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ABSTRACT Guided by recent experimental results sug-
gesting that protein-folding rates and mechanisms are deter-
mined largely by native-state topology, we develop a simple
model for protein folding free-energy landscapes based on
native-state structures. The configurations considered by the
model contain one or two contiguous stretches of residues
ordered as in the native structure with all other residues
completely disordered; the free energy of each configuration
is the difference between the entropic cost of ordering the
residues, which depends on the total number of residues
ordered and the length of the loop between the two ordered
segments, and the favorable attractive interactions, which are
taken to be proportional to the total surface area buried by the
ordered residues in the native structure. Folding kinetics are
modeled by allowing only one residue to become ordered/
disordered at a time, and a rigorous and exact method is used
to identify free-energy maxima on the lowest free-energy paths
connecting the fully disordered and fully ordered configura-
tions. The distribution of structure in these free-energy
maxima, which comprise the transition-state ensemble in the
model, are reasonably consistent with experimental data on
the folding transition state for five of seven proteins studied.
Thus, the model appears to capture, at least in part, the basic
physics underlying protein folding and the aspects of native-
state topology that determine protein-folding mechanisms.

Recent experimental results suggest that protein-folding rates
and mechanisms are largely determined by native-state topol-
ogy (1). First, dramatic changes in sequence have been found
to have little effect on protein-folding rates. Laboratory gen-
erated variants of the SH3 domain and IgG binding domain of
protein L with large numbers of sequence changes were found
to fold at rates similar to that of the naturally occurring
proteins, suggesting that the sequences of small proteins are
not extensively optimized for rapid folding (2, 3). Furthermore,
naturally occurring proteins with similar folds but very differ-
ent sequences generally have similar folding rates (4). Second,
for two distinct protein folds, the SH3 domain and CspB, there
is evidence that folding mechanisms and transition-state struc-
tures are conserved among homologs despite differences in
amino acid sequence and stability (4–6). Third, the folding
rates of small proteins were found to be strongly correlated
with a property of the native-state topology: the average
sequence separation between residues that make contacts in
the three-dimensional structure (the contact order) (7). Re-
cent theoretical work is also consistent with the idea that
topology is an important determinant of protein-folding mech-
anisms (8). Taken together, these results suggest that native-
state topology is a key determinant of protein-folding mech-
anisms and of the distribution of structure in the transition-
state ensemble.

These findings imply that a model of protein folding need
not take into account the complex details of the interactions
between residues or consider nonnative interactions in order
to reproduce the general features of the folding landscape.
Rather, a simple treatment of the interactions in the native
protein may suffice to account for most of the experimental
data available on the folding of small protein domains. We
describe a simple model based on surface area burial and chain
conformational entropy that shows promise in reproducing
some of the general features of the protein-folding landscapes
of real proteins.

Basic Assumptions. The goal of our approach is to explicitly
map out the folding free-energy landscape using information
from the native protein structure. From the free-energy land-
scape, all of the observable properties of the folding process
can be inferred, including folding rates and transition-state
structure. Two key approximations make mapping out the
free-energy landscape possible. The first is that only native
interactions contribute significantly to the folding process;
configurations including nonnative interactions are ignored.
The second is that in any given configuration, each residue is
either fully ordered as in the native state or completely
disordered. Because each residue can be in one of two states,
ordered or disordered, the folding free energy landscape that
follows from these assumptions consists of 2n possible config-
urations, where n is the number of residues in the protein
considered.

