
REVIEW

Iron therapy for renal anemia: how much needed,
how much harmful?
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Abstract Iron deficiency is the most common cause of
hyporesponsiveness to erythropoiesis-stimulating agents
(ESAs) in end-stage renal disease (ESRD) patients. Iron
deficiency can easily be corrected by intravenous iron ad-
ministration, which is more effective than oral iron sup-
plementation, at least in adult patients with chronic kidney
disease (CKD). Iron status can be monitored by different
parameters such as ferritin, transferrin saturation, percent-
age of hypochromic red blood cells, and/or the reticulocyte
hemoglobin content, but an increased erythropoietic re-
sponse to iron supplementation is the most widely accepted
reference standard of iron-deficient erythropoiesis. Paren-
teral iron therapy is not without acute and chronic adverse
events. While provocative animal and in vitro studies
suggest induction of inflammation, oxidative stress, and
kidney damage by available parenteral iron preparations,
several recent clinical studies showed the opposite effects
as long as intravenous iron was adequately dosed. Thus,
within the recommended international guidelines, parenteral
iron administration is safe. Intravenous iron therapy should
be withheld during acute infection but not during inflam-
mation. The integration of ESA and intravenous iron
therapy into anemia management allowed attainment of
target hemoglobin values in the majority of pediatric and
adult CKD and ESRD patients.
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Introduction

Iron-restricted erythropoiesis is a common clinical condi-
tion in patients with chronic kidney disease (CKD). The
causes underlying this pathology and the subsequent
contribution of absolute or functional iron deficiency to
renal anemia include:

– Inadequate intake of dietary iron
– Blood loss during the extracorporeal procedure in

hemodialysis patients
– Blood loss from the gastrointestinal tract (bleeding)
– (Too) frequent diagnostic blood tests
– Inadequate intestinal iron absorption and inhibition of

iron release from macrophages (anemia of chronic
disease)

– Increased iron requirements during therapy with
erythropoiesis-stimulating agents (ESAs).

In iron deficiency without anemia, reduction in iron
storage is not sufficiently large enough to decrease the
hemoglobin level. In CKD patients with absolute iron-
deficient anemia, however, iron deficit is so severe that it
aggravates renal anemia. Iron supplementation is mandato-
ry in the majority of patients with end-stage renal disease
(ESRD), particularly in those receiving ESA therapy.

Evaluation of iron status

In patients with normal kidney function, absolute iron
deficiency is characterized by low serum ferritin concen-
tration (<30 μg/l). The ferritin cut-off level for absolute iron
deficiency in CKD patients is 100 μg/l [1] by the
experience that chronic inflammation increases serum
ferritin levels approximately three-fold. The Kidney Dis-
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ease Outcomes Quality Initiative (K/DOQI) guidelines
recommend serum ferritin levels >200 μg/l for the adult
hemodialysis patient population [2]. The European Best
Practice Guidelines define the optimal range for serum
ferritin as 200–500 μg/l in adult patients with ESRD [1]. A
normal ferritin level (≥100 μg/l) cannot exclude iron
deficiency in uremic children [3, 4], but a serum ferritin
<60 μg/l is a specific predictor of its presence [5]. An upper
ferritin level of 500 μg/l is recommended for adults and
children with CKD [2]. Serum ferritin is an indicator of
storage iron. Iron deficiency is accompanied by reductions
in serum iron concentration and transferrin saturation
(TSAT) and by elevations in red cell distribution width,
free erythrocyte protoporphyrin concentration, total serum
iron binding capacity (TIBC), and circulating transferrin
receptor [6]. Serum soluble transferrin receptor, however,
reflects ongoing erythropoiesis but not iron availability in
ESA-treated chronic dialysis patients [7]. Typically, TSAT
(the ratio of serum iron to TIBC) is 15% or less (normal
16–40%) with iron deficiency, but TSAT also decreases in
the presence of acute and chronic inflammation (functional
iron deficiency). TSAT is raised with bone marrow
dysfunction due to alcohol, cancer chemotherapy, or a
megaloblastic process. TSAT is also affected by diurnal
variations, being higher in the morning and lower in the
evening [8]. Even a TSAT>20% or a serum ferritin level>
200 μg/l does not exclude iron deficiency in ESRD
patients. In a study by Chuang et al. [9], 17% of iron-
deficient hemodialysis patients had serum ferritin levels
greater 300 μg/l. Clinically, functional iron deficiency is
confirmed by the erythropoietic response to a course of
parenteral iron and is excluded by the failure of erythroid
response to intravenous iron administration [10].

