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ABSTRACT An elementary statistical mechanical model
was used to calculate the folding rates for 22 proteins from
their known three-dimensional structures. In this model,
residues come into contact only after all of the intervening
chain is in the native conformation. An additional simplifying
assumption is that native structure grows from localized
regions that then fuse to form the complete native molecule.
The free energy function for this model contains just two
contributions—conformational entropy of the backbone and
the energy of the inter-residue contacts. The matrix of inter-
residue interactions is obtained from the atomic coordinates
of the three-dimensional structure. For the 18 proteins that
exhibit two-state equilibrium and kinetic behavior, profiles of
the free energy versus the number of native peptide bonds
show two deep minima, corresponding to the native and
denatured states. For four proteins known to exhibit inter-
mediates in folding, the free energy profiles show additional
deep minima. The calculated rates of folding the two-state
proteins, obtained by solving a diffusion equation for motion
on the free energy profiles, reproduce the experimentally
determined values surprisingly well. The success of these
calculations suggests that folding speed is largely determined
by the distribution and strength of contacts in the native
structure. We also calculated the effect of mutations on the
folding kinetics of chymotrypsin inhibitor 2, the most inten-
sively studied two-state protein, with some success.

The classical protein folding problem has been to predict the
three-dimensional structure from the amino acid sequence. A
second interesting problem is to use the known three-
dimensional structure to predict the kinetics and mechanism of
folding. This has taken on new importance with the recogni-
tion that many human diseases are caused by the aggregation
of partially folded or misfolded proteins (1). Several develop-
ments over the past decade have made the theoretical predic-
tion of folding kinetics a realistic goal. The first is the acqui-
sition of detailed experimental data on 18 small single-domain
proteins of known structure that show two-state equilibrium
and kinetic behavior, which was first observed for chymotryp-
sin inhibitor 2 (CI2) by Jackson and Fersht (2). These studies
provide the experimental results (3) necessary for testing
theoretical models. Second, the energy landscape approach,
beginning with the work of Bryngelson and Wolynes (4), has
provided a coherent description of both real folding experi-
ments and computer simulations of folding (5–13). A major
simplifying result of this approach is the finding that diffusion
on a one-dimensional free energy surface can reproduce
folding rates observed in computer simulations of simplified
representations of proteins (14, 15). The implication is that
folding rates of real proteins could be obtained by calculating
a sufficiently accurate free energy as a function of an appro-

priate reaction coordinate (16–18). Finally, Baker and cowork-
ers made a key observation that folding rates of two-state
proteins are correlated with topological complexity in a simple
way, suggesting that a simple model could be successful (19).
Such a model had already been developed (20, 21) to quan-
titatively explain our experiments (20) on a 16-residue, b-hair-
pin forming peptide. In that study, it was found that hairpin
formation contains most of the basic features of protein
folding, suggesting that the model might work for proteins.
Here, we use the model to calculate folding kinetics of proteins
by using their known three-dimensional structures and the
experimentally determined equilibrium constants.

The model considers only two thermodynamic factors: sta-
bilization by inter-residue interactions and destabilization as-
sociated with fixing backbone dihedral angles in a specific
conformation (Fig. 1). Only native interactions are included;
for two residues to interact, all intervening peptide bonds must
be in their native conformation. The matrix of inter-residue
interactions is defined by the contact map obtained from the
atomic coordinates of the three-dimensional structure. The
experimental free energy of protein folding is generally small
[1–10 kcalymol for the two-state proteins (3)] and results from
cancellation of large enthalpic and entropic terms. It is there-
fore unrealistic to expect that such a simplistic thermodynamic
function, with no attention to the nature of the atomic
contacts, can reproduce the free energy of folding. Because we
are primarily interested in the magnitude and shape of the free
energy barrier separating the native and denatured states, the
single parameter that describes the inter-residue interactions
was adjusted for each protein so that the calculated free energy
of folding agrees with the experimentally measured value. To
drastically reduce the number of species in the model, only a
small number of regions of native structure are permitted
simultaneously in each molecule. Each of these regions is
defined as a stretch of contiguous peptide bonds in the native
conformation. Allowing no more than one is called the single
sequence approximation, allowing two is called the double
sequence approximation, and three is called the triple se-
quence approximation. The free energy profiles are very
similar for all three. However, the structural mechanism
becomes less constrained as the number of native regions
allowed in an individual molecule increases.

