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Physiological studies suggest that decision networks read from the
neural representation in the middle temporal area to determine the
perceived direction of visual motion, whereas psychophysical studies
tend to characterize motion perception in terms of the statistical
properties of stimuli. To reconcile these different approaches, we
examined whether estimating the central tendency of the physical
direction of global motion was a better indicator of perceived direc-
tion than algorithms (e.g., maximum likelihood) that read from
directionally tuned mechanisms near the end of the motion pathway.
The task of human observers was to discriminate the global direction
of random dot kinematograms composed of asymmetrical distribu-
tions of local directions with distinct measures of central tendency.
None of the statistical measures of image direction central ten-
dency provided consistently accurate predictions of perceived glo-
bal motion direction. However, regardless of the local composition of
motion directions, a maximum-likelihood decoder produced glo-
bal motion estimates commensurate with the psychophysical data.
Our results suggest that mechanism-based, read-out algorithms offer
a more accurate and robust guide to human motion perception than
any stimulus-based, statistical estimate of central tendency.

human psychophysics � MT/V5 � read-out algorithms � visual motion �
population coding

The brain depends on sensory information to make evolutionary
stable decisions that guide the behavior of an organism. In

transforming incoming sensory information into a perceptual de-
cision, the brain must combine, or ‘‘pool,’’ neural signals from early
sensory cortex into a representation that can be decoded by
decision networks at later stages of processing. The fundamental
psychophysical and neural mechanisms mediating early sensory
processing are relatively well understood, but we are only beginning
to elucidate how cortical decision networks collate their sensory
input to form stable and reliable decisions.

Physiological studies have exploited the strict organization of the
middle temporal (MT) visual area in extrastriate cortex to delineate
the major neural steps in the transformation of visual information
to a perceptual decision (1, 2). MT is central to visual motion
perception: Neural activity is broadly tuned for retinal position as
well as the direction and speed of stimuli (3–7). Moreover, activity
is equally sensitive to and covaries with a monkey’s direction
discrimination performance (8–11). The representation of motion
direction in MT is topographically organized and superimposed on
a coarse retinotopic map: Columns of neurons oriented perpen-
dicularly to the pial surface respond to similar directions of motion
and retinal positions (12, 13). Cortical networks downstream from
MT access its neural representation of visual motion to direct many
forms of behavior, including saccadic and smooth pursuit eye
movements (14) and perceptual judgements of motion direction
(15, 16) and speed (17).

A key question that remains unanswered is exactly how cortical
networks executing different forms of behavior decode the neural
representation of visual motion in MT. Numerous physiological
studies have attempted to distinguish between two population
coding algorithms for reading out directionally tuned activity in
MT: ‘‘vector average’’ (population vector of stimulus direction and
magnitude calculated from average, direction-tuned neural re-

sponses weighted in proportion to their magnitude) and ‘‘winner-
take-all’’ (most active directionally tuned column of MT neurons).
In a series of pioneering studies combining visual stimulation with
electrical microstimulation in monkeys, Newsome and colleagues
(14, 18, 20) found that the algorithm deployed by cortical networks
to decode the motion representation in MT depends on both task
demands and the behavioral objective of the monkey. When
discriminating very different visual motion directions, the percep-
tual system employs a winner-take-all algorithm (18), whereas the
saccadic and smooth-pursuit eye movement systems read off the
vector average of competing velocity signals in MT (14, 19).
Moreover, monkeys’ performance on a free report task that
incorporated elements of both of these experiments was mediated
by a vector average algorithm when the direction preferences of
visually and microstimulated neurons differed by �140° and by a
winner-take-all algorithm when they differed by more than this
value (20).

However, winner-take-all and vector average algorithms are not
optimal in every sensory situation. For example, a monkey’s per-
formance on a fine direction-discrimination task is better explained
by an algorithm that selectively pools the most sensitive neurons
(21). Furthermore, a growing body of work suggests that the
likelihood function, representing the probability that a range of
stimuli gave rise to the neural response, is an optimal estimator of
performance on a wider range of perceptual tasks (22–27). Maxi-
mum-likelihood algorithms have been successfully applied to var-
ious sensory domains, including orientation perception (28), mo-
tion perception (29), and multisensory integration (30).

