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Abstract
Background: It is well known that gene expression is dependent on chromatin structure in
eukaryotes and it is likely that chromatin can play a role in bacterial gene expression as well. Here,
we use a nucleosomal position preference measure of anisotropic DNA flexibility to predict highly
expressed genes in microbial genomes. We compare these predictions with those based on codon
adaptation index (CAI) values, and also with experimental data for 6 different microbial genomes,
with a particular interest in experimental data from Escherichia coli. Moreover, position preference
is examined further in 328 sequenced microbial genomes.

Results: We find that absolute gene expression levels are correlated with the position preference
in many microbial genomes. It is postulated that in these regions, the DNA may be more accessible
to the transcriptional machinery. Moreover, ribosomal proteins and ribosomal RNA are encoded
by DNA having significantly lower position preference values than other genes in fast-replicating
microbes.

Conclusion: This insight into DNA structure-dependent gene expression in microbes may be
exploited for predicting the expression of non-translated genes such as non-coding RNAs that may
not be predicted by any of the conventional codon usage bias approaches.

Background
Transcription of DNA is highly influenced by DNA bend-
ing and flexibility. These structural properties are depend-
ent on the base sequence [1], which in turn, is reflective
of, or may influence the codon usage – also important in
determining the relative expression of a given gene. Pre-
diction of highly expressed genes and elucidation of the
physical and biological properties of highly expressed
genes has been addressed by a number of studies [2-4].

The translational 'codon adaptation index' (CAI) is highly
correlated with the expression level in fast growing bacte-
ria [5]. It is based on the finding that highly expressed

genes almost exclusively use those codons of abundant
tRNAs in Escherichia coli and budding yeast [4]. Conse-
quently for any sequenced bacterial genome, a codon bias
signature can be deduced that is most likely to be efficient
for translation. This bias is used to derive codon adapta-
tion indices for all genes for a given organism, where high
CAI values correspond to genes most likely to be highly
expressed.

However, using CAI, one is only able to predict highly
expressed proteins (translated genes) since this measure is
based on codon usage bias. Unfortunately, this method
cannot consider tRNAs, ribosomal RNAs, and other non-
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coding RNAs. Moreover, for organisms with low transla-
tional bias – typically slow growing organisms – CAI is a
less effective predictor of highly expressed genes [6]. Fur-
thermore, effective usage of CAI requires the identification
of a representative subset of highly expressed genes in an
organism on which the codon bias is based. While rela-
tively good subsets may be found by simple BLAST
searches [7] for organisms closely related to well-charac-
terized model organisms such as Yeast and E. coli, it is
more difficult for more distant microbes such as archaea-
bacteria.

On a more global scale, gene expression may be regulated
from specific promoters that are sensitive to DNA super-
helicity. That is, supercoiling may regulate gene expres-
sion at a genome-wide level [8,9]. In this way, an
organism may react rapidly to changes in growth and
nutritional states as well as environmental conditions
since DNA superhelicity varies with the cellular energy
charge, which, for example, differs in log phase versus sta-
tionary phase or is influenced by environmental factors
such as temperature or osmotic stress [10]. Such structural
elements appear to be clustered around the chromosome
in so-called topological domains [8,11,12].

The 'position preference' measure is a DNA structural
measure that was originally derived for eukaryotes using
chicken DNA and is a trinucleotide model of nucleosome
positioning patterns. It reflects the preference of a given
trinucleotide for being found in a region where the DNA
minor groove faces either towards or away from the nucle-
osome histone core [13]. Here, we use a minor modifica-
tion of the original nucleosomal positioning trinucleotide
scale where absolute values reflect the magnitude of posi-
tion preference [14]. Thus, high absolute position prefer-
ence reflects a high preference for nucleosomes, while low
absolute position preferences reflect trinucleotides which
tend to exclude nucleosomes. On the one hand, this only
makes sense in eukaryotes since prokaryotes do not have
nucleosomes. However, prokaryotes also have chromatin,
and the DNA is compacted to similar levels (i.e., more
than 1000x) in both prokaryotes and eukaryotes. The
position preference value is also a measure of anisotropic
DNA flexibility of certain trinucleotides, which can either
favor nucleosome positioning ("high position prefer-
ence") or tend not to be found in sequences wrapped
around nucleosomes. Consequently, the 'position prefer-
ence' measure also describes a more general structural
property of DNA – that is, how easily can it be wrapped
around chromatin proteins. As a result, position prefer-
ence has been used previously to show structural charac-
teristics in prokaryotic genomes [14,15]. For example, a
cluster analysis of various structural properties including
position preference, identified groups of genes that con-
tained all the ribosomal RNAs and a majority of the ribos-

