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ABSTRACT When a protein folds or unfolds, it has to
pass through many half-folded microstates. Only a few of them
can be seen experimentally. In a two-state transition proceed-
ing with no accumulation of metastable intermediates [Fer-
sht, A. R. (1995) Curr. Opin. Struct. Biol. 5, 79–84], only the
semifolded microstates corresponding to the transition state
can be outlined; they inf luence the foldingyunfolding kinetics.
Our aim is to calculate them, provided the three-dimensional
protein structure is given. The presented approach follows
from the capillarity theory of protein folding and unfolding
[Wolynes, P. G. (1997) Proc. Natl. Acad. Sci. USA 94, 6170–
6175]. The approach is based on a search for free-energy saddle
point(s) on a network of protein unfolding pathways. Under some
approximations, this search is rapidly performed by dynamic
programming and, despite its relative simplicity, gives a good
correlation with experiment. The computed folding nuclei look
like ensembles of those compact and closely packed parts of the
three-dimensional native folds that contain a small number of
disordered protruding loops. Their estimated free energy is
consistent with the rapid (within seconds) folding and unfolding
of small proteins at the point of thermodynamic equilibrium
between the native fold and the coil.

The folding nucleus plays a key role in protein folding (1–4).
The nucleus is the only observable, though absolutely unstable,
intermediate in the simplest two-state folding. It corresponds
to the transition state, i.e., to the free-energy maximum on the
foldingyunfolding pathway (or, better, to the free-energy
saddle point on the network of these pathways).

So far, there is only one very difficult experimental method
to identify the folding nuclei in proteins: to find the residues
whose mutations affect the folding rate changing the nucleus
stability as strongly as that of the native protein (5).

Folding simulations held on simple lattice protein models
(6–12) and analytical theories (13–15) also give interesting,
intriguing, and sometimes contradictory information on the
basics of the nucleation process.

As regards the theoretical search for foldingyunfolding
nuclei in proteins, several different approaches have been
suggested recently. The first is based on the search for a set of
highly conserved residues having no obvious functional role
(16–18); however, this approach can give no more than a
common part of the nuclei existing in homologous proteins.
The second, more direct approach is based on all-atom mo-
lecular dynamic simulations of protein unfolding (19–22).
However, these simulations need extremely denaturing con-
ditions (600 K, etc.) to be completed. Therefore the transition
state found for such an extreme unfolding can be rather
different from that existing for folding (23). The third ap-
proach is based on the investigation of peculiarities of free-
energy surfaces of folding proteins (24–27).

Here we present an approach to the search for the folding
nucleus (or nuclei). It computes the unfolding of the three-
dimensional (3D) protein structure. Unlike results shown in
refs. 19–22, it uses a simple free-energy function and dynamic
programming (not molecular dynamic simulations) to find the
transition states; unlike results shown in refs. 24–27, the
network of unfolding pathways is considered explicitly. Sim-
ulation of unfolding is much simpler than simulation of folding
(because exploring numerous high-energy dead ends can be
avoided), whereas according to the physical principle of de-
tailed equilibrium, the pathways and transition states for
folding and unfolding must coincide when these processes take
place under the same conditions. Therefore this study focuses
on conditions close to those of thermodynamic equilibrium
between the native and the unfolded coil states. Under these
conditions, small proteins demonstrate two-state (i.e., ‘‘all-or-
none’’) transitions both in thermodynamics (28) and kinetics
(1, 2). This absence of the other accumulating states allows us
to take into account only the pathways going from the native
to the unfolded state and to neglect those leading to misfolded
globules (14, 29).

Following the earlier developed theory (14, 29), we consider
a simplified stepwise unfolding, each step of which is the
removal of a chain link (i.e., a chain fragment of one or a few
residues) from the native 3D structure. The removed links are
assumed to form a random coil; they lose all nonbonded
interactions and gain coil entropy (except that spent to close
the disordered loops protruding from the remaining globule;
Fig. 1). This is our first simplification. The next is the assump-
tion that the links remaining in the globule keep their native
positions and that the unfolded regions do not fold into
another nonnative globule. Thus, we actually neglect nonnative
interactions that make our model similar to that of Go# (30).
Further, to facilitate the computations, we now limit the
number of loops protruding from the folding intermediates
according to the estimates obtained in refs. 14 and 29 and use
‘‘chain links’’ of two (or four for larger proteins) residues. The
last and main simplification is that we concentrate on the
transition states, i.e., on the stability (actually, the instability)
of partly unfolded intermediates rather than on a detailed
description of the chain motions.