Surprisingly few human perceptual studies have investigated how
the activity of directionally tuned mechanisms at late stages of
motion processing is decoded to guide global motion perception.
The few studies that have considered this question suggest that
human observers exploit the statistical characteristics of stimuli to
judge the direction and speed of global motion (31–35). Human
perceptual judgments tend to coincide with the mean direction of
a moving dot field when local dots directions are drawn from a
uniform distribution with a restricted range (32). Having said this,
when a small number of local directions dominate a moving dot
field, observers’ judgments are biased away from the mean toward
the modal (31) direction of motion.

Thus, at present, it is unclear whether cortical decision networks
simply exploit the statistical characteristics of moving stimuli or
deploy one of a number of potential read-out algorithms to guide
human perceptual judgements of global motion direction. Here we
examine whether estimating the central tendency of the physical
direction of global visual motion provides a better indication of
perceived direction than an algorithm that reads from directionally
tuned mechanisms at late stages of motion processing.
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Results
Statistical Guides to the Perceived Direction of Global Motion. Our
first objective was to determine the extent to which statistical
characteristics of moving stimuli influence the perception of visual
motion direction. In the first experiment, we sought to determine
the relationship between the perceived and modal direction of
global motion. The task in this and subsequent experiments was to
judge whether a standard or comparison random dot kinemato-
gram (RDK) had a more clockwise (CW) direction of motion (Fig.
1A). Dots of the standard RDK moved in a common direction (i.e.,
the vector average, median and modal direction were identical),
randomly chosen on each trial from a range spanning 360°. Dot
directions of the comparison RDK were sampled discretely from a
Gaussian probability distribution. Across four conditions, we inde-
pendently varied the half widths [standard deviations (SDs)
counter-clockwise (CCW) and CW to the mode] of the distribution
(see Fig. 1 B–D and Methods) to generate a modal direction for the
comparison RDK that was increasingly distinct from the vector
average and median directions.

We expressed the data collected in each condition as the
percentage of trials on which observers judged the modal direction
of the comparison as more CW than the direction of the standard
as a function of the angular difference between them. From logistic
fits to these data, we estimated the modal direction of the com-
parison that had the same perceived direction as that of the
standard (see Methods). Fig. 2A shows the results of this analysis for
four observers as a function of the half-widths of the distribution of
dot directions for the comparison RDK (symbols). Values on the
ordinate are normalized to the modal direction of the comparison
(dotted line). As the clockwise (CW) and counter-clockwise (CCW)
half-widths of the distribution of dot directions narrow and
broaden, respectively, the perceived direction of motion diverges
from the modal direction toward the median (solid line) and vector
average (dashed line). When dot directions for the comparison were
drawn from a Gaussian with a CCW SD of 60° and a CW SD of 0°,
the modal direction of the comparison had to be rotated, on
average, by 35° to be indistinguishable from the standard. Clearly,
the perceived direction does not match the modal direction [mean
square error (MSE) between the perceived (average of four ob-

servers) and modal direction of physical motion, 494.46]. Rather, it
appears to coincide relatively closely with the median direction
(MSE, 1.7) and to a lesser extent with the vector average (MSE,
29.82).

In a second experiment, we adopted the same approach used
in the first with the following exception. In addition to varying
the half-widths of the Gaussian distribution of directions for the
comparison RDK, we sampled the CCW and CW halves of the
distribution at 5° and 1° intervals, respectively. Using this
method, we were able to generate distributions of dot directions
for the comparison RDK with the same mode and median but
an increasingly disparate vector average.

Fig. 2B shows the results of this experiment plotted and notated
in the same fashion as in Fig. 2A. As the CCW and CW half-widths
of the distribution of dot directions broaden, the perceived direction
of motion diverges from the vector average and converges on the
median (and modal) direction of motion. When the distribution of
dot directions for the comparison had a CCW SD of 90° and a CW
SD of 18°, the median direction of the comparison had to be
rotated, on average, by only 0.5° to be indistinguishable from the
standard. Once again, it is apparent that the perceived direction of
motion does not match the vector average (MSE, 177.83) but does
conform closely to the median direction of stimulus motion
(MSE, 7.42).