Erythrocyte and reticulocyte indices, such as the per-
centage of hypochromic red blood cells and the reticulocyte
hemoglobin content (CHr) provide direct insight into bone
marrow iron supply and utilization. Determination of the
percentage of hypochromic red blood cells, i.e., those with
a cellular hemoglobin concentration <28 g/dl, provides
important information on functional iron deficiency in
ESA-treated dialysis patients [11]. Tessitore et al. [12] found
that hypochromic red blood cells >6% are the best marker
to identify adult ESRD patients who will have the best
response to intravenous iron. CHr has been proposed as a
surrogate marker of iron status and as an early predictor of
response to iron therapy in adult dialysis patients [13, 14].
Combined use of CHr and high-fluorescence reticulocyte
count predicts with a very high sensitivity and specificity
the response to intravenous iron in adult dialysis patients
[8]. There are, however, only few studies in the pediatric
renal literature on the use of CHr [15, 16]. In children with
ESRD, an increase from baseline CHr levels was observed
in response to oral and intravenous iron, but cut-off values

for the use of CHr in the pediatric CKD population are not
clear. This measure has proven to be of value with adult
ESRD patients.

Detection of both absolute and functional iron deficiency
is important because iron deficiency is the most common
cause of hyporesponsiveness to ESAs. In clinical practice,
an increased erythropoietic response to iron supplementa-
tion is the most widely accepted reference standard of iron-
deficient erythropoiesis. For pharmacological therapy of
iron deficiency, both oral and parenteral iron preparations
are available. Intravenous iron is more effective than oral
iron supplementation, at least in CKD patients. Iron is not
only a prerequisite for effective erythropoiesis but also an
essential element in all living cells. Elemental iron serves as
a component of oxygen-carrying molecules and as a
cofactor for enzymatic processes. Its redox potential,
however, limits the quantity of iron that can be safely
harbored within an individual.

Oral iron therapy

Oral iron is best absorbed if given without food. Side-
effects of oral iron therapy include constipation, diarrhea,
nausea, and abdominal pain. In the treatment of iron
deficiency with ferrous sulphate, the usual adult dose is
one 300 mg tablet (containing 60 mg elemental iron) three
to four times daily. The pediatric dose is 2–6 mg/kg per day
of elemental iron in 2–3 divided doses [17, 18]. Intestinal
iron absorption is enhanced in patients with iron deficiency
and declines with the correction of iron deficiency and
reaccumulation of iron stores. If side-effects limit compli-
ance, the medication can be administered with food, or
the dose can be reduced. One 500-mg ferrous sulphate
dose nightly at bedtime may be an effective therapy in
adults [19].

Uremia is a chronic inflammatory state [20, 21]. Even in
the absence of overt infection or inflammation, many ESRD
patients show increased levels of acute-phase proteins, such
as C-reactive protein (CRP), ferritin, fibrinogen, and/or
interleukin-6 (IL-6), associated with low serum albumin
levels [22]. The interaction of proinflammatory cytokines
with hepcidin in mediating functional iron deficiency may
explain why CKD patients have high ferritin levels, poor
intestinal iron absorption, and disturbed iron release from
the reticuloendothelial system [23].