All computations presented in this study refer to the point
of thermodynamic equilibrium between the native and coil
states.

Free-Energy Estimate. Semifolded proteins with some given
residues fixed in their native positions and the other disordered
can be described as being in a ‘‘microstate,’’ because a disor-
dered link corresponds to an ensemble of many conformations.
The free energy of microstate S (of nS disordered residues and
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N 2 nS residues keeping their native positions and conforma-
tions) is taken as

F~S! 5 «S~i,j11![sdij 2 T~nss1 1 Sloops[sSloop!. [1]

The first sum is taken over all the nonneighbor residues i, j,
keeping their native positions in S. The second sum is taken
over all the closed disordered loops protruding from the
globular native-like part of S (in the scheme given in Fig. 1, the
left intermediate contains two closed loops and no tails, and
the next one has both the N- and the C-terminal tails and one
closed loop). dij is the number of atom–atom contacts (the
contact distance is ,5 Å) between residues i and j in the native
3D structure; « is the energy of one atom–atom contact; T is
the temperature; s1 is the entropy difference between the coil
and the native state of a residue (according to ref. 28, we take
s1 5 2.3R, R being the gas constant). The native state (with nS

5 0) and the coil (with nS 5 N) have equal free energies at the
equilibrium temperature. Because both of these states include
no closed disordered loops, « and T are connected by the
equation « 5 2TNs1y(S(i,j11)[Sinativedij). Thus, we can express
all the free energies in RT units (where T is the transition
temperature). The entropy spent to close a disordered loop
between fixed residues k and l is estimated (29) as

Sloop525⁄2R lnuk– lu 2 3⁄2R~r2
kl 2 d2!y~2Aauk– lu!; [2]

where rkl is the distance between the Ca atoms of the residues
k and l, a 5 3.8 Å is the distance between the neighbor Ca

atoms in the chain, and A is the persistent length for a
polypeptide (according to ref. 31, we take A 5 20 Å).

Transition States at the Unfolding Pathways. Let us con-
sider the unfolding of the native structure of the N-residue
protein chain. As explained above, each unfolding step is the
removal of one ‘‘chain link’’ from the native 3D structure. Let
the chain be (mentally) divided into U links (thus, the chain
fragment corresponding to the ‘‘link’’ includes NyU residues;
the links, rather than separating residues, are used to simplify
the computations). Let us consider some unfolding pathway
P 5 (S03S13. . . 3SU) corresponding to the above scenario
(Fig. 1). Each step of the pathway is reversible; S0 is the native
state, SU is the completely unfolded state of the chain of U
links, and S1, . . . , SU-1 are the intermediates at the pathway p.
The microstate Sn (n 5 0, 1, .., U) contains n disordered and
U-n ordered links; the free energy of microstate Sn is F(Sn);
then the maximum Fp

# 5 max {F(S0), F(S1), . . . , F(SU)}
points to the free-energy barrier at the pathway p. When this
barrier is found, the transition state and the folding nucleus
corresponding to the pathway p can be singled out.

However, the possible foldingyunfolding pathways are nu-
merous. A large network of these pathways (Fig. 2) forms the
‘‘folding funnel’’ (32): there are many different intermediates
Sn for each number n of disordered links (0 , n , U), and each
sequence of microstates S0, S1, . . . , SU forms a possible
pathway when all the corresponding transitions (S03S1,
S13S2, . . . , SU-13SU) are the above described elementary
unfolding steps consisting of the unfolding of one link from the
native 3D structure.

The most efficient kinetic pathway has the minimal (over all
the pathways) free energy of the transition state, F#

min 5
min

possible p
{Fp

#}: this pathway passes from S0 (the native state)
to SU (the coil) via the lowest barrier, i.e., via the lowest saddle
point of the free-energy landscape. When this saddle point is
found, the most effective folding nucleus can be singled out.

