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Background. Sialoadhesin (CD169, siglec-1 or Sn) is an activation marker seen on macrophages in chronic inflammatory
diseases and in tumours, and on subsets of tissue macrophages. CD169 is highly expressed by macrophages present in AIDS-
related Kaposi’s sarcoma lesions. It is also increased on blood monocytes of HIV-1 infected patients with a high viral load
despite antiretroviral treatment. Methodology/Principal Findings. We investigated expression of sialoadhesin in untreated
HIV-1 and HHV-8 infected patients, by real-time PCR and FACS analysis to establish its expression in relation to infection and
disease progression. Patients analysed were either HIV-1 seroconverters (n = 7), in the chronic phase of HIV-1 infection (n = 21),
or in the AIDS stage (n = 58). Controls were HHV-8 infected, but otherwise healthy individuals (n = 20), and uninfected men
having sex with men (n = 24). Sialoadhesin mRNA was significantly elevated after HIV-1, but not HHV-8 infection, and a further
increase was seen in AIDS patients. Samples obtained around HIV-1 seroconversion indicated that sialoadhesin levels go up
early in infection. FACS analysis of PBMCs showed that sialoadhesin protein was expressed at high levels by approximately
90% of CD14+ and CD14+CD16+cells of HIV-1+ patients with a concomitant 10-fold increase in sialoadhesin protein/cell
compared with uninfected controls. Conclusions/Significance. We have shown that sialoadhesin is induced to high levels on
CD14+ cells early after HIV-1 infection in vivo. The phenotype of the cells is maintained during disease progression, suggesting
that it could serve as a marker for infection and probably contributes to the severe dysregulation of the immune system seen
in AIDS.
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INTRODUCTION
HIV-1 infection of humans is traditionally divided into three

stages: the acute phase lasting several weeks, when viral RNA

levels are high and specific antibodies are low, followed by

a relatively long period of chronic infection starting at the moment

of seroconversion (when HIV-specific antibody tests become

positive). Finally, the combined effects of the acute and chronic

disease stage results in a total collapse of the immune system

resulting in multiple opportunistic infections: the AIDS phase.

HIV-1 infection is characterized by the expression of large

amounts of proinflammatory cytokines, which are involved in

immune suppression by promoting both CD4+ and CD8+ T cell

apoptosis (for a review: see [1]). The cytokine signalling systems

are further deregulated by virally encoded proteins such as Nef,

Tat and Vpr. These chronic inflammatory conditions are linked to

elevated virus production and immune dysfunction.

Applying Serial Analysis of Gene Expression (SAGE) to AIDS-

related Kaposi’s sarcoma (AIDS-KS) tissue and comparing its

expression profile to that of normal skin, revealed several

transcripts that were upregulated in AIDS-KS [2]. Of particular

interest was the sialic acid binding receptor sialoadhesin (CD169,

siglec-1 or Sn), which is seen on activated macrophages in chronic

inflammation and in tumours, e.g. on macrophages found in

multiple sclerosis, atherosclerosis, and rheumatoid arthritis [3], on

monocytes from HIV-1 infected patients treated with antiretro-

viral therapy, especially those with a high viral load [4], and on

dendritic cells infected with human rhinovirus strain 14 [5].

Sialoadhesin mediates cell-cell interactions by recognizing Neu5A-

ca2,3Gal in either N- or O-glycans on the surface of several

leukocyte subsets [3,6]. To evaluate expression of sialoadhesin

during different stages of HIV-1 infection, we investigated

sialoadhesin mRNA levels by real-time PCR in peripheral blood

mononuclear cells (PBMCs) collected from patients participating

in the Amsterdam Cohort Studies on HIV/AIDS. The expression

level of sialoadhesin in AIDS-KS was compared with four control

groups consisting of a-symptomatic HIV-1 infected patients,

HHV-8 infected patients, patients with AIDS other than AIDS-

KS, and non-infected controls belonging to the risk group (men

having sex with men). Sialoadhesin mRNA levels were also

compared in PBMCs from an additional set of patients sampled

before and after the moment of seroconversion for HIV-1

(seroconverters). FACS analysis was used to investigate whether

the upregulation of sialoadhesin represents an increased expression

per cell, or an increase in cells expressing sialoadhesin. In asymp-

tomatic HIV-1 infected patients, sialoadhesin protein expression

was increased in the total PBMC fraction, including high levels on

approximately 90% of both CD14+ and CD14+CD16+cells, with

a mean two-fold expansion of the latter cell type.
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RESULTS