METHODS

Partition Functions. As before (20–21), structures were
classified according to their backbone conformation, defined
by the pairs of dihedral angles that fix the orientation of the
plane of the peptide bond (Fig. 1). Peptide bonds were
assumed to exist in only two conformations, native and non-
native (16, 20–22). The entropic cost of fixing the peptide bond
in native values depends on the local conformation and the
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chemical nature of the flanking side-chains. For simplicity, we
considered only two values, one for a helix, b strand, and tight
turn and one for all other backbone conformations (e.g.,
loops). The same two values were used for all proteins.
Secondary structures were classified according to Kabsch and
Sander (23). Residue–residue interactions were obtained from
the atomic contacts present in the three-dimensional structure.
An atomic contact was defined as two nonhydrogen atoms
from different residues separated by 0.4 nm or less. Contacts
between residues very close in sequence (i, i 1 1 and i, i 1 2)
were ignored because they are also present with high proba-
bility in the denatured state. The energies of interaction
between residues were treated as weak, medium, strong, and
very strong. That is, an energy « was assigned to an interaction
if there are 1–5 atomic contacts, 2« for 6–10 atomic contacts,
3« for 11–15 atomic contacts, and 4« for 16–20 atomic con-
tacts. The value of « was taken as a constant for a given protein
but was different for each protein. These contact energies are
free energies because they include all types of implicitly
solvent-averaged interactions—hydrogen bonds, salt bridges,
other kinds of polar interactions, and van der Waals interac-
tions.

With these simple rules, the free energy and weight (relative
to the conformation with all non-native peptide bonds: F00 5
0 and w00 5 1) of a stretch of contiguous native peptide bonds,
beginning at residue i and having j native peptide bonds, is

Fji 5 O
contacts

« 2 T O
k5i

i1j21

Dsk, wji § exp~ 2 FjiyRT!, [1]

where the first term is the total contact energy in the stretch,
and Dsk is the entropy cost of forming a pair of native dihedral
angles for peptide bond k. Knowing the free energy for each
possible native stretch, the calculation of the partition function
Q is straightforward:

Q 5 1 1 S O
j~1!
O
i~1!

wj~1!i~1!S 1 1 O
j~2!

O
~i!~2!

wj~2!i~2!S 1 1 O
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with limits:

j~p! 5 1to n 2 ~i~p 2 1! 1 j~p 2 1!!; j~0! 5 0

i~p! 5 i~p 2 1! 1 j~p 2 1! 1 1 to n 2 j~p! 1 1; i~0! 5 0,

where p 5 1 in the single sequence approximation, p 5 1 and
2 in the double sequence approximation, etc. The nested sums
in the partition function continue to the maximum number of
nonoverlapping native stretches. The simplest case is the single
sequence approximation, which has frequently been used for
studies of the thermodynamics (24, 25) and kinetics (26) of the
helix-coil transition. We also have investigated the double and

triple sequence partition functions. For a protein with 101
residues (100 peptide bonds) there are 5,051, 4,082,926, and
1,267,339,921 conformations in the single, double, and triple
sequence approximations, respectively. The projection of the
multidimensional free energy surface onto the single coordi-
nate j is straightforward and yields a one-dimensional free
energy profile [a general formalism for calculating protein
folding free energy profiles has been developed by Plotkin et
al. (27)]. The free energy as a function of the number of native
peptide bonds, j, in the triple sequence approximation is,

Fj 5 2 RT ln S O
i51

n2j11
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m5l1k11
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wvuD
p ; j 2 l , v ; j 2 r 2 t [3]

where n is the total number of peptide bonds. In the double
sequence approximation the third term is omitted, whereas in
the single sequence approximation both the second and third
terms are omitted. The one-dimensional free energy profiles
were used to calculate the equilibrium constant and the folding
rate of each protein. To obtain the equilibrium constant, the
free energy profile was divided at the midpoint (half of the
total number of native peptide bonds), and the ratio of the
populations on the two sides of the dividing surface was
calculated. We calculated the folding rate from the decay of the
average number of native peptide bonds starting from the state
with all non-native peptide bonds, ^J(t)&, using a discretized
form of the analytic expression derived using the formalism of
Szabo et al. (28) (D. Bicout and A. Szabo, personal commu-
nication):

1yk §E
0

` ^J&eq 2 ^J~t!&
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dt 5
1
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O
j50

n

exp~ 2 FjyRT! [4]

where ^J&eq is the average number of native peptide bonds at
equilibrium, D is the diffusion coefficient, and Peq(j) is the
probability of having j native peptide bonds at equilibrium.