Each step from S0 leads to some S1; a step from any SU-1
leads to SU; however, when n 5 2,. . . ,U-1, a step from Sn-1 leads
to only some of the Sn microstates. Let Sn-1e{Sn-13Sn} mean
that Sn-1 can be transformed into Sn in an elementary step (i.e.,
by removal of one link from the globular part of Sn-1). At any
pathway, all the intermediates must obey this condition. Thus,
the saddle point free energy can be presented as

F#
min 5 min { max{F~S0!,F~S1!, . . . , F~SU!} }. [3]

S1, . . . ,SU-1

S1 [ $S13 S2%
. . . .

SU-2 [ $SU-23 SU-1%

Despite the astronomical number of possible pathways, F#
min

can be calculated by a recursive algorithm similar to that of

FIG. 1. A pathway of sequential unfolding (and folding) of the
native 3D structure S0. SU is the coil. The U–n links in the intermediate
Sn keep their native positions and conformations (they are shown as
a solid line against the background of a dotted cloud denoting the
globule), whereas the other n links (shown in dashed line) are
unfolded.

FIG. 2. Various unfolding intermediates (only a small number of
them are shown) and a network of unfolding pathways. The arrows
correspond to elementary unfolding steps, each of which is a transition
of one link from the globular native-like part of the intermediate to the
coil. Any continuous chain of arrows forms a possible unfolding
pathway (see Fig. 1), and a molecule can go up and down along each
of them.
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dynamic programming; the latter is a general approach to
optimization of multistage processes (33, 34). The algorithm is
as follows.

Let p(Sn) be the altitude of the lowest free-energy barrier at
the pathways leading from S0 to Sn inclusively; thus, F#

min 5
p(SU). The p(Sn) values are computed recursively:

p~S1! 5 max$F~S0!, F~S1!% for all intermediates S1;

p~S2! 5 min {max{p~S1!, F~S2!} }
S1[{S13S2}

for all intermediates S2;

. . . . [4]

p~SU-1! 5 min { max{p~SU-2,F~SU-1!% }
SU-2 [ $SU-23 SU-1%

for all intermediats SU-1;

F#
min 5 p~SU! 5 min { max{p~SU-1!,F~SU!} }.

SU-1

This algorithm computes the altitude of the lowest saddle point
at the free-energy barrier dividing the native fold and the coil.
All the p(S) values are stored for use later to find the saddle
point microstate(s) themselves.

To find these microstate(s) [we say ‘‘microstate(s),’’ for
there is no guarantee that only one saddle point has the
minimal free energy], we perform a similar recursion in the
inverse direction (33, 34). The aim of this inverse recursion is
to find q(S), the altitude of the lowest free-energy barrier at the
pathways following from S (exclusively) to SU, and then to
compute

F#~S! 5 max $p~S!, q~S!%, [5]

the altitude of the lowest free-energy barrier at the pathways
leading from S0 to SU via each intermediate S. The q(S) values
are also computed recursively:

q~SU-1! 5 F~SU! for all intermediates SU-1;

q~SU-2! 5 min { max {F~SU-1!, q~SU!} }
SU-1 [ $SU-2fSU-1%

for all intermediates SU-2;

. . . . [6]

q~S1! 5 min { max {F~S2!, p~S2!} }
S2 [ $S1fS2%

for all intermediates S1;

here Sv[{Sv-1fSv} means that microstate Sv can be obtained
from Sv-l in one elementary step.

The intermediates S with F#(S)5F#
min give an ensemble of

transition (micro)states {S#
min} with the minimal free energy.

Simplifications. For all the above described calculations to
be feasible, we considered only the intermediates with no more
than two closed disordered loops (in the middle of the chain)
plus the N- and C-terminal disordered tails (see Fig. 2). These
four unfolded regions should be enough to describe the
unfolding of a protein of about 100 residues, because the
estimated (29) number of coil regions in the folding nucleus is
close to L2/3y6 for a protein of L residues. Further, to facilitate
the computations, we used ‘‘chain links’’ consisting of a few
residues: two for proteins including less than 100 residues and
four for larger proteins. These ‘‘links’’ limit the accuracy of our
calculations only slightly: the links are still much smaller than

the expected size of a nucleus in the vicinity of midtransition
between the folded and unfolded phases [where the nucleus
should include roughly 1y3 of the protein globule (14, 29)].