Enumerating Configurations. Although the second approx-
imation reduces the continuum of possible configurations to a
finite number, for most proteins there are still too many to
evaluate. To reduce further the number of configurations that
must be considered, all ordered residues can be required to
occur within a single contiguous stretch in the linear protein
sequence [the single sequence approximation of helix–coil
theory (9, 10)]. A more general approach is to allow multiple
ordered segments that are distant in linear sequence to inter-
act. Increasing the number of allowed segments increases both
the complexity of the energy landscape and the total number
of configurations that must be considered. We have adopted a
compromise between the generality of the multiple-segment
model and the simplicity of smaller models, which we call the
sequential binary collision model: only two contiguous seg-
ments of the chain are allowed to be ordered in any given
configuration; however, if all of the intervening residues
between two ordered segments become ordered, a new seg-
ment may be added, because the two initial segments can be
described by a single larger segment. When one ordered
segment has a length of zero, this model is identical to the
contiguous sequence model.

METHODS
Free Energy Function. Once a suitable set of configurations

has been chosen to serve as the basis set for a folding
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landscape, the free energy of each configuration must be
calculated. We use a simple free-energy function,

F 5 2gzDASA 1 kT~azn 1 bzln~L/L0!!, [1]

where the first term represents attractive native interactions,
the second term, the entropic cost of ordering the residues in
the ordered segments, and the third term is the entropic cost
of closing the loop between the two ordered segments. The
free-energy function for the contiguous sequence model con-
tains only the first two terms, because only one ordered
segment is allowed. A related free-energy function was devel-
oped by Finkelstein and Badretdinov (11).

The attractive native interactions [first term in Eq. 1] were
taken to be proportional to the difference between the surface
area buried by the ordered residues in the native state and the
surface area buried by these residues in the denatured state.
Total surface area burial (both hydrophobic and polar) was
used; because only native interactions are considered, all burial
is assumed to be favorable. The surface area buried by the
ordered residues was computed from the positions of these
residues in the native structures [1fmk (SH3), 1rnb (barnase),
3ci2 (CI-2), 2chf (Che Y,) residues 6-92 of chain 3 of 1lmb (l
repressor), residues 17–78 of 2ptl (protein L), and residues 10A
through 81A from 1aye (procarboxypeptidase activation do-
main)] using the method of LeGrand et al. (12). The surface
area buried in the unfolded state was taken to be the sum of
the surface areas for each residue in its corresponding native
tripeptide. g in Eq. 1 was taken to be 16 cal/mol/Å2 (13).
Specific hydrogen bonding patterns, van der Waals energy, and
details of sidechain packing are not taken into account in this
simple model. Such terms may not be relevant until late in the
folding process when the protein structure is well determined,
and thus may be more relevant to the analysis of protein
unfolding and stability.

The conformational entropy lost on ordering a segment of
consecutive residues was taken to be proportional to the
number (n) of residues ordered (second term in Eq. 1). The
model was tested on three of the proteins studied (the SH3
domain, barnase, and CI-2) over a range of values of a
(corresponding to free energies of 1.6, 1.65, 1.7, 1.75, and 1.8
kcal/mol per residue at 298 K), in order to find the value that
best characterized the experimentally observed features of the
folding landscape. A fixed value equivalent to 1.75 kcal/mol per
residue at 298 K was chosen on the basis of the position of the
transition state ensemble on the reaction coordinate (com-
pared to mf/m values) and on the performance of the model in
reproducing experimentally observed f-values for these three
proteins. This is very close to the value of 1.8 kcal/mol per
residue at 298 K estimated by Freire from calorimetric stud-
ies (14).

The decrease in entropy on loop closure in configurations in
which there is more than one contiguous segment of ordered
residues was estimated from off-lattice studies of loop closure
frequencies in polypeptide chains (E.A. and D.B., unpublished
results). The entropy of loop closure derived from these
studies, S(loop closure)/k, was found to be well represented by
bzln(L/L0), where L is the length of the loop, b 5 1.8 and L0 5
0.15. This expression is consistent with estimates from polymer
theory and recent experimental results (11, 15–19).