Expression of sialoadhesin mRNA
Sialoadhesin mRNA was quantified in PBMCs of patients infected

with HIV-1 and/or HHV-8 (Fig. 1A). A highly significant differ-

ence (p#0.0005) in sialoadhesin mRNA levels was seen in AIDS

patients (both AIDS-KS and non-AIDS-KS, median copy num-

bers per group ranged from 4.836103–2.356104/104 PBMC),

and in HIV-1 infected a-symptomatic patients (median = 2.496
103 copies/104 PBMC) when compared with non-infected risk-

group patients (median = 2.696102 copies/104 PBMC) or with

patients with exclusively an HHV-8 infection (median = 4.286
102 copies/104 PBMC). Sialoadhesin levels between AIDS-KS

and other AIDS patients did not differ significantly (Fig. 1A).

These findings suggest that sialoadhesin mRNA is not specifically

increased in AIDS-KS, as suggested by the earlier SAGE analysis,

but is upregulated by HIV-1 infection. Differences in sialoadhesin

copy number between HIV-1+ asymptomatics and AIDS patients,

including AIDS-KS patients, were statistically significant, with

higher expression in the AIDS group. This further upregulation

during HIV pathogenesis could be related to a difference in HIV-1

copy numbers in PMBCs, as these were, not unexpected, found

to differ significantly between AIDS and non-AIDS patients

(p#0.0001), with higher numbers in AIDS patients (Fig. 1B).

However, sialoadhesin mRNA copy numbers were only moder-

ately correlated with HIV-1 RNA copy numbers (Pearson

correlation coefficient = 0.42, p = 0.0002). Overall, there was

a trend that in PBMCs high HIV-1 intracellular copy numbers

accompanied high sialoadhesin mRNA copy numbers, but this

was not so for all patients. Sialoadhesin mRNA copy numbers did

not correlate with CD4+ cell counts in AIDS patients (Pearson

correlation coefficient = 20.125, p = 0.51).

To analyse the effect of HIV-1 infection in more detail, sia-

loadhesin copy numbers were determined in samples from seven

HIV-1 infected patients taken before and after HIV-1 serocon-

version (Fig. 1C). The post-seroconversion sample was the first

HIV-1 positive sample identified in individuals tested at three

monthly intervals, therefore within three months of seroconver-

sion. Indeed, sialoadhesin copy numbers increased from a median

of 3.096102 copies/104 PBMC to 3.006103 copies/104 PBMC

(p = 0.0016) after HIV-1 seroconversion, suggesting either an

increase of sialoadhesin mRNA in a certain cell population, the

expansion of a cell population expressing sialoadhesin after HIV-1

infection, or a loss of cells with low sialoadhesin expression, or

a combination of these.

Fluorescence-activated cell sorter (FACS) analysis of

PBMCs
Increase of sialoadhesin expression at the mRNA level as

measured by real-time PCR in our cohort could either mean that

expression per cell has increased, that the number of sialoadhesin

expressing cells has increased, or a combination of both. To

differentiate between these possibilities, we analysed CD14+ cells

and the subset of CD14+CD16+ cells from three healthy donors

and three treatment-naı̈ve, asymptomatic HIV-1 infected patients

for sialoadhesin protein expression by flow cytometry (Table 1). A

representative example of the FACS analysis is shown in Fig. 2

(panel A: CD14+ cells, panel B: CD14+CD16+ cells). Staining with

mAbs for either CD14+, CD16+ or CD169+ showed that siaload-

hesin expression increases dramatically in CD14+ cell fractions,

both in positive cell numbers as well as in the amount of molecules

per cell, in HIV-1 infected patients compared with uninfected

controls (Table 1). A median of approximately 90% of CD14+ and

CD14+CD16+ cells expressed sialoadhesin at levels that were

approximately 10-fold higher than in healthy donors. The number

of CD14+CD16+ cells is increased approximately twofold in the

PBMC population of HIV-1 infected patients compared with

healthy controls (Table 1, median increase from 2,1% to 4,6%).