omal proteins from Escherichia coli [15]. These genes were
characterized by higher than average DNaseI sensitivity
[16] and low position preference, indicating regions of
DNA not easily condensed by chromatin. Since the ribos-
omal genes are among the most highly expressed in
actively dividing E. coli cells, it was hypothesized that their
common structural features may play a role in regulating
expression and that there exists a correlation between low
position preference values and highly expressed genes
[17]. This makes sense because regions of DNA that are
not condensed into chromatin are more accessible to the
RNA polymerase. Consequently, transcription is thought
to be governed by 'effective' superhelicity, where topoi-
somerases, the transcription machinery and chromatin
proteins compete for available supercoils [18].

Here, we use the position preference (PP) measure for the
prediction of highly expressed genes in 6 sequenced
microbial genomes with a particular interest in the model
organism E. coli. The predictions are compared to experi-
mental data as well as predictions by CAI and we thereby
demonstrate that the position preference measure is a use-
ful measure for prediction of highly expressed non-trans-
lated genes. We have extended this analysis by examining
position preference values of genes in 328 sequenced
microbial genomes. By characterizing the functional cate-
gories of genes predicted to be highly expressed, we find
that these categories are independent of phylogeny but
rather reflect the ecology of the organism, such as patho-
gens or extremophiles.

Results and discussion
Whole genome E. coli Atlas
On a chromosomal level, we observe that, for the E. coli K-
12 genome, both CAI values and position preference val-
ues predict the same general regions of highly expressed
genes, and indeed these regions correspond well with the
experimental expression values (Figure 1). However, there
are two regions where CAI and position preference differ
significantly – the first is around 0.45 Mbp, where a clus-
ter of highly expressed genes is predicted by CAI but not
by position preference. This region contains the cyoA-cyoE
genes involved in aerobic energy metabolism and they
predominate during growth at high aeration. The second
different region is towards the bottom of the atlas, around
2 Mbp, where there is a region with low position prefer-
ence, but close to average CAI values. This region contains
genes from the flu loci, which can be highly expressed
under the appropriate environmental conditions [19].
Moreover, in Figure 1, the location of rRNAs and tRNAs
are also indicated. The expression level for these genes
cannot be predicted by CAI since they are not translated.
The position preference measure predicts high expression
within several regions concentrated in tRNAs or rRNAs.
According to experimentally determined expression lev-
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els, many of these regions are also rich in highly expressed
genes. Consequently, our data show that not only is the
gene expression regulated by DNA structural elements as
demonstrated previously [9,18], but the highly tran-
scribed regions are also correlated with regions of the
chromosome having low position preference.

Ribosomal proteins and non-translated RNA
Ribosomal proteins are often highly expressed and dem-
onstrate high codon usage bias in terms of high CAI val-
ues, at least in fast replicating microbes. Consequently, for
these microbes, we expect a similar correlation between
low position preference and high gene expression level.

Examining the ribosomal proteins for E. coli, we confirm
that the average position preference is lower than for other
protein encoding genes (Wilcoxon P-value 4e-11), and it
is even more extreme for non-translated genes. For exam-
ple, rRNAs, tRNAs, and miscellaneous RNAs have signifi-

cantly lower position preference values than translated
genes (P-value = 6e-34). Although this difference was
observed for a majority of the 328 microbial genomes
examined, ribosomal proteins are not always encoded by
DNA with low position preference (Figure 2A). However,
the difference in position preference of ribosomal pro-
teins and non-ribosomal proteins correlated very well
with the replication times of the cells (P-value = 5.1e-10)
using the number of 16S rRNAs as an indirect measure of
doubling time, as previously suggested [20], since the
number of 16S rRNAs indirectly influence replication
times [21]. Thus, fast replicating microbes demonstrated a
larger difference in position preference between ribos-
omal proteins and non-ribosomal proteins than slow rep-
licating microbes. Consequently, as for CAI [6], fast
replicating microbes have optimized their translational
machinery by increasing the expression of proteins such
as ribosomal proteins. As a result, their expression is opti-
mized both by codon usage and by placing them in

Atlas illustration of the E. coliFigure 1
Atlas illustration of the E. coli genome. The atlas illustrates CAI values, position preference values and microarray gene 
expression values for E. coli. The average position preference values and gene expression values are illustrated for all genes at 
their genomic position. The CAI values can only be calculated for protein encoding genes and are therefore only illustrated for 
these. The range of all three color scales corresponds to ± 1.5 standard deviations.
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regions where DNA is easily accessible (Wilcoxon P-value
= 5e-10).