With all these limitations, the network of intermediates (Fig.
2) usually includes '106 microstates.

Ensemble of Transition States.There is no guarantee that
the protein folds and unfolds only via the transition state(s)
having the minimal free energy. It can use also other, not
optimal but possibly numerous, passages over the free-energy
barrier, and we have to find them to estimate their diversity.

Microstate S is a pass over the barrier if its own free energy
F(S) coincides with F#(S), the altitude of the lowest free-
energy barrier at the pathways leading from S0 to SU via this
S. Therefore we select the microstates with F(S)5F#(S) and
thus obtain an ensemble {S#} of all the possible passes over the
free-energy barrier dividing S0 from SU. Generally speaking,
these passes belong to different pathways (though it is not
excluded that some passes belong to one and the same
pathway). Thus, the ensemble {S#} gives the utmost estimate
of the variety of transition microstates (this set can be redun-
dant because a pathway to a transition state high in free energy
can pass via some transition state or states of the lower free
energy), while the ensemble {S#

min} [which includes only
transition microstate(s) with the minimal free energy] gives the
lowest estimate of their variety. To outline the nucleus, we
studied both these sets.

To investigate the ensemble {S#} (or {S#
min}), we compute

the Boltzmann weights for all the transition states of the
ensemble.

P~S#! 5 exp~2F#~S#!yRT!y@SS# exp~2F#~S#!yRT!#; [7]

The sum here is taken over all the states forming the ensemble
{S#} (or {S#

min}, when we are interested only in the lowest-
free-energy transition states). All the intermediates forming
the ensemble {S#

min} have equal free energies and thus equal
Boltzmann weights. For the ensemble {S#} members, the free
energies and thus the weights P(S#) can be different. The
higher the weight P(S#), the more rapid the pathway via this
S# [according to the conventional (35) exponential depen-
dence of the reaction rate on the transition state free energy],
and therefore the more the chains use this pass S# for folding
and unfolding.

Computation of F Values. The experimental data on the
transition state structure are expressed in Ff values (1, 2, 5, 36).
Ff is close to 1 when a residue has its native conformation and
environment in the transition state and to 0 when the residue
is unfolded in this state.

In the same way, we can also describe the computed
transition state. When this state consists of only one mi-
crostate, we can easily say which residues are included in the
native part of this microstate and have all their native contacts
there (these residues have F 5 1), which residues are included
into the native part but have only some part of their native
environment there (these residues have F between 1 and 0),
and which residues are unfolded and thus have F 5 0.

However, when the transition state is an ensemble of many
microstates, we see only that some residues are often involved
in the native-like parts of these microstates and some rarely.
Besides, it has to be taken into account that the experimental
Ff values are found by point mutations changing the side
groups, i.e., Ff values primarily reflect the native environment
of a residue side chain. Therefore for each residue r we
compute the average fraction of the side chain native contacts
preserved in the transition state ensemble {S#}:

F~r! 5 SS#P~S#!@C~S#,r!yC~So,r!#. [8]

Here the sum is taken over all the transition states of the
ensemble {S#}; C(S#,r) is the number of contacts between the
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side chain atoms of residue r and all the atoms of the other
natively positioned residues in microstate S# (except the
contacts with the next-neighbor residues: these are ignored
because they are mostly present also in the coil); when residue
r is not included in the globular part of S#, C(S#,r) 5 0; C(S0,r)
is this number in the native structure [in the rare cases when

C(S0,r) 5 0, the value C(S#,r)yC(S0,r) is taken as 1). An
analogous value Fmin(r) can be computed also for the case
when we consider only the transition states having the minimal
free energy.