The total percentage of CD14+ cells does not change notably after

HIV-1 infection (Table 1, median percentage in healthy donors =

13,6% versus 10,4% in HIV-1 infected patients), nor does the

amount of cells not expressing CD14, CD16 and sialoadhesin

(66.47 and 67.28%, respectively), or the percentage of cells expres-

sing sialoadhesin, but not CD14 and CD16 (0.21 and 0.42%,

respectively).

DISCUSSION
Sialoadhesin mRNA and protein expression in PBMCs was

significantly increased after HIV-1 infection in vivo. An additional

raise was seen in AIDS-patients compared to asymptomatic HIV-1

infected patients. An analysis of blood samples taken before and

after HIV-1 seroconversion indicated that the initial upregulation

of sialoadhesin occurs rapidly after HIV-1 infection, and is

maintained during the chronic phase of the infection. Sialoadhesin

expression is increased after the moment of seroconversion (when

specific antibody tests become positive), which is approximately 3

months after the acute HIV infection. Possibly, sialoadhesin levels

already go up during the acute phase of the infection. However,

due to the rarity of acute phase samples, it was not feasible in this

study to assess if sialoadhesin expression is already increased in this

stage of the HIV-1 infection.

In mice, approximately 106 molecules/cell of sialoadhesin are

found, making it one of the most highly expressed surface molec-

ules on macrophages [7]. Levels of mRNA and protein correlate

well in mice [8]. Similar results were obtained in humans in this

study, suggesting that sialoadhesin expression is mainly regulated

at the transcriptional level, although it could be that cells with low

sialoadhesin expression disappear, or that a novel cell subset

expressing sialoadhesin emerges. Subsets of PBMC are generally

different in HIV-infected patients compared with non-infected

individuals, especially in the AIDS phase, when lymphocytes are

significantly decreased and the monocyte fraction is increased.

FACS analysis of blood cells obtained from HIV-1 infected

individuals with a relatively high viral load showed that

sialoadhesin is mainly expressed by and increased on CD14+

cells, including CD14+CD16+ monocytes. The potential influence

of differences in the cellular subsets of healthy vs. HIV infected

individuals seems limited here as the total amount of CD14+

monocytes does not differ appreciably between the two patient

groups, although the percentage of CD14+CD16+ monocytes is

larger after HIV-1 infection. However, to draw more firm

conclusions more patients should be analysed.

Sialoadhesin mRNA was found in a monocytic cell line,

a promonocytic cell line, cells of the myeloerythroid lineage, but

not in B-cells [3]. Expression of the protein was detected in tissue

macrophages, but not in blood monocytes from healthy donors

[3]. However, sialoadhesin was present on monocytes from

treated, chronically HIV-1 infected patients with high viral loads

[4], leading to the suggestion that these patients harbour a

circulating CD14+ monocyte/macrophage hybrid phenotype with

chronic inflammatory characteristics.

Two monocyte subsets are currently recognized in peripheral

blood, characterized by their level of CD14 and CD16 expression

(CD14highCD162, and CD14lowCD16+, representing approxi-

mately 90% and 10% of blood monocytes, respectively [9]). An

expansion of CD14+CD16+ monocytes has been observed after

HIV-1 infection [10–12] and other inflammatory conditions, while

numbers of CD14++ monocytes do either not change [11,13], or

HIV-1 Upregulates CD169
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Figure 1. Real-time PCR analysis of sialoadhesin mRNA levels in PBMCs of HIV-1 infected patients and controls. A. Real-time PCR analysis of
sialoadhesin mRNA levels in PBMCs derived from five sets of patients with or without HIV-1 infection at different stages of disease. Patients with AIDS
but not AIDS-KS, and patients with AIDS-KS were analysed separately. Levels were significantly different (p#0.0005) between uninfected controls/
HHV-8 infected patients, and HIV-1 infected patients, respectively. Levels were also significantly different (p#0.0005) between HIV-1 infected patients
and AIDS patients. Significant differences are indicated with an asterisk. No significant differences were found between patient groups not infected
with HIV-1 (p = 0.1), or between AIDS and AIDS-KS patients (p = 0.14). B. Real-time PCR analysis of HIV-1 mRNA levels in PBMCs derived from either
HIV-1 infected asymptomatic patients or patients with AIDS (including AIDS-KS). The elevated HIV-1 load in AIDS patients compared to asymptomatic
HIV-1+ patients is highly significant (p#0.0001). C. Real-time PCR analysis of sialoadhesin mRNA levels in PBMCs obtained from eight patients before
and after HIV-1 seroconversion. Sialoadhesin mRNA was analysed in the first HIV-1 seropositive sample of each patient, which is within three months
from the real seroconversion event in the Amsterdam Cohort Studies on HIV/AIDS, as samples are taken on a three-monthly basis.
doi:10.1371/journal.pone.0000257.g001
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decrease slightly [10], in agreement with our observations. It has