Identifying Folding Pathways and Transition-State Config-
urations. Folding kinetics are treated in the model by allowing
only one residue to change state (from ordered to disordered
or vice versa) at a time. Thus, a configuration with two ordered
segments is kinetically connected only to configurations in
which one of the two segments is unchanged and the other is
one residue longer or shorter. With this constraint, folding
pathways connecting the fully unfolded (all residues disor-
dered) and folded (all residues ordered) configurations can be
readily identified by using a standard recursive depth first-

search algorithm. The kinetically relevant pathways are those
that involve surmounting the lowest free-energy barriers; the
lowest free-energy transition-state configurations are defined
to be the highest free-energy configurations on the lowest
free-energy folding pathways. A simple algorithm was used to
identify these pathways and transition-state configurations:

0. Generate a list of all allowed configurations and their free
energies.

1. Remove from the list the highest free-energy configura-
tion

2. Determine whether there is still a path from the fully
unfolded configuration to the fully folded configuration. If
there is a path, go to step 1. If there is not a path, the
configuration removed in step 1 is the lowest free-energy
transition-state configuration.

The 100 lowest free-energy transition-state configurations
were identified by repeatedly carrying out steps 0–2 and each
time removing from the list the lowest free-energy transition-
state configuration. The computational time needed to iden-
tify transition-state configurations was considerably reduced
by replacing the linear search in step 1 with a bisection
technique and by using a branch-and-bound strategy to deter-
mine if there is a path in step 2.

Calculation of f-Values. To compare with experimental
data, f-values were obtained by dividing the change in tran-
sition-state free energy accompanying a sidechain truncation
by the change in native-state free energy. Because there were
typically a collection of transition-state species of similar free
energy, f-values were computed for the 100 lowest free-energy
transition-state configurations and were averaged.

Graphics. All molecular structures shown were produced by
using the RASMOL and MOLSCRIPT software packages (20, 21).
S-PLUS (Mathsoft, Seattle, WA) was used to generate images
of the folding landscape for the two models described.

RESULTS AND DISCUSSION

Contiguous Sequence Model. The major advantage of the
contiguous sequence approximation is that the resulting fold-
ing landscapes can be represented directly on a two-
dimensional plot. Fig. 1, column I, shows the contiguous
sequence folding landscape for five proteins studied [several of
these plots were shown for illustration in a recent review (1)].
The order parameter, Nf, used as the x axis in this and all
subsequent plots, is the fraction of residues that are ordered;
Nf 5 0 (Left) corresponds to the fully unfolded state and Nf 5
1 (Right) to the folded state (22). The y axis indicates the
position of the ordered fragment, and the colors indicate free
energy (the highest free-energy configurations are shown in
yellow and the lowest, in blue). The folding landscapes for the
SH3 domain, barnase, and Che Y each contain a distinct low
free-energy pathway from the unfolded state to the native
state. For the SH3 domain, this pathway is determined by a
bottleneck on the folding landscape when about half of the
residues in the protein are ordered: the 30-residue region
centered at residue 35 is much lower in free energy than any
other region of comparable size. This segment roughly corre-
sponds to the region that has been shown experimentally to be
important in stabilizing the folding transition state (5, 6). For
Che Y, the stretch of low free-energy (blue) configurations
that connects the unfolded and folded states along the N-
terminal (Bottom) side of the landscape suggests that there is
a low free-energy pathway that corresponds to ordering the
protein from the N terminus to the C terminus. This is
consistent with the experimental observation that the N ter-
minus is ordered at the transition state (23). For barnase, the
residues shown experimentally to be involved in the transition
state are split between the C-terminal b-sheet and an N-
terminal helix (24). Although, the contiguous sequence model
correctly identifies one of these regions (the C-terminal beta
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sheet is the lowest free-energy structure with ;40 residues
ordered), the constraints of the model do not allow both
regions to be identified. Thus, a major limitation of this simple
model is the severe constraint that all configurations have only
one stretch of ordered residues. CI-2 is another example of the
limits of this simple model. The model correctly identifies the
alpha helix (25) (the segment about 1/3 the length of the
protein centered at residue 15) as a low free-energy configu-
ration, but the helix cannot nucleate folding because of the
large free-energy barrier to ordering the loop adjacent to the
helix. In a more realistic model, the beta sheet could condense
on the helix without fully ordering each intervening residue.