Both experiments suggest that there is a close, but imperfect,
correspondence between the perceived and median direction of
global motion. One advantage of this strategy is that the median is
a robust estimator of central tendency that minimizes the impact of
outlying motion directions on the global percept. The aim of the
third experiment was to determine whether we could produce the
same pattern of results when the dot directions of the comparison
RDK were chosen from a uniform (rectangular) distribution, which
has no mode and equivalent energy at each local motion direction.
To generate a median that was increasingly distinct from the vector
average direction for the comparison RDK, we independently
varied the ranges and used different sampling densities on the CCW
and CW sides of the median of the distribution (see Fig. 1D
and Methods).

To compare directly the perceived and median directions of

Fig. 1. Direction discrimination task and distribu-
tions of dot directions. (A) Direction discrimination
task in which observers judged which of two sequen-
tially presented RDKs had a more CW direction of
motion. (B–D) Distributions of dot directions for the
comparison RDK in each experiment, respectively. Ar-
rows (A) and arrowheads (B and C) show the vector
average (gray), median (white), and modal direction
(black) of the comparison RDK.
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motion, we estimated the median direction of the comparison that
had the same perceived direction as that of the standard. Fig. 2C
shows the results of this analysis as a function of the CCW and CW

ranges of the distribution of dot directions for the comparison
RDK. Values on the ordinate are normalized to the median
direction of the comparison (solid line). When the distribution of
dot directions for the comparison had a CCW range of 110° and a
CW range of 70°, the median direction of the comparison had to be
rotated, on average, by 9.14° to be indistinguishable from the
standard. Therefore, when a moving stimulus consists of local
directions with equivalent motion energy, there is a poor corre-
spondence between the perceived and median global direction of
motion (MSE, 51.58). Vector average (dashed line) is an even
poorer estimator of perceived direction (MSE, 381.45), suggesting
that computing the central tendency of the physical direction of
global motion is not a particularly robust cue to the perceived
direction of motion.

Neural Algorithms for Reading Out Global Motion Direction. Our
second objective was to determine whether an algorithm that reads
from the activity of directionally tuned mechanisms near the end of
the motion pathway offers a better estimate of the perceived
direction of global motion. To tackle this question, we modeled the
data collected in the three experiments on a trial-by-trial basis with
three read-out algorithms: maximum likelihood, winner-take-all
and vector average (see Fig. 4 and Methods). Briefly, each model
consists of a bank of evenly (1°) spaced directionally tuned mech-
anisms that respond to a distribution of dot directions with a
Gaussian sensitivity profile that is corrupted by Poisson noise.
Chosen to be within the range obtained in previous psychophysical
studies on the directional tuning of motion mechanisms (36–38)
and physiological studies on the directional tuning of MT neurons
(7, 39, 40), the bandwidth (half-width at half-height) of each
mechanism was fixed at 45°. Maximum likelihood estimates the
perceived direction of motion from the weighted sum of responses
for the population of mechanisms, where the activity of each
mechanism is multiplied by the log of its tuning function. Winner-
take-all estimates perceived direction as the preferred direction of
the most active mechanism from the population of responses; vector
average arrives at a corresponding estimate by averaging the
preferred directions of all mechanisms weighted in proportion to
the magnitude of their responses. Vector average produced very
similar estimates of the perceived direction of motion (data not
shown) to that of the vector average direction of physical global
motion. Because we have already shown that the vector average of
local motions in the stimulus is a consistently poor predictor of
perceived direction, we now concentrate on maximum likelihood
and winner-take-all.