In the duodenum and proximal jejunum, the nonheme
dietary Fe3+ is reduced to Fe2+ by the cytochrome b-like
ferrireductase Dcytb. Fe2+ is gathered from the lumen of the
intestine and crosses the apical enterocyte brush border
membrane through the divalent metal transporter-1
(DMT1). The expression of both Dcytb and DMT1 is
strongly affected by the iron concentration within the
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enterocyte. Circulating levels of hepcidin negatively regu-
late intestinal iron absorption by the enterocyte DMT1.
Hypoxia, anemia, iron deficiency, and/or stimulated eryth-
ropoiesis strongly down-regulate hepatic hepcidin release,
allowing intestinal iron absorption, while iron overload or
inflammation/infection stimulates hepcidin production,
resulting in inhibition of intestinal iron absorption. Hepci-
din controls the whole-body iron content. It also inhibits the
release of iron by the iron exporter ferroportin (iron-
regulated transporter-1) located along the entire basolateral
membrane of enterocytes and also in the intracellular
vesicular compartment of tissue macrophages. Hepcidin is
primarily produced in the liver in response to acute-phase
reactions. Any further expression depends on the degree of
hepatic iron storage (for review, see [24]). Thus, the
inflammatory state associated with uremia and less uremia
per se is predominantly responsible for poor intestinal iron
absorption in ESRD patients. In iron-depleted peritoneal
dialysis patients with normal CRP values, high-dose oral
iron is well absorbed [25].

The European Pediatric Peritoneal Dialysis Working
Group recommended that anemia treatment should aim for
a target hemoglobin concentration of at least 11 g/dl
accomplished by administration of ESA and iron. Oral iron
should be preferred in pediatric peritoneal dialysis patients
[18]. The majority of pediatric hemodialysis patients are
also supplemented with oral iron. The 2001 North
American Pediatric Renal Transplant Cooperative Study
(NAPRTCS) annual report showed that 84% of pediatric
peritoneal dialysis and 72% of pediatric hemodialysis
patients at 12 months of dialysis were receiving oral iron
therapy [26].

Intravenous iron therapy

Since oral iron therapy is often not sufficient in ESRD
patients, parenteral administration of iron is necessary to
optimally care for these patients. Intravenous iron can be
given safely to CKD patients [27–34] as long as the
therapy is performed according to international recom-
mendations and guidelines [1, 2]. This therapy is unequiv-
ocally superior to oral iron supplementation [35]. All forms
of intravenous iron may be associated with acute adverse
events [1, 2]. Potential risk factors associated with
intravenous iron therapy include acute allergic reactions
such as rash, dyspnoea, wheezing, or even anaphylaxis,
as well as long-term complications caused by the
generation of powerful oxidant species, initiation and
propagation of lipid peroxidation, endothelial dysfunction,
propagation of vascular smooth muscle cell proliferation,
and/or inhibition of cellular host defense. Allergy is
believed to relate to dextran moiety. Iron dextran therapy

is associated with a higher risk for serious type I
reactions compared with newer intravenous iron products.
Iron sucrose carries the lowest risk for hypersensitivity
reactions [36]. In our clinical experience with more than
100,000 intravenous injections of iron sucrose and ferric
gluconate within the last 15 years, we detected no
significant differences in efficacy or adverse events be-
tween both intravenous iron preparations. Serious reactions
to iron dextran are unpredictable and possibly life threat-
ening. Labile- or free-iron reactions are more frequent with
nondextran forms [37]. Recommended doses of iron
sucrose or ferric gluconate appear safe, at least in adult
CKD patients [32, 34, 38]. Parenteral therapy with iron
sucrose or ferric gluconate is also safe and effective in the
management of anemia in adult hemodialysis patients
sensitive to iron dextran [29, 39]. Iron sucrose safety data
are sparse in the pediatric CKD literature [2]. It should be
considered that the iron load administered intravenously to
CKD patients based on international recommendations is
more than ten times less than the iron load by repeated
blood transfusions at times when no ESA therapy was
available for ESRD patients.