Parameters of the Model. The adjustable parameters of the
model are the two values for Dsk (one for a-helix, b-strand, and
tight turn and a second for all other backbone conformations),
22 contact energy parameters « (one for each protein in the
data set), and one value of the diffusion constant D. They were
obtained in a two-step procedure. We first found the set of
values for the two Dsk’s and the 22 «’s that reproduced the
experimental equilibrium populations. From this set, we chose
the values that, together with the adjustable parameter D,
minimized the squared residuals between the observed and
calculated rates for the 18 two-state proteins. The values for
the double sequence approximation were D 5 2 3 108 s21, Dsk
5 23.3 calzmol21zK21 for a helix, b strand, and tight turn and
Dsk 5 21.2 calzmol21zK21 for all other backbone conforma-
tions. Optimization was not performed in the triple sequence
approximation because of the large number of conformations
('109) for each protein, so the parameters from the double
sequence approximation were used in calculating the free
energy profile in the triple sequence approximation.

FIG. 1. Schematic of peptide backbone showing that fixing the
orientation of the CO-NH peptide plane by defining the two dihedral
angles (ci, fi11) also defines the relative orientation of the Ca-Cb bond
vectors of residues Ri and Ri11.
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The single value of Dsk for secondary structure formation in
these proteins compares favorably with those that were used in
fitting the equilibrium and kinetic data for the b-hairpin and
a-helix. For the b-hairpin, the value was 23.1 calzmol21zK21

(20, 21) whereas for the a-helix, the values were 22.4
calzmol21zK21 for alanine, which has a high helix propensity,
and 24.4 calzmol21zK21 for both tryptophan and histidine,
which have low helix propensities (26).

The 22 proteins, listed with their Protein Data Bank file
name, and their values of « in kilocalories per mole in the
double sequence approximation, are (monomeric l repressor,
1LMB, 0.635) (activation domain procarboxipeptidase A2,
1PBA, 0.508) (SH3 domain a-spectrin, 1SHG, 0.664) (ten-
damistat 2AIT, 0.564) (CspA, 1MJC, 0.670) (CspB from
Bacillus subtilis, 1CSP, 0.740) (chymotrypsin inhibitor 2,
1COA, 0.901) (muscle acyl phosphatase, 1APS, 0.482) (SH3
domain PI3 kinase, 1PKS, 0.443) (SH3 domain src, 1SRL,
0.780) (SH3 domain fyn, 1NYF, 0.760) (spliceosomal protein
U1A, 1URN, 0.529) (ACBP bovine, 2ABD, 0.372) [Hpr
(histidine-containing phosphocarrier protein), 1HDN, 0.605]
[tenascin (short form), 1TEN, 0.642] (9FN-III, 1FNF, 0.450)
(IgG binding domain of streptococcal protein L, 1PTL, 0.616)
(FKBP12, 1FKB, 0.655) (Che Y, 3CHY, 0.588) (ubiquitin,
1UBQ, 0.835) (IgG binding domain of streptococcal protein G,
1PGB, 0.803; « 5 1.09 for 41-56 peptide) (barnase, 1BRN,
0.556). There is a weak anticorrelation between the value of «
and the number of amino acids in the protein (correlation
coefficient 5 0.66). This might be explained by the lower
number of contacts per residue in smaller proteins due to the
higher surface-to-volume ratio. It implies that smaller proteins
require stronger inter-residue interactions to achieve compa-
rable stability.

An algorithmically simpler but less accurate way of calcu-
lating the rates is to use the height of the free energy barrier
in a transition-state-like theory to calculate a folding rate from
k 5 k0exp(2DF‡yRT). The same correlation coefficients were
found, but with different entropy parameters (22.9 and 20.85
calzmol21zK21 in the double sequence approximation), differ-
ent values for the «’s, and k0 5 7 3 104 s21. This preexponential
factor is consistent with the semiempirical estimate of ,106 s21

(29).
Calculation of f Values. The f value is defined as Dlnkfy

DlnK, where kf is the folding rate constant and K is the
equilibrium constant (5 kfyku). To obtain the experimentally
measured change in equilibrium constant, the effect of the
mutation was assumed, for simplicity, to perturb only the
energy of the interactions between the mutated residue and its
contacting neighbor residues. Possible changes in conforma-
tional entropy were ignored. Because the structures of the
mutant proteins are not known, a uniform perturbation of the
interaction energies was assumed. That is, the value of the
parameter « was adjusted for all interactions between the
residue in question and its contacting neighbors to obtain
agreement with the experimental equilibrium constant for the
mutant. The mutated protein has a new value of « for the
interactions of the substituted residue, and the original (i.e.,
wild-type) « for all other interactions. The folding rate of the
mutant was calculated from the perturbed free energy profile
by using Eq. 4.