Both algorithms provided very accurate estimates of perceived
direction in all stimulus conditions, but the variance of winner-
take-all’s estimate was consistently larger than that of maximum
likelihood. Because maximum likelihood is an unbiased, optimal
estimator of perceived direction with minimal variance over trials,
we chose to present its estimate of perceived direction. Filled
symbols in Fig. 3 A–C show the perceived direction of motion of the
four observers (mean � SD) plotted in the same fashion as Fig. 2
A–C. Open symbols show the estimated global motion direction of
the maximum-likelihood algorithm. Unlike the median direction of
physical global motion, maximum likelihood captures the variability
in the perceived direction of different global patterns of motion in
each experiment. [The MSE between the data of the four observers
and the maximum likelihood algorithm was 1.32 (Fig. 3A), 6.56 (Fig.
3B), and 13.3 (Fig. 3C) for each experiment, respectively.] This
point is reinforced in Fig. 3D, which shows the perceived direction
of motion of each observer in each experiment as a function of the
predictions of the maximum-likelihood algorithm. All data points
cluster around the unity line, indicating that maximum likelihood
provides a robust estimate of the perceived motion direction,
explaining, on average, 96% of the variance in the performance of
observers across all stimulus conditions.

Fig. 2. Correspondence between perceived and statistical directions of
global motion. (A) Symbols show for four observers the normalized modal
direction of the comparison RDK with the same perceived direction as that of
the standard as a function of the half-widths of the distribution of directions
for the comparison RDK. Lines are the vector average (dashed), median (solid),
and modal (dotted) direction of the comparison RDK. (B) Same as A for the
second experiment. (C) Same as A with the exception that symbols show the
normalized median direction of the comparison with the same perceived
direction as that of the standard as a function of the half-widths of the
distribution of directions for the comparison. Error bars: 95% CIs based on
5,000 bootstraps.
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Discussion
We investigated whether the central tendency of the physical
direction of global visual motion was a better guide to the per-
ceived direction of global motion than an algorithm that reads from
directionally tuned mechanisms at late stages of motion processing.
In global dot motion direction discrimination, there was a close
correspondence between the median and perceived direction of
motion if the pattern of motion consisted of a small number
of dominant local directions, but much less so if it consisted of
equivalent energy at each local motion direction. Regardless of the
local composition of motion directions, both maximum-likelihood
and winner-take-all read-out algorithms provided a much more
robust guide to the perceived direction of global motion.

Previous psychophysical studies claim that estimates of the
central tendency of the direction of global dot motion predicts the
perceived direction of motion (31, 32). For example, Williams and
Sekuler (32) found that a pattern appears to drift in a direction close
to the mean of the dot directions when their range is constrained
to be �180°. However, they used symmetrical distributions of dot
directions and therefore could not distinguish the mean from other
measures of central tendency. When a distribution of dot directions
is skewed asymmetrically, the perceived direction can be biased
away from the mean toward the modal direction of global motion
(31). Zohary et al. (31) found that observers’ judgements switched
between the mean and modal direction, suggesting that the visual
system has access to the entire distribution of local directions and
adopts a flexible decision strategy. However, they did not consider

the possibility that observers based their performance on the
median direction of motion, which we have shown to be a better
estimate of the global percept for patterns of motion dominated by
small numbers of local directions. That said, in the present study the
median failed to provide an accurate estimate across all conditions
tested, suggesting that basing motion direction judgements on the
statistical characteristics of a moving stimulus is not a reliable
strategy for the visual system.

Zohary et al. (31) also assumed that the mode of an asym-
metrically skewed distribution of dot directions corresponded to
the most active directionally tuned mechanism. We have shown
that this is not the case: The modal direction of patterns
composed of asymmetrical distributions of directions is very
different from that estimated by a winner-take-all, with the latter
providing considerably more accurate estimates of the perceived
direction. Indeed, both maximum likelihood and winner-take-all
provided much more accurate and robust estimates of the
perceived direction of global motion than any estimate of central
tendency. This result demonstrates the benefit of designing
stimuli that distinguish the statistical characteristics of physical
stimulation from the underlying putative perceptual mechanism.
Stochastic patterns composed of asymmetrical distributions of
the parameter of interest are ideal for this purpose and as such
may be a useful resource for future experimentation on motion
perception. Such patterns could be used in physiological studies
to distinguish between putative algorithms deployed by cortical
networks to decode the velocity representation in MT. Similarly,
psychophysical studies could use analogous stimulus distribu-
tions to study speed mechanisms. By way of example, Watama-