been assumed that CD14+CD16+ monocytes are a distinct

‘‘proinflammatory’’ subset of the monocyte lineage [14]. However,

as CD14+CD16+ monocytes exhibit features of mature tissue

macrophages (such as downregulation of CD11b, CD14, and

CD33 expression, and upregulation of CD16 expression), it is also

possible that they represent either an activated or a prediffer-

entiated form of monocyte. In vitro experiments suggested the

former, as inflammatory cytokines were able to induce a CD14+/

CD16+- phenotype in cultured monocytes [15]. An increasing

proportion of monocytes in HIV-1 infected patients show an

activated, mature phenotype during disease progression when

tested for markers such as CD11b, HLA-DR, CD45, CD16, TNF-

alpha, PGE2, and IL-6 [13]. Furthermore, expression of several

other molecules is increased on monocytes after HIV-1 infection,

e.g. CD23 [16], CD36 [17], CD14 [11], CD126 [18], HLA-G

[19], and sialoadhesin ([4] and this study). The CD169+

phenotype arises shortly after HIV-1 seroconversion, is maintained

during progression to AIDS, and does not specifically occur during

therapy failure, as suggested earlier [4].

Human sialoadhesin is highly upregulated in certain (inflam-

matory) diseases such as multiple sclerosis, atherosclerosis, and

rheumatoid arthritis, in breast cancer tumour-infiltrating macro-

phages [20,21], and by HIV-1 infection ([4], and this study). The

function of sialoadhesin is still not completely clear [20].

Sialoadhesin mediates cell-cell interactions by recognizing Neu5A-

ca2,3Gal in either N- or O-glycans on the surface of several

leukocyte subsets [3,6], suggesting that sialoadhesin could be

involved in adhesion processes. Monocytes (and also lymphocytes)

show increased adhesion to endothelial cells after HIV infection,

leading to an increase in cardiovascular disease, atherosclerosis

and Kaposi’s sarcoma in HIV-positive patients (reviewed in [22]).

Increased expression of sialoadhesin could be related to this

phenomenon. On the other hand, dendritic cells express

sialoadhesin after infection with human rhinovirus 14, and here

it was shown to function as an inhibitory receptor involved in

inducing anergy in T-cells [5]. CD33-related members of the

siglec family (subgroup 2) have been shown to have inhibitory

functions in the immune system [23]. It is likely that the distinct

subgroup 1 siglecs (siglec-1, -2, and –4) have similar, negative

regulatory functions in the immune system. Elevated, enduring

expression of sialoadhesin in chronic inflammatory conditions

(including HIV infection) and certain types of cancer, probably

induced by high-level cytokine expression, then has a lasting

negative, inhibitory effect on the immune system that finally results

in opportunistic infections and/or the occurrence of tumours due

to immune system malfunction. Chronic inflammation is a risk

factor for many types of cancer (for a review, see [24]), and is

characterized by immune system unresponsiveness (see e.g. [25]).

Only higher animals and a few microorganisms can synthesize

sialic acids, but some pathogens have found ways to capture these

sugars from their hosts (reviewed in [26]), possibly to provide an

immunologic disguise. In pigs, siglec-1 can act as an endocytic

receptor for Porcine Reproductive and Respiratory Syndrome Virus

(PRRSV), a single-stranded RNA virus [27], whereby sialic acids on

the virus particle are essential for infection of porcine macrophages

[28]. The HIV-1 envelope protein gp120 is highly glycosylated and

sialylated [29,30], suggesting that the presence of sialic acids on the

virion surface influences host production of sialoadhesin.