While highly expressed ribosomal proteins and non-
translated RNA genes demonstrated a tendency to have
low position preference especially in fast replicating
organisms, this does not signify that the position prefer-
ence measure for prediction of highly expressed genes
may only work in fast replicating organisms as for the CAI
measure. On the contrary, position preference might, con-
sequently, provide an alternative measure for prediction
of highly expressed genes in slow replicating bacteria. For
these, ribosomal proteins and RNA genes are not always
highly expressed and therefore, the CAI measure is less
efficient.

The above results are somewhat in contrast to the findings
by Segal and coworkers [22]. They recently published a
more refined model for nucleosomal positioning based
on a combined experimental and computational
approach. Although this model predicts a nucleosome
pattern strikingly similar to that of the model used in our
study [13,22], at least for eukaryotes, they did not find
nucleosome depletion at ribosomal proteins sites in Yeast.
Consequently, they predicted high nucleosome occu-

pancy encoded over these genes and reasoned that the
expression of these genes is governed by other factors.
However, although we only predict a slightly lower than
average position preference for yeast ribosomal proteins,
we find that the general trend observed across a large
range of microbial genomes is that both DNA encoding
ribosomal proteins and non-coding genes have lower
position preference than the genomic average (Figure 2).
This points at a possible regulation of ribosomal proteins
by DNA structural properties.

Position preference versus CAI
The position preference measure used in this study is
based on the experimentally determined preference dem-
onstrated by individual trinucleotides to be positioned in
a specific orientation in nucleosomal DNA [13]. Conse-
quently, the position preference score assigned to any
given triplet will be the same for all organisms and the
gene average will depend only on the specific sequence of
a gene whereas CAI scores for a gene depends on both the
sequence and the translational codon bias in the specific
organism to which the gene belongs. Correspondingly, we
only found small correlations or anti-correlations
between CAI triplet weights and position preference tri-
plet scores for a few organisms, none of which were signif-

Gene density plotsFigure 2
Gene density plots. (A) Density plot of position preference differences for 328 microbial genomes. Differences between 
mean position preference of translated coding sequences (CDSs) and ribosomal proteins (red) or between mean position pref-
erence of CDSs and ribosomal RNA (rRNA) (blue). Most microbial genomes CDSs have a higher mean position preference 
values than ribosomal proteins and rRNA (mean above 0). (B) Position preference densities for the 10% most highly expressed 
genes, non-highly expressed genes, rRNAs, tRNAs and ribosomal proteins in E. coli.
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icant (multiple testing [23] corrected P-values = 1).
Moreover, the correlation between CAI weights and posi-
tion preference triplet values did not increase for fast rep-
licating bacteria (P-value = 0.532), indicating that
position preference as such, may be a useful supplement
for predicting highly expressed non-translated genes even
in slow-growing microbes. Moreover, because rRNAs,
tRNAs, and other non-coding RNAs tend to have lower
position preference than the genomic average, the posi-
tion preference measure could be useful for identifying
these genes in pre-annotated DNA sequences. In particu-
lar, because the position preference can be estimated at
the DNA level and as such, do not require the prior knowl-
edge of gene co-ordinates.

Prediction of highly expressed genes
From Figure 1, we would expect a correlation between low
position preference and high gene expression level. How-
ever, a complete separation of highly expressed genes
from the other genes was not possible using the position
preference measure (for example, see Figure 2B). This is
hardly surprising since no structural or coding property
singularly determines the level of gene expression, for
which a large number of regulatory steps are involved.
Consequently, the level of separation may reflect the
influence of each measure on gene expression. For the five
additional microbial genomes where we had experimen-
tally determined expression values, a clear difference was
also observed between the distributions of CAI or posi-
tion preference values for highly expressed genes and low
expressed genes. For details, refer to supplementary Table
S1 [Additional file 1].

