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Dwell-time distributions, waiting-time distributions, and distribu-
tions of pause durations are widely reported for molecular motors
based on single-molecule biophysical experiments. These distribu-
tions provide important information concerning the functional
mechanisms of enzymes and their underlying kinetic and mechan-
ical processes. We have extended the absorbing boundary method
to simulate dwell-time distributions of complex kinetic schemes,
which include cyclic, branching, and reverse transitions typically
observed in molecular motors. This extended absorbing boundary
method allows global fitting of dwell-time distributions for en-
zymes subject to different experimental conditions. We applied the
extended absorbing boundary method to experimental dwell-time
distributions of single-headed myosin V, and were able to use a
single kinetic scheme to fit dwell-time distributions observed
under different ligand concentrations and different directions of
optical trap forces. The ability to use a single kinetic scheme to fit
dwell-time distributions arising from a variety of experimental
conditions is important for identifying a mechanochemical model
of a molecular motor. This efficient method can be used to study
dwell-time distributions for a broad class of molecular motors, in-
cluding kinesin, RNA polymerase, helicase, F1 ATPase, and to examine
conformational dynamics of other enzymes such as ion channels.

myosin � single molecule � waiting-time distributions � pause durations

The movements of molecular motors are frequently recorded
in biophysical experiments using tools such as optical trap

assays and single molecule fluorescence assays. Due to transi-
tions of conformational and chemical states, the motions of
molecular motors usually show alternations between an en-
zyme’s moving and pausing behaviors. For example, double-
headed myosin VI moving on an actin filament demonstrates a
mechanical stepping behavior (Fig. 1a) (1), whereas the events
of actin binding and unbinding of a single-headed myosin V
construct show alternate phases of oscillating and pausing (Fig.
1b) (2). Collecting a large number of these events and perform-
ing statistical analysis provides insight into the kinetics and
mechanochemical characteristics of an individual molecule.

Dwell events arise from pauses in mechanical stepping (Fig. 1a)
or stochastic delays before a binding–unbinding transition (Fig. 1b).
Each dwell represents an experimentally observable event, which
can be a single conformational or chemical state, or a collective
number of states. The dwell time, or the duration of a dwell, is
determined by the probability of exiting a dwell after the time
entering it. Histograms of dwell times, also called dwell-time
distributions, waiting-time distributions, or distributions of pause
durations, are widely used to decipher single molecule kinetics.

The dynamics of an enzyme’s activity can be modeled as a
number of kinetic states using kinetic equations (3) or mechanical
coordinates using diffusion-based (Fokker–Planck) equations (4).
For questions addressed in this study, models of kinetic equations
were appropriate. All transitions were assumed Markovian (mean-
ing the stochastic processes do not depend on previous transitions),
and nonlinear effects, such as changing ligand concentrations

during the period of interest, were ignored. As a result, the
governing equations were a system of first-order kinetic equations.

Studying the duration of a dwell is a first-passage time problem
in stochastic analysis (5, 6). For certain kinetic schemes, dwell-time
distributions can be solved analytically, and the solutions are written
as multiple exponential formulae (1, 2, 7–12). Other methods
include the backward (adjoint) equation method, the Monte Carlo
simulation method, the matrix method (13–15), and the absorbing
boundary method.

The backward equation method has been widely used to calculate
mean first-passage time and other average values (16–19). How-
ever, this method has limited value for obtaining distribution
functions such as dwell-time distributions. Monte Carlo simula-
tions, which use stochastic processes to simulate a trajectory (e.g.,
Fig. 1), perform well for systems with a large number of states when
only a small portion of the states are sampled. A dwell-time
distribution can then be obtained by binning durations of dwells
resulting from the simulation. Achieving a high resolution of
dwell-time distributions, however, requires a long trajectory to
generate sufficient data for statistical analysis. Even with the
efficient Gillespie algorithm (20), the computational cost of simu-
lations for global fitting can be large.

The matrix method has been used to study dwell-time distribu-
tions of single ion-channel recordings (13, 14). This method is
related to the absorbing boundary method (see below), and uses
probability theory to partition the rate matrix into submatrices for
open and closed states of a channel. Recently, the matrix method
has been applied to dwell-time distribution analysis of molecular
motors (21). It is useful for obtaining stochastic properties of
systems with a variety of kinetic schemes. However, for molecular
motors with complex kinetic schemes (e.g., Scheme 10), partition-
ing states into groups before and after a dwell is sometimes
impossible, as a state can be reached through pathways either
exiting a dwell or not.