Thus, the computed F values have the same meaning as the
Ff values derived from protein engineering experiments. They

FIG. 3. Unfolding nuclei: correlation of theoretical and experimental results for CI2 (a), barnase (b), CheY (c), the src SH3 domain (d), and
the a-spectrin SH3 domain (e). Hatched rectangles at the top of each plot show how the nucleus of the minimal free energy is located in the protein
chain according to the calculations. The experimental Ff factors are shown with open circles (connected by dotted line for better presentation).
The F factors calculated for the ensemble of the possible transition states are shown as a solid line with filled circles (the circles correspond to
residues with experimentally determined Ff values). The experimental data do not include negative Ff values, because they have no clear structural
interpretation (38); Ff values exceeding 1 are taken as 1; when various mutations give different Ff values, we take the highest ones. For barnase,
we take Ff as 1-Fu (37) because its unfolding (u) at high denaturant concentration, as well as foldingyunfolding at moderate concentration, is a
two-state process, whereas its folding in water proceeds via a metastable intermediate (37). The rectangles and lines (at the bottom of each plot)
show the native positions of the a-helices and the b-strands in the chain.
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are compared to estimate the correlation of theory to exper-
iment.

RESULTS AND DISCUSSION

This comparison is done here for five monomeric proteins
[barnase (37), CI2 (20, 38), CheY (39), the src SH3 domain
(40), and the a-spectrin SH3 domain (41)] where experimental
data on the folding nuclei have been obtained for many
residues. The 3D coordinates of their native structures have
been taken from PDB (42) files 1rnb.ent, 2ci2.ent, 3chy.ent,
1srm.ent, and 1shg.ent, respectively.

The calculations of the unfolding pathways have been done
with the above described dynamic programming method and
the simple free-energy estimates. Although the presented
approach can investigate various folding and unfolding con-
ditions, all the given results below refer to the point of
thermodynamic equilibrium between the native and the coil
states of the protein where one can expect the simplest kinetic
behavior (see refs. 14, 29).

For each of the studied proteins, we see only one transition
microstate of the minimal free energy (thus, the ensemble
{S#

min} consists of only one microstate for these proteins).
However, the whole ensemble {S#} of all the transition
microstates includes thousands of them, the free energies of
tens of these microstates exceeding the minimum by 'RT only,
in spite of significant variations in sizes and positions of the
globular parts of these microstates. The statistical properties of
the {S#} ensembles are described by F values; see Eq. 8.

The level of correlation between theory and experiment is
demonstrated in Fig. 3 and Table 1.

Fig. 3a shows the results for CI2 protein. It demonstrates a
definite correlation between the chain fragments forming the
globular native-like part of the calculated single lowest-free-
energy transition state (rectangles) and the regions of high
experimental Ff values. The correlation coefficient is 0.50. The
correlation is even better when the F values are computed
from the ensemble {S#} of the possible transition states (see
the plot). Now the correlation coefficient is 0.56 (Table 1).
These results mean that the theory catches some of the main
peculiarities of the protein folding nuclei.

Like the experiment, the theory shows high F values for
the N-terminal a-helix and the C-terminal b-hairpin of CI2
(this means they are usually involved in the nucleus), but the
peaks for theoretical Fs are broader than those for the
experimental Fs. This is probably due, at least partially, to
the now neglected specificity of atomic contacts and to the
rough estimate of loop entropy in our calculations. In
principle, these broad computed peaks could also be caused
by the limited number of unfolded loops currently allowed in
our calculations. However, the calculations done separately
by another (‘‘branch-and-bound’’) method (which is free of
this limitation but which can search for the lowest-free-
energy transition microstates rather than for whole ensem-
bles of them) shows that this is not the case: we very rarely

see more than two closed loops in the lowest-free-energy
transition microstates computed for many proteins (A. V.
Skoogarev and A.V.F., unpublished data).

Of course, the found correlation is far from perfect. In
principle, this could be attributed to the inherent limitation of
the dynamic programming-based approach. Namely, we con-
sider only the foldingyunfolding pathways like those shown in
Figs. 1 and 2, where a link detached from the native globule is
not allowed to return after the next link has been detached.
However, the calculations done by a modification of the
‘‘branch-and-bound’’ method (very slow, but free of this
limitation) show that at least the transition microstate free
energy does not depend on the above-mentioned limitation
(A. V. Skoogarev and A.V.F., unpublished data). Besides,
although shuttling back and forth orthogonally to the main
reaction coordinate n can affect the transition state (43), the
F values computed from direct solution of the kinetic equa-
tions describing the foldingyunfolding network (D. N. Ivankov
and A.V.F., unpublished results) are rather close to the F
values computed here from the ensemble of transition mi-
crostates.