For free energy changes greater than '0.25 kcalzmol21, the
model predicts that f values for CI2 become dependent on the
size of the perturbation (Fig. 6b). They also depend on whether
the mutation is stabilizing or destabilizing.

RESULTS AND DISCUSSION

We show two-dimensional free energy surfaces calculated
using the single sequence approximation for four proteins:
monomeric l repressor, one of the fastest folding two-state
proteins, muscle acyl phosphatase, the slowest two-state

folder, CI2, the most intensively studied two-state protein, and
Che Y, a protein with a well characterized intermediate (Figs.
2 and 3). The advantage of the single sequence approximation
is that it permits easy visualization of the equilibrium prop-
erties because the free energy is a function of only two
coordinates, the first residue of the native stretch (i) and the

FIG. 2. Structures of monomeric l repressor (a), muscle acyl
phosphatase (b), CI2 (c), and Che Y (d) showing by the color code the
theoretical f values for each position in the protein (see text). The f
values increase with decreasing wavelength, from red (f 5 0) to yellow
(f 5 0.5) to blue (f 5 1). These f values are calculated in the small
perturbation limit, i.e., DRTlnK 5 0.1 kcalzmol21. The f value pattern
in Che Y requires some explanation because it is a three-state protein.
The experiments report the f values from unfolding kinetics (30)
whereas the calculation shown here is for the folding rate from the
completely denatured state. Because the N-terminal subdomain is
already folded in the intermediate, the folding rate (i.e., the smaller
eigenvalue) is insensitive to mutations in this area since they affect the
intermediate and the transition state equally.

FIG. 3. Free energy surfaces for monomeric l repressor (a), muscle
acyl phosphatase (b), CI2 (c), and Che Y (d). This surface is the free
energy as a function of the number of native peptide bonds (j) and the
position of the central residue of a contiguous stretch of native peptide
bonds starting at residue i. The free energies increase with increasing
wavelength from low (blue) to high (red).
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number of peptide bonds in the stretch (j). For monomeric l
repressor, muscle acyl phosphatase, and CI2, there are only
two deep minima on their free energy surfaces, one for the
denatured state and one for the native state, immediately
explaining their equilibrium and kinetic two-state behavior.
For Che Y, there is an additional minimum that is predicted
to be well populated in kinetic experiments. In the predicted
intermediate, the N-terminal region, including the first two
helices, is folded whereas the C-terminal end is unstructured,
in agreement with experiments (31). These surfaces also
convey a picture of local regions of structure forming and
melting in different parts of the protein. For example, the
N-terminal helix of CI2 runs up against a high free energy
barrier (the large red mountain) and, in the single sequence
approximation, has to melt to find its way between the large
(red) mountains to reach the native state (blue valley). In the
double (or triple) sequence approximation, native structure
can be simultaneously present in two (or three) different
regions of the protein. An N-terminal structure can now fuse
with a structure formed distal to it to overcome the free energy
barrier. This barrier is both broad and bumpy, as suggested
from experiments (32).

Two-state behavior, bumpy broad barriers, and the existence
of partially folded intermediates are more readily seen in plots
of the free energy as a function of just the number of native
peptide bonds (Fig. 4). This projection of the free energy was
done in the single, double, and triple sequence approxima-
tions. For all 18 proteins known to exhibit two-state equilib-
rium and kinetic behavior, there are two deep minima in these
free energy profiles, corresponding to the native and dena-
tured states (see supplementary material on the PNAS web
site, www.pnas.org).† However, three proteins (CspA, CspB,
and SH3 domain from Src), classified as two state proteins (3),
have free energy profiles that suggest that partially folded
intermediates might be observable in either folding or unfold-
ing experiments. Additional deep minima that should be
observed in kinetic experiments are found for ubiquitin,
barnase, and the B1 domain of protein G, three proteins that
show clear experimental evidence for intermediates (33–35)
(see supplementary material).

If the number of native bonds is a good reaction coordinate
and our free energy is accurate, the dynamics on these
one-dimensional free energy profiles should reproduce the
experimental folding rates. We calculated the rates from the
solution to a one-dimensional diffusion equation (Eq. 4) (28)
using the same diffusion coefficient for all proteins. Fig. 5
compares the calculated and observed rates for the 18 two-
state proteins in the double sequence approximation. Consid-
ering the simplicity of the model, the agreement is remarkably
good (correlation coefficient is 0.85). We also found that the
rate calculated for the 16-residue b-hairpin from protein GB1,
using the same parameters as for the proteins, is very close to
the experimental value (Fig. 5).