The absorbing boundary method has been widely applied to
study first-passage time problems. This method determines the
length of time required to reach a site or a state for the first time,
by setting the site or the state as an absorbing boundary. For kinetic
models, first-order kinetic equations with absorbing boundary
states can be solved to obtain dwell-time distributions. This method
is not efficient for obtaining average values such as mean first-
passage time, but it is effective for obtaining distribution functions
for simple kinetic schemes.
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Identifying absorbing boundaries for complex kinetic schemes of
molecular motors remains a major challenge. When several kinetic
pathways exist from one state to another and not all of them exit
a dwell, it is not straightforward to find the absorbing boundary
states. Solving this problem is important because cyclic and reverse
kinetic pathways are universal for molecular motors. For some
motors, branching kinetic pathways are needed to describe the
behaviors observed in experiments. Our work extends the absorb-
ing boundary method to solve dwell-time distributions of molecular
motors with cyclic, branching, reverse, and even high-dimensional
kinetic networks [see examples in the supporting information (SI)
Text and SI Figs. 5 and 6]. The extended absorbing boundary (EAB)
method enables global fitting of dwell-time distributions from
experiments that examine a motor under a variety of different
conditions. As a result, it is possible to test different kinetic schemes
to find one that best fits a rich set of dwell-time distributions. To
demonstrate the utility of this method, we used it to simulate the
dwell-time distributions of a single-headed myosin V construct (2)
and to globally fit experimental results obtained with different
applied loads and ATP concentrations. The method provides very
fast computations, and code that implements the method is freely
available at www.simtk.org.

Results
Development of the EAB Method. In the following, we first solve the
dwell-time distribution problem for a simple example with the
conventional absorbing boundary method. We then solve a prob-
lem with a complex kinetic scheme for a molecular motor, where
its power stroke (mechanical step) corresponds to the transition
exiting a dwell. We use this example to illustrate the extension of
the conventional absorbing boundary method, which is especially
well suited for such complex kinetic schemes.

Dwell-time distributions represent the ensemble average behav-
ior of many individual dwell events (Fig. 2). The absorbing bound-
ary method considers the state leaving a dwell as an absorbing

boundary state by setting the reverse rate constant to zero. This is
equivalent to the constant value after each individual dwell event
shown in Fig. 2.

A special feature of molecular motors is that their kinetic scheme
is cyclic. As an example, consider this simple three-state kinetic
cycle:

In this cycle, A, B, and C are three chemical states, and the
reactions are all reversible. A possible scenario for this cycle of
an ATPase motor is that A 3 B corresponds to ATP docking,
B 3 C corresponds to the power stroke, the mechanical stroke
that drives the load movement, and C3 A corresponds to ADP
release. This simplified cycle omits several intermediate steps in
the ATP hydrolysis cycle, but it is a reasonable approximation for
certain cases when intermediate steps are fast. Because B 3 C
is assumed to be the power stroke step, B 3 C and C 3 B are
steps to exit a dwell corresponding to forward and backward
power stroke steps in Fig. 1a. An example for this kinetic scheme
is the inchworm movement of a monomeric helicase, such as
HCV helicase, translocating on a nucleic acid (22). In this case,
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Fig. 1. Dwell events obtained from single-molecule experiments with my-
osin V and myosin VI. (a) Dwells in mechanical stepping of a double-headed
myosin VI. (b) Dwells of actin binding and unbinding for single-headed myosin
V. The portions of large oscillations correspond to the actin unbound states,
whereas the portions of small fluctuations correspond to the actin bound
states. (c) The movement of an actin filament (top arrow) driven by the power
stroke of a single-headed myosin V attached to a bead. The arrows on the left
of myosin indicate the cyclic behavior of binding, power stroke, unbinding,
and recovery.
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Fig. 2. Statistics of dwell events. A time trajectory (top trace) is split into
individual dwell events. The ensemble average of all these events is propor-
tional to the population of states remaining in the dwell. The population of
absorbing boundary states, shown in y, is obtained by subtracting the popu-
lation remaining in dwells from the total population. Because dwell-time
distributions reported in experiments are histograms of events binned within
certain time intervals, it is important to also consider calculated results in time
intervals. The number of events that exit a dwell during the time interval (t, t �
dt) is equal to the number of events that exited dwells before time t � dt
excluding those events that exited dwells before time t, or y(t � dt) � y(t).
These are the number of dwell events with their dwell time between the time
interval t and t � dt. In the limit, the dwell-time distributions at time t are
proportional to dy/dt.