As expected from the above analyses, we observe a signif-
icant enrichment in highly expressed genes among genes
with low position preference (Figure 3) for all 6 organisms
for which we have microarray gene expression data avail-
able. Moreover, the correlation between position prefer-
ence values and microarray gene expression values is
highly significant [see supplementary Table S2, additional
file 1]. However, the overlap between genes with high CAI
values and highly expressed genes is even more significant
(Figure 3). While this is expected since codon usage is
known to have a strong influence on protein expression,
the DNA structural properties also influence gene expres-
sion, and it seems reasonable that DNA which cannot be
condensed into tightly wrapped chromatin structures is
more accessible to RNA polymerase, which is about the
same size as a nucleosome. One likely explanation is that
position preference, as a measure of chromatin structure,
might not be the most optimal – particularly for bacterial
genomes. This might also explain the considerably higher
enrichment in highly expressed genes among S. cerevisiae
genes with low position preference than observed for the
bacterial genomes (Figure 3).

While CAI values are better predictors of high expression
of proteins, DNA structural properties may be used for
prediction of gene expression for non-translated genes
such as transfer RNAs and micro RNAs. For example, for
E. coli, gene expression levels were further available for
some non-translated genes. Including these in the com-
parison, the overlap between genes with low position
preference values and genes with high expression values
were more significant (p-value: 3.6e-45) than when only
including translated genes in the comparison (p-value:
5.0e-36). Table 1 lists the 55 non-translated genes pre-
dicted to be highly expressed by the position preference
measure. More than 70 percent of these are also found to
be highly expressed experimentally. Both of these findings
demonstrate that not only may the position preference
measure be used for predicting the gene expression level
for non-coding regions, but since these regions are even
more correlated with anisotropic DNA flexibility than
translated genes, they may consequently be under even
more strict regulation by DNA structural properties. This
makes sense because regulation by codon usage obviously
makes no sense for transcripts that do not code for pro-
teins.

Functional categories of genes with low position 
preference
In fast growing organisms, ribosomal proteins and other
proteins involved in translation and transcription are
often highly expressed and are extremely biased in their
codon usage preferences, that is, they have high CAI val-
ues [5]. Genes involved in translation, transcription, rep-
lication, and energy production are often encoded by
anisotropically flexible DNA in terms of low position
preference values which is thought to be correlated with
high gene expression (Figure 4). Figure 4 (and supple-
mentary Figure S1 [additional file 1]) illustrates over-rep-
resented (purple) and under-represented (green) COG
functional categories among genes with low position pref-
erence relative to the genomic background. The COG cat-
egories and the microbes are clustered in two dimensions
by hierarchical clustering and the microbes do not cluster
according to AT content (data not shown) as we found
when clustering based on codon usage bias [6]. Instead, it
is possible to see the COG categories of genes encoded by
DNA with low position preference. For most microbes,
DNA with low position preference encodes genes
involved in 'translation, ribosomal structure and biogen-
esis', 'energy production and conversion', 'transcription',
and various types of metabolism.

It is clear that the clustering brings together organisms
which are relatively distant phylogenetically (Figure 4),
right side color bar representing the taxonomic phylum of
each genome). As opposed to the apparent clustering
according to similar environments as found based on CAI
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[6], in the present analysis, the ordering appeared related
to the functionality of the microbe, i.e. pathogen versus
non pathogen. For example, the COG category 'replica-
tion, recombination and repair' is particularly over repre-
sented amongst genes with low position preference for a
distinct cluster at the top of Figure 4, consisting of extrem-
ophilic archaea and bacteria as well as pathogenic bacteria
(mainly Yersinia pestis and Shigella strains). The common
feature of these organisms is that genes involved in repli-
cation, recombination and repair have very low position
preference (and consequently are potentially highly
expressed). Particularly genes involved in recombination
and repair are essential for pathogens and microbes living
under extreme conditions making it reasonable for them
to be highly expressed. Supporting this observation, we

find that the same COG category is over represented for
pathogenic E. coli strains, O157:H7 EDL933, O157:H7
RIMD0509952, CFT073 and UTI89 as well as for most
Shigella strains, which are essentially pathogenic E. coli,
whereas, the same COG category is not dominating for
the non-pathogenic E. coli strains K-12 W3110 and K-12
MG1655. This provides us with a possible means for dis-
tinguishing pathogenic strains from non pathogenic
strains. An important caveat is that some pathogenic
strains have important virulence genes expressed on plas-
mids, which were not considered in this study. The more
direct approach to distinguishing pathogenic strains from
non-pathogenic strains is to look for pathogenicity fac-
tors. However, the exact combination of virulence genes
and pathogenecity factors necessary to make a strain path-