Free-Energy Profile of the Sequential Binary Collision
Model. The sequential binary collision model overcomes some
of the limitations of the contiguous sequence model by allow-
ing two segments of the protein distant in the linear sequence
to come together in three dimensions. The full free-energy
landscape for the sequential binary collision model cannot be
represented easily in a two-dimensional graph as is the case for
the contiguous sequence model. A free-energy profile, how-
ever, can be generated for this model with the caveat that the

profile may include contributions from states that are not
kinetically accessible. The free energy as a function of Nf,

A~Nf! 5 2kTln Q~Nf! 5 2kT lnS O
i

e2FiykTD
is shown in Fig. 1, column IV, where Fi is the free energy of
configuration i (Eq. 1), and the sum is over all configurations
with a particular Nf. For all of the proteins studied, the free
energy of the folded state was found to be higher than that of
the unfolded state by 5–15 kcal/mol. This lack of agreement
with experimentally determined stabilities was not unex-
pected, because only contributions from surface area burial
were included in our simple energy function (a more sophis-
ticated energy function may not be appropriate because par-
tially ordered conformations are probably not well ordered
enough to receive the full stabilizing energies of most hydrogen
bonds and van der Waals interactions). Of particular interest
in Fig. 1, column IV, is the ruggedness of the free-energy
profile for barnase and Che Y. Because of the limitations of
our energy function in correctly estimating the stability of

FIG. 1. Column I (free-energy landscape in the contiguous sequence model). Free-energy landscapes in the contiguous sequence model for the
SH3 domain (row 1), CI-2 (row 2), barnase (row 3), Che Y (row 4), and l repressor (row 5). In the contiguous sequence model, each configuration
consists of a single stretch of ordered residues. Thus, each of the configurations on the free-energy landscape can be uniquely identified by two
parameters, namely the length of the stretch of ordered residues or, equivalently, the fraction of residues ordered, Nf (x axis) and the location of
the center of the ordered segment (y axis). Colors indicate free energy and are computed from Eq. 1 (without the loop entropy term); black indicates
0 kcal/mol, and white indicates 30 kcal/mol for SH3, 25 kcal/mol for CI-2 and l repressor, 35 kcal/mol for Che Y, and 40 kcal/mol for barnase. The
color scheme used to represent free energies between 0 kcal/mol and the upper bounds is black–blue (0–25% of upper bound), blue–magenta
(25–50%), magenta–red (50–75%), red–yellow (75–88%) and yellow–white (88–100%). Column II (hierarchy of structure formation). The
frequencies with which individual residues were ordered in a Boltzmann weighted ensemble of the configurations available under the sequential
binary collision model are shown for each value of Nf (see text); the y axis is position along the sequence. Colors indicate the frequencies with which
residues were ordered (black–blue, 0.–0.25; blue–magenta, 0.25–0.50; magenta–red, 0.50–.75; red–yellow, 0.75–0.88; and yellow–white, 0.88–1.00).
Column III (structure in the transition-state ensemble). The number of times each residue was ordered in the top 100 transition states is shown as
a function of Nf; the color scheme (with counts taking the place of frequencies) and axes are as in Column II. Column IV (free energy profile). The
free energy, as a function of Nf, was computed from the partition function for each value of Nf as described in the text. The x axis is the reaction
coordinate, Nf, and the y axis is the free energy in kcal/mol.
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completely ordered proteins, the large dips in the profiles for
these proteins may actually be lower than indicated if they
involve the condensation of a fragment of the protein into a
well structured subdomain; these local energy minima may
correspond to the kinetic intermediates observed in the folding
of these two proteins.