[1]
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B 3 C represents the mechanical stroke step of the inchworm
movement.

An equivalent way to write the kinetic scheme linearly is

· · ·7 A7 B7 C7 A7 B7 C7 · · · [2]

According to the absorbing boundary method (5), one incor-
porates absorbing boundaries into the kinetic scheme to give

B4 C7 A7 B3 C. [3]

In this scheme, states at both ends are absorbing boundary
states exiting dwells. Note that the arrows toward boundary
states are unidirectional, because once the molecular motor exits
a dwell, the reverse step is eliminated to account for the
vanishing population within a dwell. To obtain the dwell-time
distributions, the population of absorbing boundary states needs
to be calculated, as shown in Fig. 2. The governing equations for
the kinetic scheme are a system of equations with the form

ṗn � �kn3n�1pn � kn3n�1pn

� kn�13npn�1 � kn�13npn�1, [4]

where n is any state in Scheme 3, n � 1 is its next state in the
forward direction, n � 1 is its previous state in the reverse
direction, pi (i can be n, n � 1 or n � 1) is the population at state
i, and ki3j is the rate constant from state i to state j. The
corresponding rate constants of the boundary states are set to 0.
The system of equations is detailed in the SI Text. The popula-
tions of the left boundary (B in this case) and the right boundary
(C in this case) are summed to get the total population of
absorbing boundary states. The dwell-time distribution is (6)

f�t� �
d
dt �

i,boundaries

pi�t�, [5]

where �i,boundaries pi(t) is the summation of the populations of all
absorbing boundary states. This total population accumulates
with time. To obtain the dwell-time distribution, or equivalently
to calculate how many events happen at a certain time interval,
one has to take the time derivative of this total population
(Fig. 2).

Initial conditions are required to solve the kinetic equations (Eq.
4). These initial conditions correspond to relative populations of
states entering a dwell. Due to the cyclic characteristics of molecular
motors, many initial states are possible. There are two possible
initial states of a dwell event for this cyclic kinetic scheme (Fig. 1a):
either state C, which results from entering a dwell in the forward
direction (B 3 C), or state B, which results from entering in the
backward direction (C3B). Three steps are required to obtain the
relative initial populations of these two states. The first is to
determine the possible initial states (in this case, B and C). The
second step is to set the initial conditions of all other states to zero,
and the third is to compute the relative populations of those
possible initial states.

We implemented a kinetic flux analysis to determine the relative
populations. The population of a possible initial state j of a dwell
is proportional to a conditional probability pj � pipi3j, where pi is
the probability in an exiting state i, and pi3j is the transitional
probability from this exiting state i to the initial state j. The
probability in an exiting state is proportional to its steady-state
concentration of the original kinetic scheme (Scheme 1) because
steady-state concentrations represent the average relative popula-
tions of all states during the time course of an experiment. The
probability of a transition is proportional to its rate constant.
Therefore, the populations of the state C after B3C and the state
B after C3 B are proportional to the kinetic fluxes, i.e., kB3C �
[B]ss and kC3B � [C]ss, where [B]ss and [C]ss are steady-state

concentrations of Scheme 1. By imposing these initial conditions
and a set of rate constants, one can calculate the dwell-time
distributions by solving a system of kinetic equations.

We will follow these same steps of the conventional absorbing
boundary method for a more complex kinetic scheme to illustrate
the difficulties encountered, and we will introduce an equivalent but
more efficient method that extends the absorbing boundary method
for complex kinetic schemes.

An experimental setup (Fig. 1c) shows a single-headed myosin
molecule moving an actin filament. The kinetic scheme of the
myosin is

In Scheme 6, M is myosin, A is actin, MT is the ATP-bound
state, MDP is the ADP�Pi-bound state, and MD is the ADP-
bound state. Thus, the chemical cycle includes steps of ATP
binding, ATP hydrolysis, Pi release, and ADP release. Each state
in this chemical cycle can either bind to actin (the lower row of
Scheme 6) or release from it (the upper row of Scheme 6). The
power stroke, in which myosin drives actin’s motion, can happen
only when myosin binds to actin (the states of the lower row).
Both mechanical stepping (Fig. 1a) and state transition (Fig. 1b)
are possible dwell events depending on the measurement meth-
ods. If actin movement by myosin’s power stroke is recorded
(Fig. 1a), as in the following example, dwell events occur
between consecutive mechanical steps. If the amplitude of actin
oscillation is recorded to distinguish the states of actin binding
and unbinding (Fig. 1b), as shown in Testing the EAB Method,
dwell events occur during binding transitions. Different absorb-
ing boundaries must be chosen for these two scenarios.