Venn diagramFigure 3
Venn diagram. Illustrates the overlap between genes predicted to be highly expressed by CAI (top 10%) and position prefer-
ence (bottom 10%), and genes with high microarray gene expression values (top 10%). Thus, the number found in the intersec-
tion between all three circles refer to the number of genes predicted to be highly expressed by either measure and also found 
to be highly expressed experimentally. The number found outside the circles refer to the number of genes that are not highly 
expressed and not predicted as such by either method. The organisms are ordered by the significance of the overlap between 
position preference (PP) and highly expressed genes (Fisher's exact test [40]).

CAI PP

Expr

4499

233114

144

68

38157

206

S. cerevisiae (Pval=6e−117)

CAI PP

Expr

3320

208134

184

80

30104

97

E. coli (Pval=5e−36)

CAI PP

Expr

1249

7996

73

16

3922

25

C. jejuni (Pval=5e−27)

CAI PP

Expr

4360

271210

320

149

39100

95

P. aeruginosa (Pval=3e−25)
CAI PP

Expr

2881

264207

228

50

2986

34

B. subtilis (Pval=7e−05)
CAI PP

Expr

2585

237155

181

52

26108

21

G. sulfurreducens (Pval=0.008)
Page 6 of 11
(page number not for citation purposes)



BMC Molecular Biology 2007, 8:11 http://www.biomedcentral.com/1471-2199/8/11
Table 1: Predicted highly expressed non-translated E. coli genes by the position preference measure.

Gene bnumber Type Gene expression rank PP Gene bnumber Type Gene expression rank PP

asnT b1977 tRNA 122 0.1076 leuP b4369 tRNA 404 0.1294
asnW b1984 tRNA 121 0.1076 selC b3658 tRNA 617 0.1295
asnU b1986 tRNA 101 0.1076 thrT b3979 tRNA 143 0.1300
asnV b1989 tRNA 127 0.1076 serW b0883 tRNA 196 0.1310
thrV b3273 tRNA 898 0.1154 rrsH b0201 Ribosomal and stable RNAs 15 0.1318
valW b1666 tRNA 1544 0.1172 rrsA b3851 Ribosomal and stable RNAs 1 0.1318
valT b0744 tRNA 114 0.1212 tyrU b3977 tRNA 172 0.1318
valZ b0746 tRNA 130 0.1212 rrsG b2591 Ribosomal and stable RNAs 6 0.1319
valX b2402 tRNA 124 0.1212 rrsC b3756 Ribosomal and stable RNAs 2 0.1320
valY b2403 tRNA 109 0.1212 rnpB b3123 misc_RNA 73 0.1332
aspU b0206 tRNA 219 0.1215 leuZ b1909 tRNA 920 0.1338
aspV b0216 tRNA 233 0.1215 rrfF b3272 Ribosomal and stable RNAs 14 0.1338
aspT b3760 tRNA 150 0.1215 rrlH b0204 Ribosomal and stable RNAs 4 0.1348
serU b1975 tRNA 1420 0.1221 metU b0666 tRNA 309 0.1351
leuU b3174 tRNA 3814 0.1229 metT b0673 tRNA 229 0.1351
valV b1665 tRNA 2022 0.1233 rrlA b3854 Ribosomal and stable RNAs 12 0.1351

thrU b3976 tRNA 66 0.1235 rrlC b3758 Ribosomal and stable RNAs 18 0.1352
ileU b3277 tRNA 274 0.1239 rrlE b4009 Ribosomal and stable RNAs 5 0.1352
ileT b3852 tRNA 236 0.1239 rrlG b2589 Ribosomal and stable RNAs 3 0.1354
argQ b2691 tRNA 455 0.1241 rrlD b3275 Ribosomal and stable RNAs 30 0.1355
argZ b2692 tRNA 765 0.1241 lysT b0743 tRNA 123 0.1357
argV b2694 tRNA 401 0.1241 lysW b0745 tRNA 142 0.1357

ffs b0455 misc_RNA 686 0.1255 lysY b0747 tRNA 94 0.1357
trpT b3761 tRNA 1483 0.1276 lysZ b0748 tRNA 131 0.1357
pheV b2967 tRNA 3047 0.1285 lysQ b0749 tRNA 113 0.1357
pheU b4134 tRNA 1995 0.1285 dicF b1574 RNA; Cell division 3004 0.1361
leuT b3798 tRNA 171 0.1287 proK b3545 tRNA 3076 0.1367
leuQ b4370 tRNA 502 0.1287

