-
ues; a result that was previously shown to be true for struc-
tural RNAs in general (25,28,29). We therefore sought to
filter the list of putative —1 PRF signals further by comparing
zg scores and MFE values, which are only weakly correlated
features in the database (Correlation = 0.53, Supplementary
Table 3A), similar to an approach previously employed
(27). Energetically strong candidates with statistically signi-
ficant predicted secondary structures are considered strong-
candidate —1 PRF signals (Figure 2). From this analysis,
1706 strong candidate signals were identified with significant
zg = —1.65 and whose MFE values are in the lowest 25%
(MFE = 17.3 kcal/mol). These strong candidate signals are
distributed among 1275 individual ORFs, where 320 ORFs
have two or more strong signals.

Selection of candidate signals for empirical analyses

Computationally generated information is best when empiri-
cally tested. To this end, nine candidate signals possessing a
wide range of feature statistics were selected for empirical
testing. First and foremost, —1 PRF signals were selected
from genes having scorable phenotypes when under- or over-
expressed. Second, eight of the nine candidate signals chosen
are predicted to fold into a pseudoknot, the exception being
the signal chosen from FKSI. Third, not all the selected
signals should fully meet the criteria outlined above for
strong candidate signals. For example, the two signals from
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Figure 2. Scatterplot of MFE values (predicted using pknots, (24) versus zg
scores for 10340 candidate —1 PRF signals demonstrates the weak
correlation between these two feature statistics (see Supplementary
Table 2B). The red diamonds and associated labels indicate the location
and parental gene of nine sequences empirically tested for frameshifting. The
hypothetical distributions were created using summary statistics from
Supplementary Table 2B.

FLRI and SPR6 met all of the criteria for strong-candidate
—1 PRF signals having zz < —1.65 and predicted MFE
values in the lowest 25% of all structures in the PRFdb.
The signals from CTS2, EST2, NUP82 and TBFI meet less
stringent criteria in that, although they are not in the first
quartile of the most stable structures, they nonetheless are
considered significant with zz < —1.65. Candidate signals
from BUB3 and PPRI were chosen because they specifically
do not meet any of the criteria above. The predicted slippery
sites and associated secondary structures are shown in
Figure 3. The feature statistics of each candidate signal are
summarized in Supplementary Table 3.

Testing for frameshifting

Each of the nine candidate —1 PRF signals were cloned into
pJD375, a dual-luciferase frameshift reporter plasmid (DLR),
and their abilities to promote —1 PRF was measured after
transformation into a wild-type yeast strain (JD1158) as
described previously (36). Briefly, the ratio of firefly to
Renilla luciferase expression promoted by —1 PRF signal
containing reporters is normalized to a ‘zero-frame’ control
reporter (pJD375), and these ratios are statistically tested
for normalcy, sample size and significance as described pre-
viously (37). At least ten replicate experiments were carried
out for each reporter. The results demonstrate that every sig-
nal containing a predicted mRNA pseudoknot promoted —1
PRF at levels that significantly exceeded non-programmed
(or background) frameshifting (Figure 4A and B). In contrast,
the sequence derived from FKSI, which is not predicted
to contain a pseudoknot, did not promote measurable
frameshifting. In a broad sense, the experimental data divides
the signals into high-, medium- and low-efficiency —1
PRF signals. The signals cloned from CTS2, EST2 and PPRI
promoted —1 PRF at ~64, 56 and 43%, respectively
(Figure 4A). Although these rates of —1 PRF are extremely
high, concurrent studies in our laboratory show levels
of —1 PRF as high as 91% in a variant of the SARS-CoV
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Figure 3. Nine examples of candidate —1 PRF signals chosen to generally represent the diversity of features present in the PRFdb. Gene names are shown with
RNA sequence and corresponding CDS nucleotide start and stop locations. The predicted structure is shown for each empirically tested candidate signal.

See Supplementary Table 3 for statistical data.