Iron deficiency in CKD patients develops primarily
during the correction of renal anemia by ESA treatment.
Approximately 150 mg of iron is necessary for an increase
of 1 g/dl in hemoglobin level. In adult hemodialysis
patients, annual blood losses up to 4 l of blood, equivalent
to 2 g iron, should be considered [40]. Thus, intravenous
iron prevents iron-restricted erythropoiesis during ESA
therapy. Parenteral treatment strategies depend on the
availability of iron products in respective countries.
Hemodialysis patients should receive at least one dose of
intravenous iron every 2 weeks [1]. Careful monitoring of
iron status is mandatory in order to avoid iron overload. In
patients with anemia of chronic disease (and inflammation),
a major part of iron administered intravenously is trans-
ported into the reticuloendothelial system, where it is not
readily available for erythropoiesis [41].

Intravenous iron therapy is underused in pediatric ESRD
patients. Chavers et al. [42] compared anemia prevalence in
US Medicare pediatric and adult dialysis patients treated
with ESAs from 1996 to 2000. Prevalence of anemia
(defined as hemoglobin values less than 11 g/dl) was found
in pediatric and adult hemodialysis patients during 54.1%
versus 39.8% patient years as well as in pediatric and adult
peritoneal dialysis patients during 69.5% versus 55.1%
patient years, respectively. The percentage of patient years
with intravenous iron was low, especially for pediatric
peritoneal dialysis patients: 33.9% (age group 0–4 years)
and 71% (age group 5–19 years) versus 0.3% and 19.4%
among pediatric hemodialysis patients in these age catego-
ries, respectively. Among pediatric hemodialysis and
peritoneal dialysis patients, intravenous iron was not
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administered among 34% and 85% of patient years [42].
Data obtained from the US Centers for Medicare and
Medicare Services on hemodialysis patients in an age range
between 12 and <18 years indicate that 37% of these
patients are anemic, defined as hemoglobin <11 g/dl.
Dialyzing <6 months, a low serum albumin, and a mean
TSAT <20% were identified as predictors of anemia in
these children. Despite the prescription of iron supplements
in almost all pediatric patients, there was evidence for low
TSAT and/or low ferritin in many children. In this study,
approximately 60% of all children received intravenous
iron therapy [43].

An international multicenter study investigated the safety
and efficacy of two dosing regimens (1.5 mg/kg or 3 mg/
kg) of ferric gluconate during eight consecutive hemodial-
ysis sessions in iron-deficient pediatric hemodialysis
patients receiving concomitant ESA therapy. Efficacy and
safety profiles were comparable, with no unexpected
adverse events with either dose [16]. Initial recommended
ferric gluconate therapy is 1.5 mg/kg for eight doses for
iron-deficient pediatric hemodialysis patients and 1 mg/kg
per week for iron-replete pediatric hemodialysis patients,
with subsequent dose adjustments made according to TSAT
and/or ferritin levels [16, 44]. In children, iron sucrose in a
high dose (5 mg/kg) should be given over 90 min and in a
low dose (up to 2 mg/kg) over 3 min [45]. An other
recommendation for pediatric patients is to inject 6 mg iron/
kg per month during iron deficiency, with subsequent dose
adjustments according to serum ferritin [46]. Nonrandom-
ized intravenous iron (1–4 mg/kg per week) trials in
children on hemodialysis and nondialyzed or transplanted
children showed an increase in hemoglobin or hematocrit
and a decrease in ESA requirements between 5% and 62%
per week or per dose of ESA [3, 4, 47, 48]. De Palo et al.
[49] reported an excessive increase in hemoglobin with
severe hypertension in children on maintenance hemodial-
ysis after the first month of darbepoetin alpha therapy
combined with intravenous ferric gluconate in a very high
dose of 10–20 mg/kg per week. The patients had already
been on erythropoietin therapy for at least 6 months with
adequate iron status (serum ferritin 220±105 μg/l; TSAT
24.2±11.5%). The complications observed in this study are
not surprising, as such a high-dosed intravenous iron
therapy is not justified, either in adult or in pediatric
dialysis patients with “adequate iron status”. The current
practice of intravenous iron therapy in pediatric hemodial-
ysis patients is often performed on extrapolation from adult
data and not based on data obtained from prospective
multicenter trials performed in children [50].