These 55 non-translated genes are among the 10% genes with lowest PP values (listed from lowest to highest PP values). The 39 genes highlighted in 
bold are also found to be highly expressed according to microarray gene expression levels and their rank are shown according to the measured 
microarray gene expression level (from highest to lowest, low rank => highly expressed).

ogenic is still unknown and also depends on the expres-
sion level of these genes.

Finally, four fungi clustered closely with certain probiotic
bacteria (Lactobacillus); it is interesting to note that these
organisms can live in a similar ecological niche. Also, a
few microbes contain genes with low position preference
that are involved in carbohydrate transport and metabo-
lism, especially the Streptococcus genomes found in the
bottom cluster of Figure 4. Again, this might be reflective
of their ecological niche.

The above analysis demonstrates that the overrepresented
COG categories differ between microorganisms inde-
pendently of phylogeny. Moreover, the differences in the
occurrences within the 'translation, ribosomal structure
and biogenesis' COG category may explain why the posi-
tion preference measure was more effective in some
organisms than others according to Figure 3. Conse-
quently, instead of the above speculation that position
preference is an eukaryotic measure and therefore works
better in S. cerevisiae than in bacteria, the very high repre-
sentation of this COG category among genes with low
position preference in S. cerevisiae could explain why posi-

tion preference is a better predictor of gene expression lev-
els in S. cerevisiae than in prokaryotes, in particular G.
sulfurreducens where this COG category is barely present
among genes with low position preference.

Conclusion
We use a nucleosome position preference measure of ani-
sotropic DNA flexibility to predict highly expressed genes
in microbial genomes, and compare it to a translational
codon adaptation index for synonymous codon usage
bias of potentially highly expressed genes. We hereby
demonstrate that absolute gene expression levels are
highly correlated with low position preference in multiple
microbial genomes. This newly gained insight into DNA
structure dependent gene expression may be exploited for
predicting the expression of non-translated genes such as
non-coding RNAs that may not be predicted by any of the
conventional codon usage bias approaches, and we spec-
ulate that it may also be used for prediction of highly
expressed genes in slow growing microbes, in which the
CAI measure is less successful. Genes often encoded by
DNA with low position preference values were mostly
involved in 'translation, ribosomal structure and biogen-
esis', 'energy production and conversion', and transcrip-
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Heatmap of COG functional categories for genes with low position preference (10% lowest) for 328 microbial genomes com-pared to the genomic backgroundFigure 4
Heatmap of COG functional categories for genes with low position preference (10% lowest) for 328 microbial 
genomes compared to the genomic background. The color scale goes from -0.75 to 0.75 and represents the frequency 
of occurrences in each COG category among genes with low PP minus the overall frequency of occurrences in the genome. 
Over-represented categories among genes with lowest PP compared to the genomic background is indicated with purple, 
while green indicates under representation. For example, if all genes with low position preference corresponded to a certain 
COG category, and the same category only existed in 25 percent of all genes in that organism, the score would be 0.75 for that 
cog category for that organism. The kingdom is indicated as a vertical color bar to the left between the heatmap and the den-
drogram. The phyla is illustrated as a vertical color bar to the right.
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tion. For pathogens and microbes living in extreme
environments, the predominant functional category was
'replication, recombination and repair'. In particular, E.
coli pathogenic strains and most Shigalla strains demon-
strated this trait while non pathogenic E. coli strains did
not. This provides a likely signature for distinguishing
some pathogenic strains from non pathogens. This new
insight into DNA structural dependent gene expression in
microbial genomes may aid in our understanding of gene
expression regulation. It may also be used in developing a
reliable predictor of gene expression both in prokaryotes
and eukaryotes.