The pictures observed for the other investigated proteins are
usually similar to those observed here for CI2 [see Fig. 3 b–e
and Table 1; see also the recent works of Wolynes and
collaborators (20, 24, 27), where the calculation of the tran-
sition state and of the F values for the CI2 protein and for the
l-repressor are based on quite another technique]. The only
exception is src SH3, where the correlation between our theory
and experiment is absent. Usually the correlation between the
observed and predicted F values is about 50% for the Boltz-
mann ensembles of the transition states, and the correlation is
10% worse for the single-transition states of the minimal free
energy.

It should also be mentioned that (according to computations
of A. V. Skoogarev, O.V.G. and A.V.F.; unpublished data) the
experimental Fs of the amino acid residues in proteins show
a very low correlation ('0.15) with the number of atom–atom
or residue–residue contacts; and the correlation of the exper-
imental Fs with inclusion of residues in the secondary struc-
ture is also well below 0.2. Thus, these trivial factors cannot
account for the theory-to-experiment correlation found in this
work by examination of the unfolding pathways.

CONCLUSIONS

An overview of the transition state ensembles calculated for
each of the proteins shows that many of the transition states,
though of nearly equal free energy, have substantial variations
in size and position (see the differences in the calculated F
plots and the calculated lowest-free-energy nucleus positions
in Fig. 3). Our result correlates with the suggestion that a 3D
protein structure can fold by using various folding nuclei (7, 8,
12, 27, 41, 44–46). It should be mentioned also that, on the
average, the transition state structures found by us are com-
paratively large: they usually include from 1y3 to 1y2 and
sometimes even up to 3y4 of all the chain residues (see Fig. 3).
It is noteworthy that the experiment also suggests rather large
globular parts of the transition states (3).

Theoretically (14, 29), a large and not-too-specific critical
nucleus must be typical of the folding taking place under
conditions close to those of thermodynamic equilibrium
between the native globule and the coil. These conditions
have been used in this work. Klimov and Thirumalai did their
simulations (46) under similar conditions. Shakhnovich and
colleagues worked at the temperature of fastest folding (6,
16–18), and this temperature was well below the temperature
of thermodynamic midtransition. Here, theoretically (14,
29), the critical nuclei must be smaller and must have smaller
variations in size. Thus, a discrepancy highlighted in refs. 9
and 10 can be at least partly caused by the difference in the

Table 1. Coefficient of correlation between theoretical and
experimental F values

Protein

Computed
transition

state with lowest
free energy

Computed
ensemble

of all transition
states

No. of points
(Fig. 3)
used for

FexpyFteor

comparison

C12 0.50 0.56 37
Barnase 0.19 0.54 29
CheY 0.59 0.50 17
Ser SH3 0.00 20.02 14
a-sp.SH3 0.54 0.39 6
Average 0.36 0.46 21.2
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folding conditions used by different authors. ‘‘Wet’’ exper-
iments also show visible modifications of the transition state
size and properties with the change in experimental condi-
tions (47).

The semifolded microstates have high free energies in the
examined proteins. This is consistent with the two-state all-
or-none transition between the native and the unfolded states.
Most of these semifolded microstates have a very high free
energy of many tens or even hundreds of RT units. However,
our calculations find the passages through this high free-
energy landscape where the free energy exceeds that of the
native and coil states (for the examined proteins) by only
14–21 RT; this is consistent with the estimates obtained in
refs. 14 and 29 for proteins of this size (60–120 residues).
Such relatively low free-energy barriers allow these protein
to fold within milliseconds or seconds, which is in reason-
able, though only semiquantitative, concordance with the
experiment (3, 37–41). The computed transition states look
like those compact and closely packed parts of semifolded
native 3D structures that contain the minimal number of
protruding loops.

We are grateful to O. B. Ptitsyn for discussions and to A. V.
Skoogarev and D. N. Ivankov for assistance. This work was supported
by the Russian Foundation for Basic Research and by an International
Research Scholar’s Award to A.V.F. from the Howard Hughes Med-
ical Institute.
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