Even if exposure to intravenous iron may lead to
oxidative stress, renal injury, infection, and/or cardiovas-
cular disease, the magnitude of these complications is not
really clear. The overall risk–benefit ratio favors the use

of intravenous iron in CKD patients in order to optimize
erythropoiesis and prevent iron deficiency [51]. Intrave-
nous iron therapy is still underutilized in the adult
hemodialysis population [52], but its use increased from
1997 to 2002. Ferric gluconate and iron sucrose have
become the predominant form of intravenous iron therapy
[53].

Iron and inflammation/infection

Intravenous iron therapy may adversely impact CKD
patients via a potentiation of systemic inflammation. In
animals, even a single ultra-high-dosed intravenous injec-
tion of available iron preparations (2 mg iron for mice with
a body weight of 25–35 g, corresponding to 5,000 mg iron
for a 75-kg adult patient) does not independently raise
plasma levels of tumour necrosis factor-α (TNF-α).
Systemic inflammation experimentally induced by intraper-
itoneal endotoxin injection (2 or 10 mg/kg in mice) resulted
in a dramatic increase in plasma TNF-α levels. Interesting-
ly, 2 h following concomitant injection of endotoxin and
ferric gluconate (2 mg) or iron dextran (2 mg), a decrease of
plasma TNF-α levels was observed. In contrast, combined
endotoxin and iron sucrose injection resulted in a further
increase in plasma TNF-α compared with endotoxin alone
[54]. However, a 75-kg CKD patient will neither receive
5,000–25,000 mg endotoxin intraperitoneally nor concom-
itant 5,000 mg iron sucrose injection intravenously in order
to demonstrate that under these artificial conditions, TNF-α
mRNA and TNF-α release are stimulated. It is therefore of
particular importance that relevant clinical studies demon-
strated that intravenous iron sucrose therapy within recom-
mended doses may even display anti-inflammatory effects
[55, 56].

Intravenous iron sucrose therapy affects positively
circulating cytokine levels in hemodialysis patients: IL-4
levels increase, while TNF-α levels decrease [55]. There is
a direct correlation between IL-4 and TSAT but an inverse
correlation between TNF-α and TSAT. Hemoglobin levels
increase with an increase of IL-4 and a decrease of TNF-α,
while ESA dose decreases with an increase of IL-4 and a
decrease of TNF-α [55]. In other words, adequately dosed
intravenous iron therapy in hemodialysis patients results in
down-regulation of proinflammatory immune effector path-
ways and stimulation of the expression of the anti-
inflammatory cytokine IL-4. By these mechanisms, in
addition to its well-known stimulatory effects on erythro-
poiesis, iron therapy contributes to an increase in hemoglo-
bin levels and to a decrease in the need of ESAs. The
anti-inflammatory properties of intravenous iron therapy
have also been demonstrated in patients with rheumatoid
arthritis [56].
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In contrast, iron-mediated weakening of the Th-1
immune effector function (estimated by lowered TNF-α
production) with a subsequent strengthening of Th-2-
mediated immune effector function (estimated by increased
IL-4 production) is an unfavorable condition for ESRD
patients in the case of an acute infection or malignant
disease [55]. Moreover, intravenous administration of iron
increases the availability of this essential nutrient for
microorganisms [57] associated with an increased incidence
of infectious complications in ESRD patients. Teehan et al.
[58] followed 132 hemodialysis patients for up to 1 year
after the initiation of intravenous iron therapy for the
outcome of bacteremia. Iron-replete patients (those with a
TSAT value≥20% and a ferritin level≥100 ng/ml) had a
significantly higher risk of bacteremia (hazard ratio 2.3 in
the univariate analysis and 2.5 in the multivariate analysis)
compared with adult hemodialysis patients who were not
iron replete [58]. Inhibition of intracellular killing of
bacteria by polymorphonuclear leukocytes (PMNL) due to
iron sucrose therapy in high-ferritin hemodialysis patients
has been reported [59]. Peritoneal dialysis patients receiv-
ing high-dose intravenous iron sucrose also displayed short-
term inhibition of bacterial killing by PMNL [60]. Finally,
iron sucrose as well as ferric gluconate inhibit in vitro
migration of PMNL through endothelial cells [61]. All
these data suggest a risk for infectious complications, at
least in patients overtreated with iron.