The success of these calculations suggests that the range of
folding rates found in proteins can be largely explained as a
simple competition between conformational entropy loss and
stabilization energy from inter-residue interactions. According
to our model, structure grows locally. Consequently, proteins
with more and stronger local stabilizing interactions immedi-
ately compensate the conformational entropy loss as local
structure forms, resulting in smaller free energy barriers and
faster folding. Similarly, in proteins with more long range

†The sharp minimum close to zero native peptide bonds reflects the
poor treatment of the denatured state in this model. It results from
considering only a tiny fraction of the possible combinations of native
and non-native peptide bonds (i.e., truncation of the complete
partition function) (22).

6

FIG. 4. Free energy profiles for monomeric l repressor (a), muscle
acyl phosphatase (b), CI2 (c), and Che Y (d). Profiles are shown in the
single (blue, upper curve), double (red, middle curve), and triple
(green, lower curve) sequence approximations.

FIG. 5. Comparison of calculated and experimentally observed
folding rates at zero denaturant concentration in the double sequence
approximation. The observed rates are taken from the compilation by
Jackson (3). The correlation coefficient in the single, double, and triple
sequence approximations are 0.83, 0.85, and 0.87, respectively. In the
first two, the parameters of the model were adjusted to maximize the
agreement by using a least squares criterion. The rates in the triple
sequence approximation were calculated with the values of the two
Dsk’s and D from the double sequence approximation, and a new set
of «’s in order to reproduce the experimental equilibrium constants.
A plot of the experimental log kf versus log K gives a correlation
coefficient of 0.25, showing no significant correlation between folding
rate and thermodynamic stability in this set of proteins. The inset
shows a plot of the experimental rates versus the percent contact order
(%CO) calculated using 0.4 nm as the cut-off-distance for the 18
two-state proteins of our study. The percent contact order defined by
Plaxco et al. (19) is

%CO 5
100
L z N ON DSi, j

where N is the total number of contacts, DSi , j is the sequence
separation in residues between contacting residues i and j, and L is the
total number of residues in the protein. The correlation coefficient is
0.64. The folding rate for the b-hairpin extrapolated from the least-
squares line is almost 1083 smaller than the experimental value.
Without the length normalization (L), however, the extrapolated rate
is only 303 slower.
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interactions, there are fewer stabilizing interactions as the
chain organizes in localized regions, resulting in less initial
compensation of the conformational entropy loss and a larger
free energy barrier. In this way, the model gives a mechanistic
explanation for the significant correlation of experimental
rates and the mean separation in sequence between contacting
residues in the native structure—the contact order of Plaxco et
al. (19) (Fig. 5 Inset). Baker and coworkers give a similar
explanation of the correlation, using an extension of the
analytical model of Zwanzig (19, 22, 36). We should point out
that the contact order does not take into account the strength
of the interresidue interactions. The importance of the
strength as well as the distribution of interactions in deter-

mining free energy barrier heights is suggested by the better
correlation between our calculated and experimental rates
than between the contact order and experimental rates (cor-
relation coefficient 5 0.64) (Fig. 5), as well as between the
contact order and calculated rates (correlation coefficient 5
0.50; plot not shown).

We can also use our model to examine the effect of
mutations on the folding rates, as has been done in several
previous calculations of free energy surfaces by Wolynes and
coworkers (17, 18). The quantity of interest is the relative
effect of the mutation on the folding rate and equilibrium
constant, defined as f [ DlnkfyDlnK. A f value of 1.0 is
interpreted as indicating that the structural environment
around the residue in the transition state ensemble is identical
to the native structure whereas a f value of zero indicates that
it is identical to the structures of the denatured state. However,
for the great majority of mutations, the f values are interme-
diate between 0 and 1, making the structural interpretation less
straightforward (17, 18, 37–39). Fig. 6 shows the results of these
calculations for CI2, the protein for which there is the most
extensive mutation data from the work of Fersht and cowork-
ers (40). The model gives reasonable agreement with the well
determined experimental f values (filled circles in Fig. 6a) for
residues in the regions 1–20, which contains most of the
a-helix, and 49–64, which contains the last two b-strands.
However, it overestimates the f values between residues 21
and 47, made up of the second b-strand and the large loop.
There are two possible reasons for this. One is a simple
counting argument: i.e., restricting the number of simulta-
neous segments of native structure in each molecule overes-
timates the probability of finding segments that include resi-
dues in the central portion of the sequence. The second is that,
in our model, the only way to make contacts between the
a-helix and the C-terminal region is for all of the intervening
peptide bonds to be in a native conformation whereas in the
transition state of the real protein there could be disorder in
the connecting b-strand and long loop (Fig. 2). Overall, the
agreement between theoretical and experimental f values is
better than could be expected, considering that we are using a
highly simplified free energy function.