—1 PRF signal (E. P. Plant and J. D. Dinman, unpublished
data). The signal cloned from TBFI falls in the middle-
range (5.2%), while the three remaining functional signals
promoted —1 PRF at levels between 0.4-0.9% (Figure 4B).
For purposes of comparison, the well-characterized —1
PRF signal from the yeast L-A virus promoted 9.1% frame-
shifting, while values for out-of-frame controls are <0.02%.
It is important to note that in order to measure frameshifting
it was necessary to re-engineer the frameshift signals to
bypass —1 frame encoded termination codons present down-
stream of the slippery sites, and that these were all located
in the mRNA pseudoknots. Mutating these to sense codons
would cause unknown changes to pseudoknot structures,
which would uncontrollably affect frameshifting. In contrast,
although deleting delete one base in the spacer region
should change —1 PRF efficiencies (usually downward, see
Ref. (49), such changes should not completely abrogate
frameshifting, nor should they create functional —1 PRF
signals de novo. Thus, although the values presented here
cannot be taken as absolute, the important issue is qualita-
tive: these mRNA elements can indeed promote efficient
frameshifting.

The PRFdb and data availability

The PRFdb (http://dinmanlab.umd.edu/prfdb) is a publicly
available database that stores the results of the bioinformatics

data presented in this report. This online resource allows
interested readers to search for and analyze candidate —1
PRF signals in the genome of S.cerevisiae. Finally, the PRFdb
contains a searchable list of strong candidate —1 PRF signals
that may warrant further empirical investigations.

DISCUSSION

Programmed ribosomal frameshifting was first identified as
a translational phenomenon in the Rous sarcoma virus over
two decades ago (50). Since then, it has been shown to be
a general mechanism of gene regulation utilized by a wide
variety of RNA viruses (1-4). Frameshifting has also been
demonstrated to be functionally important for the expression
of a growing list of prokaryotic (51-53), archaeal (54) and
eukaryotic genes (13,14). Thus, it is becoming increasingly
apparent that PRF is a fundamental mechanism of post-
transcriptional gene regulation and is present in every branch
of the tree of life. The need to identify PRF signals in higher
organisms has grown in importance as we have become more
aware of their prevalence. In response, there have been
numerous computational studies aimed at identifying PRF
signals (17-21,55-57). Each study has met with varying
degrees of success, but empirical testing of predicted PRF
signals suggest that there are indeed functional, and previ-
ously unannotated, PRF signals in a variety of contexts within
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Figure 4. Measurement of —1 PRF efficiency for nine candidate signals.
(A) High-efficiency frameshifting including the frameshift signal from the
endogenous yeast L-A virus. (B) Medium- and low-efficiency frameshifting
including the sequence from the FKS/ gene that did not promote —1 PRF
above background levels. The parental genes of each candidate signal are
indicated with the percentage of —1 PRF efficiency as was measured using a
dual-luciferase reporter assay system (36,37).

the coding regions of genes derived from higher organisms.
With the exception of the earliest study by Hammell et al.
all of these studies have focused on recoding in the ‘viral-
context’: i.e. they were aimed towards finding PRF signals
predicted to direct ribosomes into a new reading frame so
as to produce functional alternative C-terminal extensions
of the native proteins. The study by Hammell er al. was
context neutral, focusing instead on searching for mRNA
motifs that resembled known viral —1 PRF signals.

The findings presented by this study suggest that PRF sig-
nals can function efficiently in a number of different ways.
For example, while sequences that are predicted to fold into
strong, statistically significant, pseudoknotted mRNA struc-
tures serve as efficient stimulators of —1 PRF (e.g. signals
from CTS2 and EST2), the presence of multiple overlapping
slippery sites can also have an equally strong effect, even
if the stimulatory structure is not ideal (e.g. signals from
BUB3, PPRI and NUPS82). Most importantly, it appears that
the presence of a pseudoknot as the ‘most stable’ structure
following a slippery site is critical, providing further support
for the ‘torsional restraint” model of —1 PRF (8). This is
further evidenced by the fact that the very energetically
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or dcplA) (60), or having half-lives less than the yeast transcriptome average
(t12) (70).

favorable and highly significant structure derived
from FKSI failed to promote detectable —1 PRF in vivo.
This last point may be because there is no predicted pseudo-
knot structure with an MFE value lower than that of the
predicted non-pseudoknotted structure immediately following
the slippery site of interest in FKSI (Figure 3).

The PRFdb was constructed to serve as a repository for
all the predicted structures, slippery sites and statistical data
in this study. This database is accessible via the Internet at
http://dinmanlab.umd.edu/prfdb. Currently, visitors are lim-
ited to searching the existing data for putative —1 PRF
signals in the yeast genome. It is expected, however, that this
service will be expanded in the future to include the genomes
of seven additional budding yeast species in addition to
S.cerevisiae, the human genome, and several other ‘model
system’ genomes.