It is possible to use dwell-time distributions to help identify which
step in the chemical cycle is coupled to the mechanical power
stroke. One hypothesis is that the power stroke is coupled to the Pi
release step (AMDP3 AMD) (23). In this case, the trajectory of
the actin would be similar to the one shown in Fig. 1a, with jumps
corresponding to power strokes. When the actin experiences a
forward (AMDP 3 AMD) or a backward (AMD 3 AMDP)
power stroke from myosin, the trajectory exits a dwell.

According to the conventional absorbing boundary method,
absorbing boundaries correspond to states where the trajectory
exits a dwell. In this case, the absorbing boundary states are AMD,
after an AMDP3AMD transition, and AMDP, after an AMD3
AMDP transition. Although these two absorbing boundary states
have been identified, how to impose them onto the original kinetic
scheme, as was done from Scheme 2 to Scheme 3 in the previous
example, is not obvious. Removing the reverse pathways alone
results in Scheme 7

Scheme 7 is inaccurate because states AMDP and AMD can
proceed to other states. Absorbing boundary states must be
states from which no pathway returns, so that the probability of
the first-passage time through these dwell-exiting transitions can
be monitored.

The correct explicit representation of the kinetic scheme outlined
in Scheme 6 is shown below.

[6]

[7]
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where the subscripts represent the position of actin, and arrows
on the top represent the cyclic pathways of ATP hydrolysis. The
power stroke, AMDP3AMD, moves the actin one step forward
(e.g., n 3 n � 1), whereas ATP hydrolysis can occur without
moving actin (i.e., without exiting a dwell) as long as myosin does
not go through a power stroke step. With this explicit kinetic
scheme, and understanding where the absorbing boundaries are,
the kinetic scheme for computing the dwell-time distributions is:

where rates of transitions originating from absorbing boundaries
are set to zero. Although it is possible to write the cyclic kinetic
scheme explicitly for this case, it is impractical to write the
explicit kinetic scheme for more complex cases, such as the one
shown in SI Text and Figs. 5 and 6.

The EAB method includes three steps to obtain the kinetic
scheme for calculating dwell-time distributions. The first is to
identify each state exiting a dwell. The second step is to set the rate
of that exiting transition to zero. The third step is to add a transition
toward an additional state with the original exiting rate; these
additional states serve as the absorbing boundary states. Following
these steps for Scheme 6 results in

The states in the bottom row are the absorbing boundaries.
This modification of the kinetic scheme, which identifies the
absorbing boundaries and adds exiting pathways to these states,
is equivalent to Scheme 9. The same simple procedure can be
applied to more complex kinetic schemes by identifying all
exiting states and adding the appropriate pathways. In fact, the
previous simple three-state case (Scheme 1) can also be treated
this way. Identifying the absorbing boundary states (B and C)
and diverting transitions across the power stroke to additional
states indeed gives Scheme 3.

The extra states introduced in the modified kinetic scheme create
extra equations. The governing equations for all states in Scheme
10 are

ṗn � ��
i,out

kipn � �
i,in

kipj, [11]

where j’s are adjacent states of state n, �i,out kipn is the summation
of all outflux transitions from state n and �i,in kipj is the sum-
mation of all influx transitions toward state n. The initial state
of a dwell can be AMD or AMDP, and the relative populations
of these states can be determined with the kinetic f lux analysis
shown above. Solving the equations, summing the populations of
the absorbing boundary states in the bottom row of Scheme 10,
and taking the time derivative gives the dwell-time distribution
of the actin movement.

Testing the EAB Method. We tested the equivalency of the EAB
method with other methods for a simple kinetic scheme. The
dwell-time distributions for the cyclic kinetics shown in Scheme 1
were computed using the EAB method, and results agreed well with
an analytical solution and a Monte Carlo simulation (Fig. 3a). SI
Text provides detailed derivations of the analytical solution, which
can be obtained either by transforming into the Laplace domain or
by solving the corresponding eigenvalue problem. Both approaches
require finding roots of a cubic algebraic equation for this chemical
cycle with three species.