Fig. 3. Estimating the perceived direction of global motion with maximum likelihood. (A–C) Filled symbols show the perceived direction of motion of four observers
(mean � SD) in each experiment plotted as in Fig. 2. Open symbols show the estimated perceived direction of motion of the maximum-likelihood model. (D) Perceived
direction of each observer in each experiment as a function of the predicted perceived direction of maximum likelihood.
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niuk and Duchon (35) found that observers tend to base speed
judgements on changes in the mean dot speed rather than the
median or mode speeds. It follows from our results that an
algorithm that reads from a bank of speed-tuned mechanisms
may offer a better estimate of speed perception than the mean
physical speed of motion.

Both physiological and computational studies have shown that
winner-take-all and maximum likelihood are members of a
group of algorithms deployed by cortical decision networks to
read from the motion representation in MT (14, 18, 20–27, 41).
This encourages the view that performance on our task is
mediated by cortical decision networks that read from the
motion representation in the human homologue of monkey MT
(26, 41). Whether or not decision networks adopt a flexible
strategy, deploying different population coding algorithms to
meet the prevailing behavioral objective (14, 18, 20, 21), or use
a singular probabilistic read-out strategy in MT (41), remains
open to debate. The significance of our results is that read-out
algorithms, such as maximum likelihood, offer a more accurate
and robust guide to human motion perception than the statistical
characteristics of physical stimulation.

Methods
Observers. Four observers with normal or corrected-to-normal
vision participated. Two were authors (B.S.W. and P.V.M.) and two
(C.V.H. and E.F.) were naı̈ve to the purpose of the experiments.

Stimuli. RDKs (Fig. 1A) were generated on a Macintosh G5 (Apple,
Cupertino, CA) by using software written in C. We displayed the
RDKs on an Electron 22 Blue IV monitor (LaCie, Hillsboro, OR)
with an update rate of 75 Hz at a viewing distance of 76 cm. Each
RDK (generated anew before each trial) consisted of 10 frames,
sequentially displayed at 18.75 Hz. Each frame consisted of 226 dots
(luminance 0.05 cd/m2) on a uniform background (luminance 25
cd/m2) within a circular window (diameter 12°). The dot diameter
was 0.1° and density was �2 dots/deg2. On the first frame of a
motion sequence, dots were randomly positioned inside the circular
window; on subsequent frames, they drifted in a specified direction
at 5°/sec. Dots that fell outside the circular window were redrawn
inside at a random location.

Procedure. Observers judged which of two sequentially presented
RDKs had a more CW direction of motion. On each trial, we
presented a standard and comparison RDK in a random temporal
order, each presented for 0.53 sec and separated by a 1-sec interval
containing a blank screen of mean luminance (Fig. 1A). The dots
of the standard RDK were displaced in the same direction, ran-
domly assigned on each trial from a range spanning 360°. For the
comparison RDK, the direction of each dot displacement was
drawn, with replacement, from a probability distribution and was
independent of both its own direction on previous frames and the
directions of other dots.

Fig. 4. Estimating the perceived direction of global
motion with different read-out algorithms. Schematic
illustration of how we derived estimates of the per-
ceived direction of motion with three read-out algo-
rithms: maximum likelihood (M-L), winner-take-all
(W-T-A), and vector average (V-A). On each trial, a
bank of evenly spaced directionally tuned mechanisms
(Middle) responds to a distribution of dot directions
(Bottom). The number of spikes elicited in a response
to a stimulus is Poisson distributed. We derive the
average population response (solid line, Top) on a
trial-by-trial basis (open circles, Top) to a given distri-
bution of dot directions from the summed responses
of the local directionally tuned mechanisms. The esti-
mated perceived direction of motion of maximum-
likelihood, winner-take-all, and vector-average algo-
rithms are the same when dots are drawn from a
symmetrical, in this example, Gaussian distribution
(Left Bottom), but different when dots are drawn from
an asymmetrical, in this case, uniform distribution
(Right Bottom).
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In the first experiment, dot directions of the comparison RDK
were discretely sampled at 5° intervals from a Gaussian distribution
spanning a total range of 180° (Fig. 1B). We assigned each half of
the Gaussian (i.e., directions CW and CCW to the modal direction)
a different SD, thus generating asymmetrically distributed direc-
tions of dot motion. The SD of the CCW half of the Gaussian was
30°, 40°, 50°, or 60°; the corresponding values for the CW half were
30°, 20°, 10°, or 0°.