While the current study revisits the original question posed
by Hammell et al. (i.e. how often are functional —1 PRF sig-
nals present in the yeast genome?), it also asks an important
second question: are genome encoded —1 PRF signals capa-
ble of promoting —1 PRF, and if so, how might this affect the
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expression of the mRNAs encoding them? Analysis of the
PRFdb from the perspective of alternative recoding reveals
that greater than 99% of the expected outcomes of —1 PRF
would result in premature termination (Figure 5A). The
prevalence of out-of-frame termination signals is not unex-
pected since the average distance a ribosome can continue
elongation in an alternative reading frame is ~6 codons in
either the +1 or —1 frame for all CDS in yeast (data not
shown). Only 10 —1 PRF signals out of 10340 potential
slippery sites are predicted to bypass the normal zero-frame
termination codon and encode an alternative C-terminal
extension (i.e. —1 PRF in the viral context). However,
BLAST analyses (58) revealed that none of these extensions
are predicted to encode functional alternative protein domains
(data not shown). This suggests that although potential —1
PRF signals are widespread in the yeast genome, they are
almost uniformly predicted to direct ribosomes to a premature
termination signals. We have previously shown that such PRF
events are sufficient to target transcripts to the nonsense-
mediated mRNA decay pathway for rapid degradation
(59). Thus, we suggest that —1 PRF may be used to post-
transcriptionally regulate gene expression of cellular encoded
mRNAs. In support of this notion, natural mRNA substrates
for NMD that do not contain in-frame PTCs have been
discovered in both the yeast and human transcriptomes
(60-67), suggesting that regulation of mRNA expression by
NMD is broadly conserved and is used to regulate a variety of
physiological processes. If this is true, then these mRNAs
should be well represented in DNA microarray databases
identifying mRNAs that are stabilized when this pathway
has been abrogated, e.g. upfIA upf2A, or upf3A (60). Consis-
tent with this hypothesis, the overlap between mRNAs
stabilized in these genetic backgrounds and ORFs containing
high probability —1 PRF signals is 38.8% (278 of 717 genes)
(Figure 5B). Also implicit in this model is that modulation of
PRF efficiency could be used as the controlling effector of
transcript degradation rates. This model could be applied to
a variety of biological examples where the stability of indi-
vidual mRNAs or whole classes of mRNAs require a flexible
stability threshold responsive to environmental cues.
Independent of NMD, It has also been suggested that
specific sequences present in coding regions of mRNAs are
capable of translationally stalling ribosomes long enough to
direct them to be endonucleolytically cleaved and specifically
degraded in both prokaryotic and eukaryotic organisms
(68,69), a process termed ‘No-go decay’. Many of the
predicted candidate —1 PRF signals identified in the current
work are predicted to be more stable than the mRNA struc-
ture used by Doma & Parker (data not shown) and thus
would be expected to be similarly capable to stall translating
ribosomes. Thus, it is also possible that mRNAs containing
these extremely stable mRNA structures identified in the
current study may also be targeted for No-go decay. If this
is true, then these mRNAs should be stabilized in cells in
which this pathway has been abrogated, e.g. xrnlIA or
dcpIA (60). Figure 5B shows the overlap between mRNAs
stabilized in these genetic backgrounds and genes containing
high probability —1 PRF signals is 50.5% (362 of 717 genes),
consistent with this hypothesis. Furthermore, regardless of the
mRNA destabilization pathway, —1 PRF signal containing
mRNAs should be inherently less stable than those that do

not contain this motif. Comparison with the yeast transcrip-
tome half-life microarray database (70) reveals that 60.8%
(327 of 538) of the mRNAs containing high probability —1
PRF signals have half-lives less than the transcriptome
average (<26 min) (Figure 5B). Conversely, it is possible
that the presence of a slippery site just upstream from strong
secondary structures may be the specific feature that allows
for such mRNAs to evade being subject to this pathway
(7). In conclusion, it is reasonable to envision that a general
function of PRF signals in the coding regions of eukaryotic
mRNAs is to act as post-transcriptional capacitors of gene
expression.
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