The dwell-time distributions for Scheme 10, the power stroke of
single-headed myosin, are shown in Fig. 3b. The results from the
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Fig. 3. Agreement of dwell-time distributions results from the EAB method and other methods. (a) The results from the EAB method (red line), the analytical
solution (blue dashed line) and the histogram obtained from the Monte Carlo simulation for Scheme 1. The curves from the EAB method and the analytical
solution overlap almost perfectly. (b) The results from the EAB method and the histogram from the Monte Carlo simulation for Scheme 10.
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EAB method agree well with the histogram of a Monte Carlo
simulation using Gillespie algorithm, whereas analytical solutions
are intractable due to the difficulty of finding roots of high degree
polynomials. The time to compute this Monte Carlo simulation was
116 s. The EAB method was �5,000 times faster. This improvement
in speed is particularly important when thousands of simulations
must be run to find a global optimization of fitting parameters.

We have applied the EAB method to experimental dwell-time
distributions. Recently, single molecule experiments were con-
ducted to study the effects of different parameters on the binding
and unbinding of actin for a single-headed myosin V construct (2).
Fig. 1b shows a sample trajectory from the experimental study.
Oscillations represent the states when myosin was not bound to
actin and pauses represent actin-bound states. Different directions
of forces exerted by an optical trap were imposed on the actin, and
different ATP and ADP concentrations were used for different
experiments.

The original kinetic scheme is shown in Scheme 6 for a single-
headed myosin. In the experiments, dwells are due to actin binding,
whereas in the example of Scheme 10, dwells arise from the wait for
the next power stroke. To modify the kinetic scheme to account for
the absorbing boundaries, we first identified the steps exiting a
dwell. In this case, they corresponded to all actin unbinding steps.
The kinetic scheme for calculating the dwell-time distributions was
thus

Here, all of the actin unbound states (upper row) are absorb-
ing boundaries. The initial conditions were obtained by con-
ducting flux analysis of the original kinetic scheme. Once the
corresponding kinetic equations were solved, one can follow the
procedure described above to obtain the dwell-time distribu-
tions.

Fig. 4 shows the experimental dwell-time distributions for myosin
V (dots) (2) and computational dwell-time distributions (solid lines)
in six different experimental conditions. To model the effects of
forces exerted by the optical trap, we used Boltzmann factors
e�F	x/kBT and e(��1)F	x/kBT for a proposed power stroke step (e.g., see
ref. 3). These factors accounted for energy surface adjustments due
to forces. More sophisticated models for the force effects could also
be incorporated to take the detailed shape of the energy surface
into consideration. Many of the rate constants in the kinetic scheme
of single-headed myosin have been identified through experimen-
tation (24) and used in our simulations, whereas other unknown
ones were obtained by fitting to the dwell-time distributions (SI Text
and SI Table 1). We were able to use a single kinetic scheme with
a proposed power stroke step to fit all dwell-time distributions (Fig.
4 a–f).

From the global fitting, we identified the step in the chemical
cycle corresponding to the observed rate in each dwell-time distri-
bution. For a low ATP concentration under forward external force
(Fig. 4a), two rate-limiting steps observed in the dwell-time distri-
butions were identified as the ATP-binding step and the ADP
release step. When the reverse force was applied, the kinetic
pathway across the power stroke step was blocked and the kinetic
flux turned to an alternative pathway with a slow rate (Fig. 4b).
When ATP concentrations were high (Fig. 4c), the rate of ATP
binding was fast, and this rate was absent in the dwell-time
distributions for the forward force. In Fig. 4d, the reverse force
again diverted the flux to the same alternative pathway taken when
ATP concentrations were low (Fig. 4b). For [ATP] � 1 mM and
[ADP] � 1 mM under a forward force, another characteristic rate
was present (Fig. 4e). This rate was identified to be associated with

actin unbinding when ADP was in the catalytic site, as high ADP
concentrations forced the kinetic flux to go to this pathway.