However, clinical studies on intravenous iron therapy in
ESRD patients reported controversial results [62–64].
According to the published cohort study, among 32,566
hemodialysis patients, there was no association between
iron administration and mortality. This study by Feldman
and coworkers [64] supports intravenous administration of
iron ≥1,000 mg over 6 months if needed to maintain target
hemoglobin levels. This is, however, an adult and not a
pediatric recommendation. Intravenous iron therapy should
be withheld in the presence of acute infection until the
infection has successfully been treated and resolved [65].
Intravenous iron is ineffective and may increase the
virulence of bacterial and viral pathogens. On the other
hand, ESRD patients with chronically infectious complica-
tions may develop absolute iron deficiency if iron supple-
mentation is withheld over months. In such a situation, iron
should be administered intravenously as soon as ferritin
levels drop below 100 μg/l (personal opinion). ESA-
stimulated erythropoiesis of chronically infected adult
ESRD patients may benefit from low-dose intravenous iron
supplementation (10–20 mg iron sucrose or ferric gluco-
nate per hemodialysis session), even if serum ferritin is
normal or slightly elevated. The level of serum ferritin at
which ESRD patients are considered to be in an iron
overload state is still not defined. Inflammatory states
should not be considered indiciations to withhold the

benefits of intravenous iron therapy in general [65].
However, a clinical problem is the diagnosis of chronic
anemia associated with inflammation and true iron defi-
ciency, as serum ferritin concentration increases rather than
decreases.

Iron and kidney function

Intravenous administration of 100 mg iron sucrose in CKD
patients caused transient proteinuria and tubular damage
[37], but ferric gluconate did not (125 mg infused over 1 h
or 250 mg infused over 2 h) [66]. Induction of passive
Heymann nephritis in rats resulted in a marked increase in
nonheme iron content of kidney cortex and tubules, while a
iron-deficient diet caused a significant reduction of non-
heme iron level in glomeruli and also a significant
reduction of proteinuria in these animals [67]. Pediatric
thalassemia patients have a high prevalence of renal tubular
abnormalities, probably caused by the anemia and increased
oxidative stress induced by excess iron deposits. Signifi-
cantly higher levels of urinary N-acetyl-beta-d-glucosami-
nidase, malondialdehyde, and beta-2-microglobulin were
found in these children compared with normal children
[68]. Under artificial experimental conditions (intravenous
injection of 2 mg iron sucrose or ferric gluconate into mice
with a body weight of 25–35 g), induction of monocyte
chemoattractant protein-1 (MCP-1) in renal and extrarenal
tissues has been observed. Since MCP-1 has profibrotic
properties, implications for CKD progression in case of
intravenous iron therapy has been suggested [69]. However,
in a recent article, Mircescu et al. [70] reported that
intravenous iron sucrose therapy (200 mg elemental iron
per month for 12 months) resulted in an increase in
hemoglobin from 9.7±1.1 to 11.3±2.5 g/dl in nondiabetic
patients with CKD and a mean glomerular filtration rate
(GFR) of 36.2±5.2 ml/min per 1.73 m2, estimated by the
formula of Cockcroft and Gault. The majority of these
CKD patients had preexisting iron deficiency (mean ferritin
98.0 μg/l, range 24.8–139.0 μg/l). An important finding of
this study was that GFR (final values at the end of the study
37.2±0.9 ml/min per 1.73 m2) remained completely stable
over a period of 12 months despite 2,400 mg of intravenous
iron sucrose administration. The CKD patients had rela-
tively high blood pressure (140±32/82±20 mmHg at
baseline), which did not change throughout the investiga-
tion [70]. Agarwal [71] found that a single dose of 100 mg
iron sucrose results in a transient increase of MCP-1 in
plasma and urine of CKD patients. Those who believe that
100 mg iron sucrose administered to CKD patients may
negatively affect kidney function should simply administer
a lower intravenous iron dose, e.g., 50 mg iron sucrose
intravenously.