Concluding, we have shown that early after HIV-1 infection,

sialoadhesin is induced to high levels on CD14+ cells of the blood.

The phenotype of the cells is maintained during disease pro-

gression, suggesting that it could serve as a marker for infection

and probably contributes to the severe dysregulation of the

immune system seen in AIDS.

MATERIALS AND METHODS

Patient characteristics
Blood samples were collected from participants of the Amsterdam

Cohort Studies on HIV/AIDS (www.amsterdamcohortstudies.

org). PBMCs isolated from a total of 131 individuals, all Caucasian

homosexual males, were selected for this study. They were divided

into the following groups: 24 AIDS-KS patients, 34 AIDS patients,

20 HHV-8 infected patients, 21 HIV-1 infected a-symptomatic

patients, 7 HIV-1 seroconverters, and 24 non-infected controls

belonging to the risk group (men having sex with men). Of the

AIDS-KS patients, 13 ( = 54%) had quantifiable HHV-8 DNA in

their PBMCs [31]. Of the non-KS AIDS patients, 5 ( = 15%) had

quantifiable HHV-8 DNA in their PBMCs, and 15 (44%) were

seropositive for HHV-8 in either an ORF65 and/or an ORF73

ELISA [32]. AIDS-KS patients have been analysed separately

from other AIDS patients, as high expression of sialoadhesin in

AIDS-KS lesions [2] suggested that levels of sialoadhesin could be

different in this patient group.

RNA and DNA extraction
Nucleic acids were isolated from 2.56105 PBMCs using silica and

guanidium thiocyanate [33] in a final elution volume of 62.5 ml.

RNA and DNA can be isolated simultaneously by this method.

Real-time quantitative PCR assay
Copy numbers of sialoadhesin were determined with TaqMan

assays using primers (upstream primer: 59CACCTCCAAGT-

Table 1. Percentage of cells expressing CD14, CD16, and/or sialoadhesin of the total PBMC fraction, as determined by FACS analysis
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CD14 CD16 Sialoadhesin Healthy donors: median % of total (range) HIV-1+ patients: median % of total (range)

No No No 66.47(54.79–70.88) 67.28 (63.50–72.85)

No No Yes 0.21 (0.05–0.22) 0.42 (0.19–1.72)

Yes No No 12.67 (12.47–13.43) 0.79 (0.31–8.16)

Yes No Yes 0.88 (0.17–2.38) 9.65 (4.15–14.69)

Yes Yes No 1.99 (1.92–3.16) 0.56 (0.08–2.57)

Yes Yes Yes 0.11 (0.04–0.35) 4.00 (0.90–5.31)

No Yes No 14.67 (10.81–29.18) 10.78 (10.30–20.50)

No Yes Yes 0.01 (0.01–0.06) 0.17 (0.03–1.09)

doi:10.1371/journal.pone.0000257.t001..
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Figure 2. Expression of CD14, CD16, and sialoadhesin on monocytes from an HIV-1 infected and uninfected patient. A. Sialoadhesin (CD169)
expression on CD14+ cells from a healthy human control (left) and an HIV-1 infected patient (right). The mean fluorescent intensity of CD169 from the
CD14+ cells increases from 26 in the control cells (left) to 286 in the cells from the HIV-1 infected patient (right). B. CD14+CD16+ cells were gated and
their expression of sialoadhesin is shown in the histograms. The mean fluorescent intensity of CD169 from the CD14+CD16+ cells increases from 17 in
the control cells (left) to 158 in the cells from the HIV-1 infected patient (right). The data are representative of three experiments.
doi:10.1371/journal.pone.0000257.g002
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GAAGTATGCCC 39, downstream primer: 59 CCTGGAAGG

ATGTTCCTCCC 39, probe: 59AAGGGTGTGAAGATCCTC-

CTCAGCCC 39) designed with Primer Express software (ABI,

Foster City, CA, USA). First, 2.5 ml isolated RNA was converted

into cDNA following the instructions in the ABI Taqman Reverse

Transcription reagents kit (ABI, Foster City, CA, USA). Each RT

reaction contained 1 ml 106RT buffer, 2.2 ml MgCl2 (25 mM),

2 ml dNTPs (10 mM) 1.5 ml random hexamers (50 mM), 0.2 RN-

ase inhibitor (20 U/ml), 0.35 ml multiscribe RT (50 U/ml), 0.35 ml

H2O and 2.5 ml sample eluate ( = 10,000 cell equivalents). The

RT-reaction started with 10 min. 25uC, 30 min. 48uC and 5 min.