Hierarchy of Structure Formation. To exhibit the hierarchy
of structure formation in the sequential binary collision model,
Fig. 1, column II, displays how often each residue would be
ordered in the ‘‘thermodynamic limit’’ where each configura-
tion is populated according to its Boltzmann weight, and
kinetic barriers are ignored. All configurations were enumer-
ated, and the Boltzmann weighted average frequency with
which each residue was ordered

f~res, Nf! 5 O
i

Ord~res, i! z
e2Fi/kT

Q~Nf!

is shown as a function of Nf, where Ord(res, i) 5 1 if residue
res is ordered in the ith configuration and Ord(res, i) 5 0
otherwise, and the sum is over all configurations at the
specified value of Nf.

For SH3, it is clear that the first regions of structure to
emerge (at Nf ; 0.2) are the distal loop (the blue/red region
centered near residue 40) and the RT loop (the blue–red
region centered near residue 10); however, when about half of
the residues in the protein are ordered (at Nf ; 0.5), there is
little structure in the RT loop, suggesting that the structure
observed there early in the folding pathway does not serve to
nucleate folding; in this view of the folding landscape, the early
structure seen in the RT loop can be described as ‘‘off-
pathway.’’ In contrast, the regions structured at Nf ; 0.5
remain structured throughout the rest of the folding pathway.
Interestingly, the regions of the SH3 domain experimentally
determined to be structured in the folding transition state are
nearly identical to those structured in this representation of the
folding landscape at Nf ; 0.5.

In the CI-2 free energy landscape, the alpha helix (centered
at residue 15) exhibits some structure early but does not
become completely ordered until residues in the C-terminal
b-strands (near residue 50) are also ordered at Nf ; 0.6. The
free-energy landscape for the l repressor fragment does not
suggest a well defined pathway in the thermodynamic limit;
when about half the residues in the protein are ordered (Nf ;
0.5), there is a roughly uniform distribution of structure
throughout the protein that gradually becomes more ordered
until the protein reaches its native configuration (at Nf 5 1).
By contrast, the free-energy landscape for Che Y suggests an
unambiguous folding mechanism in which the N-terminal
region of the protein forms structure first and the C-terminal
region becomes structured last.

In the barnase folding landscape, the beta sheet becomes
ordered first, then the protein condenses to a low free-energy
configuration (based on the one-dimensional free-energy pro-
file in Fig. 1, column V) that includes some interactions
between the first alpha-helix (centered at residue 10) and the
C-terminal beta sheet. Interestingly, the distribution of struc-
ture in the configurations that correspond to the first local
minimum on the free-energy profile is in qualitative agree-
ment with the distribution of experimental f-values for the
barnase folding intermediate (26).

Distribution of Structure in the Transition-State Ensemble.
Although Fig. 1, column II, gives a rough idea of which regions
of a protein might be ordered at a given point in the folding
reaction, it is not completely rigorous because some low
free-energy configurations may not be kinetically accessible.
To overcome this limitation, individual transition-state con-
figurations (defined as the highest free-energy configurations
on low free-energy paths from the unfolded to folded states)
were identified (see Methods). Fig. 1, column III, shows the

occupancy by residue of the 100 lowest free-energy transition-
state configurations. These configurations are distributed over
a range of values of the reaction coordinate (Nf). For the SH3
domain and Che Y, all of the top transition states have the
same general distribution of structure. In contrast, barnase
appears to have two structurally distinct transition-state en-
sembles: one that corresponds to forming the b-sheet alone,
and one that corresponds to bringing the N-terminal helix onto
the sheet. The placement of these transition states on the
reaction coordinate, Nf, agrees roughly with the position of the
corresponding local maxima on the free-energy profile (Fig. 1,
column IV) for barnase. The CI-2 and l-repressor transition-
state ensembles exhibit more structural diversity than those of
SH3 and Che Y, but are not easily separable into distinct
ensembles as is the case for barnase.