Methods
Translational Codon Adaptation Index (CAI)
The codon adaptation index describes a codon usage bias
in an organism [4]. Here, we use a translational codon
adaptation index (CAI), in which a codon bias signature
is deduced that is most likely to be efficient for translation
[6]. In short, this method is based on a known set of 27
very highly expressed E. coli genes for bacterial genomes
[24], and a set of 39 very highly expressed yeast genes for
eukaryotes [25]. Both reference sets were identified based
on protein expressions. In order to identify a set of consti-
tutively highly expressed genes for each of the bacterial
genomes analyzed in this work, the reference set of very
highly expressed E. coli or Yeast genes is aligned at the pro-
tein level against all genes annotated in the Genbank entry
for each genome using BLASTP version 2.2.9 [7]. For each
of these very highly expressed genes, the gene with the
best alignment was added to a set of very highly expressed
genes if it had an E-value below 10-6, and these were used
as a reference set for the given organism. Using each
genome specific reference set, a weight table including all
codons is derived indicating the most translationally effi-
cient codons. In turn, these weights are used for calculat-
ing a CAI value for each gene. The higher the CAI score,
the more likely a gene is to be highly expressed.

Position preference
This is a model of anisotropic DNA flexibility, which is
derived experimentally from the preference demonstrated
by individual trinucleotides to be positioned in a specific
orientation in nucleosomal DNA [13]. The values indicate
the preference of triplets for being specifically positioned
in nucleosomal DNA. High absolute values correspond to
triplets with a strong preference for having minor grooves
facing either towards or away from the nucleosome core,
while triplets with close-to-zero preference can occupy
any rotational position on the nucleosomal DNA, and are
thus assumed to be flexible in one direction. Since the
'position preference' measure is based on a simple trinu-
cleotide model, values are assigned to every nucleotide in
the DNA sequence simply by looking up the values for the
corresponding triplet, in which the nucleotide is centered

[1,14,15]. Here, the average of each possible triplet in a
gene is used to calculate the position preference score for
that gene.

Assigning Cluster of Orthologous Genes (COGs)
The system for delineation of Clusters of Orthologous
Groups of proteins (COGs) is based on orthologous rela-
tionships between genes and is useful for comparative
genomics and facilitates the functional annotation of
genomes. Here, genes were assigned a COG category by
AutoFACTS, an automatic functional annotation tool [26]
utilizing Blastx version 2.2.9 [7] to blast open reading
frames to a database of sequences with assigned cog cate-
gories available from NCBI [27]. The following COG cat-
egories were not used due to their low relevance in
microbial functional genomics: 'chromatin structure and
dynamics' (B), 'nuclear structure' (N), 'cytoskeleton' (Z),
and 'extracellular structures' (W). Also, the two categories
of poorly characterized functions were neglected: 'general
function prediction only' (R) and 'function unknown' (S).

Prediction of ribosomal proteins
Ribosomal proteins for each Genbank entry were pre-
dicted using profile Hidden Markov Models (HMMs)
from Pfam [28] since the quality of the annotations avail-
able from the Genbank entries varies tremendously.
Pfam_ls profile HMMs for all ribosomal proteins were
extracted (94 as per July 24th 2006). Pfam_ls files contain
all the Pfam models for finding global or complete
matches to a domain or family.

Gene expression data
Microarray based gene expression data were taken from
Willenbrock et al., 2006 [6]. Briefly, the dataset comprised
pre-processed gene expression data for E. coli [29], C.
jejuni [30], P. aeruginosa, S. cerevisiae [31,32], G. sulfurredu-
cens [33], and B. subtilis [34]. Additional microarray gene
expression data for E. coli at different growth stages were
taken from [35], where raw data were normalized with
qspline [36] and expression indices were estimated [37].

Data treatment
All DNA and protein sequence information was extracted
from each of the 328 Genbank entries. For correlation
estimates, we used Spearman's rank correlation [38] to
avoid any problems with possible deviations from nor-
mality in compared data (e.g. log-normal distribution for
microarray data). Cluster analysis was based on hierarchi-
cal clustering of Euclidian distances using complete link-
age. For density plots, the bandwidths were chosen as the
standard deviation of the Gaussian smoothing kernel.

Supplemental information
Additional data are available at our website [39]. This
website contains an overview of the 328 microbial
Page 9 of 11
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genomes included in this study linked to estimated posi-
tion preference values. Supplementary Figure S1 is a
detailed version of the heatmap sketched in Figure 4, pro-
viding the full organism names of all included microbial
genomes. Supplementary table S1 and S2 provides some
statistics for the comparison of expression values and CAI
and position preference.
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