Discussion
Dwell-time distributions have been reported in many single-
molecule biophysical studies. A mathematical or computational
representation of the dwell time distribution is needed to gain
insight into the function of an enzyme. We extended the
absorbing boundary method to produce dwell-time distributions
for complex kinetic schemes typical of molecular motors and
other enzymes. The key steps in calculating the dwell-time
distributions with the EAB method are identifying the absorbing
boundaries and modifying the kinetic scheme to include the

[12]
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Fig. 4. Fitting of dwell-time distributions under different conditions using
only one kinetic scheme with Boltzmann force factors and the predicted
effects of applied forces on dwell-time distributions of single-headed myosin
V. Experimental data (dots) are from Purcell et al. (2). (a) Fitting of dwell-time
distributions in [ATP] � 10 �M and a forward force 2 pN. (b) Fitting of
dwell-time distributions in [ATP] � 10 �M and a reverse force 2 pN. (c) Fitting
of dwell-time distributions in [ATP] � 1 mM and a forward forces 2 pN. (d)
Fitting of dwell-time distributions in [ATP] � 1 mM and a reverse forces 2 pN.
(e) Fitting of dwell-time distributions in [ATP] � 1 mM, [ADP] � 1 mM, and a
forward force 2 pN. (f) Fitting of dwell-time distributions in [ATP] � 1 mM,
[ADP] � 1 mM, and a reverse force 2 pN. (g) Predictions of dwell-time
distributions under different reverse forces when [ATP] is 10 �M.
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absorbing boundary states. We have tested the EAB method by
comparing it to other methods and have used it to globally fit
experimental data describing single-headed myosin V.

There are a variety of methods to characterize dwell time
distributions, and each has strengths and weaknesses. When a single
dwell-time distribution is examined, an analytical solution, such as
a single or double exponential, is usually sufficient to fit it and to
obtain one or two critical rate constants. However, when more than
one dwell-time distribution is analyzed (e.g., when an enzyme is
subjected different experimental conditions) a more sophisticated
kinetic scheme is needed to characterize all data at once. Analytical
solutions may not be suitable because of the complexity of root
finding and inverse Laplace transform. If a kinetic scheme without
branching is appropriate, such as Scheme 1, the conventional
absorbing boundary method is suitable for representing the dwell-
time distributions. If states in a kinetic scheme can be separated to
two distinct groups, such as the actin-bound and actin-unbound
states in Scheme 12, the matrix method is appropriate to handle the
problem. However, for kinetic schemes such as Scheme 10, where
branching pathways exist, and the states cannot be divided to two
groups before and after a dwell, using the EAB method is appro-
priate. Many molecular motors require the modeling at this level of
complexity for global fitting. The EAB method is especially valu-
able for high-dimensional kinetic schemes of multimeric molecular
motors (see SI Text and SI Fig. 6).

The capability to use a single kinetic scheme to fit all dwell-time
distributions observed under different experimental conditions is a
powerful tool for identifying the mechanochemical model of a
molecular motor. The requirement that a single scheme represents
a variety of conditions allows one to eliminate proposed kinetic
schemes that are unable to accurately represent all experimental
observations. We have applied the EAB method to globally fit the
data of myosin V under different ligand concentrations and differ-
ent directions of external forces. This fitting revealed how force

affects the transition rates of its ATP hydrolysis cycle. Also, we have
linked the rate observed for [ATP] � 1 mM and [ADP] � 1 mM
under a forward force to the rate of an actin unbinding transition
(Fig. 4e), demonstrating that the integration of this computational
tool and experimental data provides insights into the kinetics and
mechanochemical characteristics of myosin V.

The fits shown in Fig. 4 a–f reveal a fast rate in the drop of
distributions close to dwell time � 0 sec. This fast rate reflects the
Pi release step, which was set as 250 s�1 based on bulk biochemical
measurements (24). This fast step has never been reported in
dwell-time distributions because it is too fast to capture, and
observing it requires an extremely long Monte Carlo simulation
trajectory. The examples in Fig. 3 also show three characteristic rate
constants. This prediction opens the opportunity to characterize
three or more rate constants in one dwell-time distribution.

The EAB method allows us to predict dwell-time distributions
under conditions that have not been performed experimentally. For
example, Fig. 4g shows the prediction of force dependency, which
can be tested by conducting optical trap experiments under differ-
ent forces. The computer simulation can therefore be used to test
whether a proposed power stroke step is indeed valid.

The EAB method can be applied to single molecule dwell-time
distributions of other enzymes, such as F1 ATPase (25), �29
packaging motor (26), RNA polymerase (27, 28), kinesin (29, 30),
and to examine conformational dynamics of other enzymes, such as
ion channels. Both mechanical dwells and kinetic dwells have been
illustrated, and this method can be easily applied to any of these
cases. The software that implements the EAB method is freely
available at www.simtk.org.
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