484 Pediatr Nephrol (2007) 22:480–489



Iron and oxidative stress

Zager et al. [72] compared in vitro parenteral iron toxicity
induced by three commercially available iron preparations
(iron dextran, ferric gluconate, iron sucrose) using renal
tubular cells and renal cortical homogenates. Each test agent
induced massive and similar degrees of lipid peroxidation.
Under the in vitro conditions used, iron sucrose caused
markedly higher cell death than ferric gluconate, and ferric
gluconate caused higher cell death than iron dextran. This
relative toxicity profile was also observed in cultured aortic
endothelial cells. Again, it should be stressed that the study
of Mircescu et al. [70] demonstrated that intravenous iron
sucrose therapy administered within international recom-
mendations (none of the 58 CKD patients exceeded serum
ferritin of 500 μg/l) does not cause a decline in kidney
function in CKD patients over a period of 1 year.

Intravenous iron therapy may enhance symptoms of
oxidative stress [73–75]. Drüeke et al. [75] demonstrated
that advanced oxidation protein products (AOPPs) corre-
lated with iron exposure and carotis artery intima thickness
in dialysis patients. In hemodialysis patients, oxidative
stress as a result of intravenous iron therapy caused serum
albumin oxidation [76]. Ferric gluconate modifies fibrino-
gen and β2-microglobulin as a marker of oxidative stress in
adult hemodialysis patients [77, 78]. Intravenous adminis-
tration of 100 mg iron sucrose in CKD patients increased
malondialdehyde as a marker of lipid peroxidation [37].
Hemodialysis patients with ferritin levels above 650 μg/l
showed an enhanced oxidative burst in PMNL [59]. How-
ever, not all studies found evidence for enhanced oxidative
stress caused by parenteral iron therapy in ESRD patients.
Hemodialysis therapy per se was found to cause a sig-
nificant increase in peroxide concentration. Interestingly,
this rise in plasma total peroxides was not additionally
influenced by concomitant intravenous injection of 100 mg
iron sucrose [79]. These data confirm increased oxidative
stress associated with hemodialysis [80]. Whether intrave-
nous iron therapy results in an additional oxidative stress
reaction needs to be further evaluated.

Increased blood levels of non-transferrin-bound iron
(NTBI) and/or its redox-active part have been reported in
adult ESRD patients receiving intravenous iron therapy
[79, 81, 82]. Intravenous infusion of 300 mg iron sucrose in
ESRD patients also caused peripheral vasodilation, which
was confirmed by increased forearm blood flow. NTBI
and redox-active iron were considered to be, at least in
part, responsible for endothelial dysfunction observed in
ESRD patients. However, an increase in NTBI and
redox-active iron caused by intravenous iron sucrose
infusion did not influence vascular reactivity to intra-arterial
acetylcholine, glycerol-trinitrate, or L-N-mono-methyl-argi-
nine (L-NMMA) [82].