95uC. Subsequent PCR reactions were done according to

PlatinumH Quantitative PCR Supermix UDG (Invitrogen Life

Technologies, Carlsbad, USA). Each reaction contained 10 ml

RT-reaction and 40 ml of PCR mixture consisting of 25 ml

supermix, 3.6 mM MgCl2, 0.9 mM forward primer and reverse

primer, 0.2 mM Taqman probe and 1 ml ROX reference dye (506
concentration). HIV-1 copy numbers in PBMCs were measured

with a gag-specific Taqman assay (upstream primer: 59 AAAGA-

GACCATCAATGAGGAAGCT 39, downstream primer: 59

TCTGGCCTGGTGCAATAGG 39, probe: 59 TGCACTG-

GATGCACTCTATCC CATTCTG 39). HHV-8 DNA copy

numbers in PBMCs were measured with an ORF65 Taqman

assay described earlier [31]. As a control, a DNA assay was

performed for b-actin using 5 ml eluate ( = 20,000 cell equivalents)

as input. The b-actin reaction conditions were the same except for

the primer and probe concentrations (0.3 mM forward and reverse

primers and 0.2 mM Taqman probe). Following the activation of

UDG (2 min, 50uC) and activation of PlatinumH Taq DNA

polymerase (10 min 95uC), 45 cycles (15 sec 95uC, and 1 min

60uC) were performed on an ABI 7700 Sequence Detection

System (ABI, Foster City, CA, USA). The threshold cycle (Ct) for

each sample of the standard curve was plotted against the input

copy number. The value of Ct was determined by the first cycle

number at which fluorescence was greater than the set threshold

value. For accurate comparison of the samples the threshold was

the same for all the experiments. Linear regression was used to

determine the copy number of the experimental samples. The

sialoadhesin copy numbers measured were converted to copies/

104 PBMC. All samples were tested in duplicate. As a control for

cross contamination samples consisting of distilled water were also

subjected to the isolation method and the extracts were tested with

all assays. The Ct for all these ‘‘no-template’’ samples was always

.45 cycles.

Fluorescence-activated cell sorter (FACS) analysis
PBMCs were isolated by density centrifugation on Lymphoprep

(Axis-Shield PoC AS, Norway) from three healthy donors and

three treatment-naı̈ve asymptomatic HIV-1 infected patients with

HIV-1 plasma loads between 90,000 and 100,000 copies vRNA/

ml.

Subsequently, 0.5–16106 cells were used for staining. All

samples for FACS analysis were prepared within 2 hrs after blood

was drawn. Whole PBMC fraction was gated and analysed for the

expression of CD14, CD16 and CD169. Mouse anti-human

monoclonal antibodies (MAbs) against the following molecules

were used: PE-conjugated CD14 (Becton Dickinson, USA), FITC-

conjugated CD16 (PeliclusterTM monoclonal antibodies, Sanquin,

The Netherlands), and CD169 (Serotec, UK), which was detected

with an APC-conjugated goat (F(ab’)2 anti-mouse IgG (Caltag

Laboratories). The staining order was: mouse anti-CD169, then

goat anti-mouse, and finally the directly labelled antibodies, with

washing steps in between to minimize cross-reactivity. The

samples were subsequently analysed on a FACS Caliber flow

cytometer (Becton Dickinson, USA). Unstained cells and appro-

priate isotype-matched controls were used to determine positive

CD14, CD16 and CD169 staining.

Statistical analysis
Overall comparison was done using analysis of variance

(ANOVA). If statistical significance was obtained for a variable,

a post-hoc analysis was done with application of the Student’s t test

for group-by-group comparisons. All statistical analyses were

performed with SAS software (SAS version 8.02, SAS Institute,

Cary, NC, USA).
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