An important issue in computational studies of folding is
whether purely thermodynamic approaches, which search for
the maximum in the free energy along some suitably chosen
reaction coordinate, can accurately identify the folding barrier
(27, 28). Although there is a general correspondence between
the peak in the free-energy profile and the location of the
transition-state configurations, there are some transition-state
configurations with values of Nf significantly different from
that of the maximum in the free-energy profile, suggesting that
in this system Nf is a good but not perfect reaction coordinate.
For minimally frustrated systems, such as small proteins, with
funnel-like free-energy landscapes, any order parameter that
reflects the amount of native structure (the number of native
contacts, the number of residues ordered, etc.) is likely to be
a reasonable reaction coordinate (29).

The distributions of transition-state configurations (Fig. 2,
column III) show that the breadth of the transition-state
ensemble (30, 31) varies considerably among the five proteins
shown. A complementary estimate of the diversity among the
configurations sampled during folding is provided by Y(Nf),
which measures the inverse number of thermally accessible
states available to the system at a given value of Nf (32)
(Y(Nf) 5 Si(Pi

2), where the sum is over all configurations at
a particular value of Nf, and Pi is the Boltzmann weighted
probability of observing the system in configuration i). Inter-
estingly, for all of the proteins except l repressor, a sharp

FIG. 2. Distribution of thermally accessible states. Y(Nf) 5 Si(Pi
2),

which represents the inverse number of thermally accessible states
available to the system, was computed for all values of Nf, and the
result for SH3 and g repressor is shown. The sharp peak near Nf ; 0.8
for the SH3 domain (solid line) indicates a drastic reduction in the
number of accessible states late in folding that is also seen for CI-2,
barnase, and Che Y. By contrast, l-repressor (dotted line) does not
exhibit such a drastic reduction in accessible states, suggesting a more
plastic folding mechanism.

11308 Biophysics: Alm and Baker Proc. Natl. Acad. Sci. USA 96 (1999)



reduction in the number of thermally accessible states was
observed just after the transition barrier [the peak in Y(Nf) for
the SH3 domain is evident near Nf ; 0.8 in Fig. 2 (solid line)].
For l repressor (Fig. 2, dashed line), the peak in Y(Nf) was
absent, and the average value of Y(Nf) was lower than for the
other proteins. This result is intriguing given the relatively
large variation in the position of the transition state in l
repressor mutants (33); the position of the transition state may
be less rigidly constrained in l repressor because the large
number of thermally accessible states provides a number of
alternative folding trajectories that can become populated in
response to mutations [such behavior was observed in a recent
diffusion-collision model of l repressor folding (34)].

Comparison with Experiment. There are two sets of exper-
imental observables that can be used to test the sequential
binary collision model: protein folding rates and f-values.
Folding rates can be approximated directly from the height of
the free-energy barriers involved in folding. For the small data
set studied under the computationally expensive sequential
binary collision model, there is little correlation between
folding rates and barrier height. A larger set of protein kinetic
data was compared with barrier height under the contiguous
sequence model, and although there was a correlation between
barrier height and folding rates, the relative contact order (a
simple measure of the balance between local and nonlocal
contacts) was a better predictor of folding rates (7). Given the
very large numbers being subtracted in each model to give the
net free energy for individual configurations, it is not surpris-
ing that there is some error in calculating barrier height
precisely.