Vitamin C and iron

ESRD patients undergoing regular hemodialysis or hemo-
diafiltration may develop vitamin C deficiency [83].
Vitamin C deficiency may cause oxidative stress and
vascular complications as well as impairment of intestinal
iron absorption and iron mobilization from iron stress.
Moretti et al. [84] measured iron absorption in young
women from test meals fortified with isotopically labeled
ferric pyrophosphate and ferrous sulfate. The addition of
ascorbic acid at a molar ratio of 4:1 to iron increased iron
absorption from ferric pyrophosphate to 5.8% and that from
ferrous sulfate to 14.8%. In the fasting state, ferrous
ascorbate is better absorbed than ferric hydroxide-poly-
maltose complex [85]. High-dose oral vitamin C may
increase intestinal aluminium absorption [86]. Oxidative
stress can cause hyporesponsiveness to ESA therapy in
ESRD patients. Vitamin C may improve erythropoiesis
through its antioxidative properties [87]. Intravenous
ascorbic acid therapy facilitates iron release from inert
deposits, resulting in a decrease of soluble transferrin
receptor and an increase of TSAT [88]. In contrast, oral
vitamin C supplementation (250 mg three times per week
for 2 months) did not influence oxidative/antioxidative
stress and inflammation markers in adult hemodialysis
patients [89].

In adult hemodialysis patients on maintenance intrave-
nous iron sucrose therapy, intravenous administration of
500 mg ascorbic acid three times a week for 6 months
resulted in an increase of TSAT and hemoglobin in
approximately 65% of the patients [90]. In contrast, neither
oral nor intravenous ascorbic acid changed TSAT or
hemoglobin levels in a study performed by Chan et al.
[91]. Ascorbic acid increases the intracellular labile iron
pool and iron mobilization to transferrin in human
hepatoma HepG2 cells only in the presence of iron sucrose
but not in the presence of iron dextran or ferric gluconate
[92]. Several studies reported an increase in hemoglobin
and/or a decrease in adult ESA dose during adjuvant
ascorbic acid therapy three times per week in ESRD
patients [93–99]. Measurements of plasma oxalate concen-
tration are needed in ESRD patients supplemented with
ascorbic acid [100]. Studies on vitamin C and iron in
children with ESRD are not available so far.

Iron therapy after kidney transplantation

Anemia is observed in 21–39.7% of adult renal transplant
patients [101–104]. The prevalence may be even higher in
pediatric transplant recipients: 84.3% of children were
anemic in the first month after kidney transplantation, and
prevalence of anemia was not below 64.2% between
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6 months and 6 years after transplantation. Iron deficiency
was identified in 27–56% of children between 1 and
60 months posttransplantation [105]. Fourteen pediatric
and young adult renal transplant recipients received single
iron gluconate infusions ranging from 1.9 to 6.4 mg/kg.
The mean hemoglobin level increased significantly from
10.1±1.6 to 11.4±2.1 g/dl following ferric gluconate
therapy. Adverse events were observed in three children
[106]. A recent study by Morii and coworkers showed that
oral coadministration of ferrous sulphate markedly de-
creased the absorption of mycophenolate mofetil in healthy
Japanese subjects [107]. However, a randomized crossover
trial failed to confirm this observation in European
transplant patients receiving long-term mycophenolate
mofetil therapy [108]. In line with this observation, an in
vitro study showed that iron ions did not interact with
mycophenolate mofetil [109].

Conclusions

The integration of ESA and intravenous or oral iron therapy
into standard anemia management resulted in target
hemoglobin levels (as established by international guide-
lines) in the vast majority of ESRD patients [110].
Correction of renal anemia reduced morbidity and mortality
as well as hospitalization in ESRD patients. It also
improved quality of life, cognitive function, and physical
activity. Using a balanced approach to iron supplementation
within international recommendations allowed the attain-
ment of benefits of intravenous iron therapy at storage iron
levels far below those generally seen with transfusions in
the pre-ESA era [110].
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