In the second experiment, dot directions of the comparison RDK
were discretely sampled from a Gaussian (Fig. 1C) with an SD of
30°, 50°, 70°, or 90° for the CCW half and 6°, 10°, 14°, or 18° for the
CW half. We sampled the CCW and CW halves of the distribution
at 5° and 1° intervals, respectively. This technique generated
asymmetrical distributions of dot directions with the same mode
and median but a different vector average. For both experiments,
the modal direction of the comparison RDK was randomly chosen
on each trial using the Method of Constant Stimuli.

In the final experiment, for the comparison RDK we generated
a uniform (rectangular) distribution of dot directions with a total
range of 180° (Fig. 1D). We assigned each half of the distribution
(i.e., directions CW and CCW to the median direction) a different
range and sampling density. Dot directions for the CCW half of the
distribution were sampled at 5° intervals over a range of 90°, 110°,
130°, or 150°; the corresponding values for the CW half were 90°,
70°, 50°, or 30°. The median direction of the comparison RDK was
randomly chosen on each trial by using the Method of Constant
Stimuli.

Data Analysis. For each condition, observers completed 3–7 runs
of 180 trials. Data were expressed as the percentage of trials on
which observers judged the modal (experiments 1 and 2) or
median (experiment 3) direction of the comparison as more CW
than the standard as a function of the angular difference between
them and fitted with a logistic function:

y � 100�1 � exp{(x � �)��}, [1]

where y is the percentage of CW judgements, � is the stimulus
level at which observers were unable to distinguish between the
directions of the standard and comparison, and � is an estimate
of direction discrimination threshold.

We modeled the pooling of local directional signals with three
algorithms: maximum likelihood, winner-take-all, and vector
average (Fig. 4). We simulated each model’s performance on the
direction discrimination task performed by the observers on a
trial-by-trial basis using analogous methods. Each model con-

sisted of a bank of evenly spaced directionally tuned mechanisms
spanning 360°, each of which responded to a limited range of
local directions with a Gaussian sensitivity profile that was
corrupted by Poisson noise. The center-to-center separation
between adjacent mechanisms was fixed at 1°. The sensitivity of
the ith mechanism, centered at �i, to direction of motion � is

Si��� � exp{�[(���i)�h]2log2}, [2]

where h is the bandwidth (half-height, half-width), fixed at 45°.
The response profile of the ith mechanism to stimulus D with a
distribution of dot directions, D(�), is

Ri�D� � k �
��1

360

Si���pr�D(�)} (where k � Rmax t� , [3]

where Rmax is the maximum mean firing rate of the mechanism (to
a stimulus in which all dots move in the preferred direction) in
spikes per sec (60), t is stimulus duration, and pr{D(�)} is the
proportion of dot directions in the distribution. The number of
spikes (ni) elicited in response to a stimulus on a given presentation
is Poisson distributed with a mean of Ri(D):

p�ni�D� �
Ri�D�ni

ni!
exp{�Ri�D�}. [4]

The log likelihood of any stimulus D is computed as a weighted sum
of the responses of the population of mechanisms, where the
activity of each mechanism is multiplied by the log of its tuning
function (24):

logL�D� � �
i�1

360

nilogRi�D� . [5]

The estimated direction is the value of �i for which log L(D)
computed for all D is maximal. To obtain the estimated direction
of the comparison from the winner-take-all model, we read off the
preferred direction of the peak of the population response; to
obtain the corresponding estimate from the vector average model,
we calculated the average of the preferred directions of all mech-
anisms weighted in proportion to the magnitude of their responses.
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