f-Values suggest which residues are important in stabilizing
the folding transition state and provide a means to test whether
the transition-state ensemble identified using the model in-
volves the correct region of the protein. A f-value of 0
indicates the residue probed does not contribute to the tran-
sition-state stability, whereas a f-value of 1 indicates that the
residue stabilizes the transition state to the same extent that it
stabilizes the native state (35). Folding f-values were com-
puted directly from the top 100 transition-state structures
(shown in Fig. 1, column III) and were averaged. Results did
not change significantly when only 10 transition-state struc-
tures were used but did become less accurate when only the top
transition state was used to compute f-values. On a residue-
by-residue basis, computed f-values correlated reasonably
well with those determined experimentally for five of the seven
proteins we studied [the SH3 domain (r 5 .50), CI-2 (r 5 .58),
barnase (r 5 .61), Che Y (r 5 .87), and l-repressor (r 5 .71),
where r is the correlation coefficient between the predicted
and experimental f-values; (Fig. 3)]. Of these, Che Y and l
repressor, which were not used to optimize the conformational
entropy parameter (see Methods), demonstrated the best
agreement between computed and experimental f-values. The
disagreement between computed and experimental f-values
for the SH3 domain is primarily because of the fact that the
model predicts a mostly ordered transition-state configuration
including the distal loop, diverging turn, and half of the RT
loop, while experimental data indicate only the distal loop and
diverging turn are ordered. This is precisely the region of the
protein ordered at Nf ; 0.5 in the model (Fig. 2, column II).

The predictions for two of the seven proteins, the procar-
boxypeptidase activation domain and the IgG binding domain
of protein L, did not agree with the experimentally determined
transition-state structures. For protein L, the failure of the
model probably results from the neglect of local sequence-
structure propensities. Protein L possesses a high degree of
structural symmetry: an N-terminal b hairpin is followed by a
single helix and a C-terminal b hairpin. The two b-hairpins
bury very similar amounts of surface area within themselves
and against the helix, and thus are computed to have similar
free energies of ordering in the model, yet only the N-terminal

FIG. 3. Comparison of computed and experimental f values. (Left)
Protein structures are shown colored by f-values computed directly
from the sequential binary collision model. Red indicates residues that
are important in stabilizing the folding transition state (high f-values),
and blue indicates residues that do not stabilize the transition state.
(Right) Structures colored by experimentally observed f-values; res-
idues with a phi-value of 0 are colored blue, residues with a f-value
of 1 are colored red; purple shades indicate residues with intermediate
f-values, and white regions indicate residues for which there are no
experimental data.
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half is experimentally observed to be ordered in the folding
transition-state ensemble (36) (D. Kim and D.B., unpublished
observations). A constant value of conformational entropy per
residue ignores sequence biases for specific local structures
that may be responsible for the preferential formation of the
first b hairpin (recent data suggest that the first hairpin is
already populated to some extent in the denatured state; Q. Yi
and D.B., unpublished observations). A more sophisticated
approach might use database statistics to estimate the free-
energy cost associated with formation of specific local struc-
tures.

CONCLUSIONS

The remarkable result of this study is that a very simple model
for the folding free-energy landscape combined with a crude
energy function is able to reproduce the qualitative features of
the transition-state ensemble for five of the seven proteins
studied. The success of the simple model combined with recent
experimental results supports the idea that protein-folding
landscapes are shaped primarily by gross topological features
rather than by the details of interresidue interactions.

While completing this work, we became aware of very
complementary studies being carried out by Munoz and Eaton
at the National Institutes of Health and Galzitskaya and
Finkelstein in Moscow (Russian Academy of Sciences). Munoz
and Eaton (38) used the single-sequence approximation and a
secondary structure-dependent free-energy cost for chain
ordering and were successful in predicting protein-folding
rates after setting the strength of interresidue interactions to
reproduce native-state stabilities. Finkelstein and coworkers
used an elegant dynamic programming method to identify
transition states for multisegment models and succeeded in
predicting f-values distributions for several proteins (37). The
common theme of all three approaches is a native-state centric
description of the folding free-energy landscape (nonnative
interactions are completely neglected); the success achieved by
these and other simple models (8) suggests that the essential
physics underlying the folding of small proteins may be simple
indeed.

We thank Alexei Finkelstein for communicating results before
publication and Peter Wolynes and members of the Baker group for
helpful comments on the manuscript. This work was supported by a
grant from the National Institutes of Health (NIH), and young
investigator awards to D.B. from the National Science Foundation and
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fellowship from the NIH to E.A.
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