The model has clearly omitted several factors believed to be
important in protein folding. It is straightforward to use more
realistic treatments of inter-residue interactions and of the
conformational entropy, to include residue propensities for
backbone dihedral angles, and to make no restrictions on the
allowed number of local regions of native structure in each
molecule. It is not so straightforward to include other impor-
tant effects, such as the contribution of solvent to the free
energy barrier, side chain entropy, the role of compactness of
the denatured state, and non-native interactions. The effect of
non-native interactions should be reflected in the effective
diffusion constant used in calculating the dynamics on the
one-dimensional profiles (14). One might expect that the
diffusion constant would differ for each protein and may
account for some of the noise in the calculated rates. Finally,
adding native interactions between residues in different
stretches would add considerable flexibility to possible struc-
tural mechanisms by producing additional routes between the
denatured and native states.

A major advantage of the formulation of our model is that
it lends itself to a detailed kinetic analysis. Rotation of peptide
bonds to native values is both the reaction coordinate of the
free energy landscape approach used here and the elementary
step in a full kinetic description, equivalent to what was done
for the b-hairpin (21). Although for a protein it is not possible
to integrate the 2n differential equations, the calculation can be
accomplished with stochastic kinetic algorithms that produce
multiple trajectories for individual molecules. These calcula-
tions should be useful for testing the accuracy of the single,
double, and triple sequence approximations. Only after such

FIG. 6. Theoretical calculation of f values. (a) Comparison of
experimental and theoretical f values for CI2. The experimental
uncertainty in the f values arises mainly from the uncertainty in the
determination of the folding equilibrium constants. The f values
reported by Itzhaki et al. (40) were therefore divided into two groups
according to the absolute magnitude of the change in folding free
energy introduced by the mutation (at 4 M urea, the midpoint of the
unfolding transition for the wild type). One group (filled blue circles)
corresponds to f values for mutations that cause folding free energy
changes .1 kcalzmol21 compared with wild-type whereas the second
group (open red circles) corresponds to f values for mutations that
cause free energy changes ,1 kcalzmol21. In this second group, there
are five negative f values and one value .1.0, which are not plotted.
Also, the value plotted for residue 16 is the one redetermined by
Ladurner et al. (41). A blue line connects the filled blue circles to
indicate that these values are, for the most part, better determined.
Large changes in folding free energy can, however, change the f value
by changing the shape as well as the size of the free energy barrier. To
investigate this effect, we used our model to calculate the dependence
of the f value for CI2 on the magnitude of the free energy change (b).
These calculations show that the difference between the theoretical f
value calculated using the measured free energy change and the
theoretical f value calculated in the small perturbation limit (see
Methods) is ,0.1 for all residues except 29 and 47. (b) Dependence of
theoretical f values on the magnitude and sign of the free energy
change produced by a mutation. The thick black line corresponds to
f values in the small perturbation limit. Dashed lines are f values for
mutations that stabilize the native state (magenta for uDDGu 5 3
kcalzmol21; blue for uDDGu 5 1.5 kcalzmol21), and continuous lines are
for mutations that destabilize the native state (green for uDDGu 5 1.5
kcalzmol21; yellow for uDDGu 5 3 kcalzmol21; red for uDDGu 5 4.5
kcalzmol21).
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tests and better agreement with experimental data is achieved
will it be worthwhile to draw conclusions from the wealth of
structural and mechanistic detail that is generated by the
model.
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26. Thompson, P. A., Muñoz, V., Jas, E. R., Henry, E. R., Eaton,

W. A. & Hofrichter, J. (1999) J. Phys. Chem., in press.
27. Plotkin, S. S., Wang, J. & Wolynes, P. G. (1997) J. Chem. Phys.

106, 2932–2948.
28. Szabo, A., Schulten, K. & Schulten, Z. (1980) J. Chem. Phys. 72,

4350–4357.
29. Eaton, W. A. (1999) Proc. Natl. Acad. Sci. USA 96, 5897–5899.
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